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Quantitative structuresublimation enthalpy relationship studied by 
neural networks, theoretical crystal packing calculations and 
multilinear regression analysis 
Michael H. Charlton,* Robert Docherty and Michael G. Hutchings 
Zeneca Specialities Research Centre, Hexagon House, PO Box 42, Blackley, Manchester, UK M9 8ZS 

Three different techniques have been used to analyse the relationship between the structure of 62 organic 
compounds and their sublimation enthalpies. Using a neural network based on molecular structure 
descriptors (molecular formula, hydrogen bonding and n-characteristics), sublimation enthalpies can be 
modelled. The best of the neural network models yielded an average error of 2.5 kcal mol-' in a series of 
'leave-one-out experiments'. The same sublimation enthalpy data have been studied using theoretical 
techniques based upon crystal packing calculations, and also with a simple three parameter multilinear 
regression model. The latter two methods produced results that were superior to the neural network in this 
particular study (mean errors of 1.4 and 1.8 kcal mol-', respectively), although in the case of MLRA, this is 
the result of the model fitting exercise, and not a predictive run. It was surprising to find such a simple linear 
relationship between characteristics describing the molecular formula and the sublimation enthalpy. 
Nevertheless, the results here have highlighted the potential of neural networks and MLRA as useful tools 
for the approximate prediction of physical properties, as demonstrated for a series of compounds not 
included in the training set. 

Introduction 
The sublimation enthalpy (AsubH) of a compound is the energy 
required to break up the solid state and convert the system into 
the gas phase. It is a property of particular interest in the 
crystal chemistry of molecular materials. Pigments and 
disperse dyes are two typical examples in which the b,,bH 
plays an important role, since many characteristic properties 
of these compounds are governed by solid state interactions. 
Colour, light fastness, thermal stability and bleeding 
characteristics are often dependent upon the intermolecular 
interactions within the solid state. The prediction of 
thermochemical data are also of considerable importance in 
the identification of commercially viable processes, in the 
formulation of many products such as dyes, drugs and 
agrochemicals, and in plant design and operation. 

Clearly, the AsubH and other thermochemical data can be 
measured, but this may be a costly and time-consuming process. 
The prediction of solid state properties (such as sublimation 
enthalpy) before a compound is synthesised would obviously be 
of considerable use. Other multilinear regression analysis 
(MLRA) studies of the AS,bH have been performed, but these 
have been upon restricted classes of compounds.'Y2 They also 
tend to use considerably more complex input parameters which 
include some experimental information, meaning that a priori 
predictions cannot be made. 

This work outlines the use of various quantitative techniques 
in the modelling and prediction of the ASUbH of a series of 
organic molecules, ranging from simple hydrocarbons, poly- 
cyclic aromatic compounds, carboxylic acids, amides and 
amino acids to heterocycles and dyestuffs. The compounds 
under study in this work are limited to those containing only 
carbon, hydrogen, oxygen and nitrogen, although the system 
could, in principle, be extended to other elements. 

The first technique used is that of Neural Networks (NN), 
and this is then compared both with calculated values from 
traditional molecular modelling techniques and with a MLRA 
model. The input to the NN has been kept as simple as possible 
to facilitate the prediction of values for novel molecules. The 
MLRA uses the same input data as the NN, although some 

covariance was found between the input parameters, indicating 
that the number of inputs could bc rcduced. In addition, some 
other simple parameters have also been investigated in the 
MLRA study. 

Neural networks 
NNs are so called because they attempt to model some of the 
processing functions of the human brain. The idea of neural 
processing was originally developed in the 1 9 4 0 ~ , ~  but 
subsequently fell out of favour until the 1980s. This renewed 
interest followed the publication of work which discussed the 
limitations of these earlier  system^,^ as well as the dramatic 
growth of traditional digital computing. In 1982, Hopfield 
published work that led to the re-emergence of neural nets as 
computational tools. 

NNs are able to perform highly non-linear pattern 
recognition, classification and regression tasks, the results of 
which are often superior to traditional approaches. Recent 
applications of NNs include the determination of structure- 
activity relationships in drug the prediction of 
protein structure io and the classification of spectra.lO." 
Thermochemical data such as solubilities l 2  and boiling points 
of organic heterocycles have also been the subject of investi- 
gation. There are also a number of reviews of the use of NNs 
in chemistry. 1091471 

The network used in this study is a program called PSDD l 6  

(Perceptron Simulation for Drug Design), which is freely 
available. In general, NNs can have any number of hidden 
layers, but the PSDD program is restricted to only one, 
although this can contain any number of nodes. The authors of 
the program consider a three layer network (with input, output 
and one hidden layer) to be sufficient for practical structure- 
activity ~ t u d i e s . ' ~ , ' ~  The PSDD simulation is a feed forward 
network, in which each layer is only connected to the outputs of 
all the nodes in the preceding layer. This is relatively simple to 
construct and easier to train than networks with more layers.6 A 
number of different NN architectures have been studied, but to 
date, the feed-forward network has achieved greatest popularity 
in chemical studies. 
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Network training 
PSDD uses a supervised training scheme. This involves showing 
the network a set of sample data, for which the desired physical 
or chemical property is known. The main learning scheme used 
by the program is Back Propagation Learning." This starts at 
the output layer, and systematically alters the weights of the 
preceding layer to yield the required output. The program 
passes through all the data repeatedly, until the difference 
between predicted and experimental values falls below a preset 
limit, i.e. if we have a training pattern t ,  then the learning 
process is repeated until the error function, E, becomes small 
enough, eqn. (1). Further details of the learning process are 
given elsewhere. 

E = C(Outputj - tj)2 (1) 
j 

Overfitting of the data 
In networks with a large number of hidden nodes, there is a 
danger of overfitting the data. If the number of weights 
controlled by the NN exceeds the number of items in the 
training set, then the net will reproduce these items extremely 
well by memorising each of the values. In such a situation, it 
is acting rather like a look-up table, and is likely to be unable 
to interpolate its knowledge to systems that it has not yet 
encountered.6 With a small number of hidden neurons, the 
node efficiency increases, and the network is able to infer 
relationships between the data more readily. To determine a 
suitable network architecture, a ratio, p, has been defined,I8 
eqn. (2): 

N ,  
NW 

p = -  

where Nt is the number of items in the training set, and N ,  is the 
number of weights in the network. If training bias is included in 
the net, then N ,  can be calculated from the number of input ( I ) ,  
hidden ( H )  and output (0) nodes, eqn. (3): 

Nw = ( I  + 1)H + (H  + 1)0 (3) 

It has been suggested that to maintain the balance, allowing 
generalisation and preventing the NN from simply memorising 
the data, the network should be designed so that p lies between 
1.8 and 2.L4 Other workers propose that a value of p > 1 is 
sufficient. ' 
Sublimation enthalpy prediction using the neural network 
It was decided that the ability to predict the ASubH of a 
compound would be of most use if the input to the network was 
as simple as possible. The absence of any quantum mechanically 
derived parameters (e.g.  dipole moments, charges) from the 
model would enable much faster prediction. With this in mind, 
seven parameters were selected that could be important factors 
in determining the A,,&. The parameters are the number of 
carbon atoms (C), the number of hydrogen atoms ( H ) ,  the 
number of  nitrogen atoms ( N ) ,  the number of oxygen atoms 
(O),  the number of .n-atoms (PI), the number of hydrogen bond 
donors (HBD) and the number of hydrogen bond acceptors 
(HBA).  Initial examination of AsubH trends indicates that 
molecular size, the n-n interactions and hydrogen bonding are 
of greatest importance. These features are represented by this 
series of parameters. It should be noted that in this context, 
HBD has been defined as the number of hydrogens attached 
to either N or 0. Weak C-H acceptor interactions have 
been ignored in this analysis. The HBA term is defined by the 
total number of oxygen atoms plus all nitrogen atoms except 
those in -NO, and aryl-NR, groups. The nitrogen atoms in 
N, are also excluded. It should also be stressed that all types 

of acceptors are treated equally, with no differentiation between 
either atom type or environment. This is also true for hydrogen- 
bond donors. 

These values were tabulated for each of a list of 62 molecules 
which formed the training set. This initial dataset, although not 
exhaustive, was originally selected to represent a wide range of 
crystal chemistry for molecules containing only C ,  H, 0 and N 
atoms, for the purpose of evaluating theoretical crystal packing 
techniques. The dataset includes aliphatic and aromatic 
hydrocarbons, oxohydrocarbons, azahydrocarbons, carboxylic 
acids, amides and amino acids. One constraint on the dataset 
was that only compounds for which both ASubH and accurate 
cystal structures are known were selected. 

The information was entered into the PSDD program, 
along with the experimental values for the SE, most of which 
were obtained from Cox and Pilcher." The experimental 
values are given in Table 1. A number of predictive runs 
termed 'Leave-One-Out Experiments' were performed to assess 
the performance of the network. For K compounds, this 
involves the network learning for ( K  - 1) compounds, and 
then predicting the remaining one. This process is repeated 
for each of the molecules in the training set, giving a predicted 
value for each compound, involving no prior knowledge of 
the experimental value. Although such a run involves a series 
of quitc lengthy calculations, a 'production' version of the 
network could calculate an unknown AsubH extremely rapidly, 
having been trained upon all the molecules in the training 
set. 

Eight different runs were attempted to test the effect of 
altering values for the number of hidden neurons and the error 
cutoff function [eqn. (I)]. The runs were limited to a maximum 
of 8 x lo5 training cycles, except for run 8, for which the limit 
was 1 x lo6. The results for each run were analysed and 
compared to the experimental values. The statistical results of 
these runs are shown in Table 2, and enable the optimum 
parameters for the network to be determined, and show 
the modelling power of the network. The optimum NN 
architecture selected from these 8 was "7, based upon best 
values for the square of the multiple correlation coefficient, 
r2,  maximum and average errors, and SD. The predictive results 
for this leave-one-out experiment are presented in Table 1. 

Effect of p and E on network predictions 
By varying the learning termination threshold Emax {the 
maximum allowable value of E [eqn. (l)]), the learning 
behaviour of the net can be modified. For different values of p, 
the effect of altering Emax has been examined in network runs 
1 to 8. Whilst large values lead to insufficient training, smaller 
values mean that the network takes longer to train, because 
it is harder to obtain predictions with very small errors 
during training. Low values can also lead to the overtraining 
phenomenon previously described when the value of y is also 
small. In this situation, the network starts to reproduce the 
noise in the input data, rather than the overall trends, and 
this leads to a poor ability to predict values for unknown 
compounds. The effect can be seen by comparing the results 
for Runs 1, 7 and 8. Run 7 has the best results, and an inter- 
mediate value of Em,,. This implies that not enough training 
has occurred in "1, and the network has overtrained in 
"8. Reducing the number of hidden neurons (runs "7, 
NN3 and "6) leads to a gradual deterioration in results. 
For intermediate numbers of hidden neurons @ = 2.21), the 
amount of training seems to make little difference ("4 and 
"6). Despite this, even the best network architecture still 
produces a maximum error of 10.1 kcal mol-', and two 
negative results (nitrogen and cyanogen), which are chemically 
meaningless. Both of these molecules have no hydrogens 
and a high nitrogen to carbon ratio, which could be 
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Table 1 Experimental and predicted values of the ASubH of selected organic compounds (kcal mol-') 

MLRA' Molecule Expt . Theory" N N b  

Pentane 
Hexane 
Octane 
Octadecane 
Benzene 
Biphenyl 
Naphthalene 
Anthracene 
Phenanthrene 
Chrysene 
Triphen ylene 
Per ylene 
Ovalene 
Benzoquinone 
Anthraquinone 
Benzophenone 
4-Methylphenol 
Succinic anhydride 
Maleic anhydride 
Phthalic anhydride 
Naphthaquinone 
9,l O-Phenanthrenequinone 
Cyclohexane- 1,4-dione 
2,2,4,4-Tetramethylcyclobutane- 1,3-dione 
s-Trioxane 
1,3,5,7-Tetraoxocane 
Phenyl Benzoate 
Nitrogen 
Cyanogen 
Dicyanoacetylene 
Tetracyanoethylene 
Pyrimidine 
Pyrazine 
Trinitrotoluene 
N,N-Dimeth y 1-p-nitroaniline 
Formic acid 
Acetic acid 
Propanoic acid 
Butyric acid 
Valeric acid 
Oxalic acid 
Succinic acid 
Glutaric acid 
Adipic acid 
Suberic acid 
Sebacic acid 
Benzoic acid 
Oxamide 
Malonamide 
Succinamide 
Urea 
Formamide 
Diketopiperazine 
7,7,8,8-Tetracyanoquinodimethane 
Indigo 
Acridine 
Azobenzene 
Mesitonitrile (2,4,6-trimethylcyanobenzene) 
N-Methylcarbazole 
p-Dicyanobenzene 
s-Triazine 
Stearic Acid 

9.9 
12.6 
15.9 
37.8 
12.5 
20.7 
17.3 
24.4 
20.7 
28.4 
27.4 
31.0 
50.6 
14.9 
26.1 
23.9 
17.7 
19.6 
16.4 
21.1 
21.7 
25.8 
20.2 
17.3 
13.8 
19.0 
23.7 
2.0 
8.7 

10.6 
20.6 
11.7 
14.5 
24.4 
23.8 
15.2 
16.3 
17.7 
19.2 
20.2 
24.8 
29.3 
29.0 
32.1 
35.4 
39.6 
23.0 
28.2 
28.8 
32.3 
22.2 
17.5 
26.0 
26.5 
31.8 
22.0 
22.0 
18.6 
22.8 
21.2 
13.4 
39.8 

10.3' 
12.6' 
16.5' 
35.2 ' 
12.5' 
21.6' 
19.7" 
26.9' 
23.3' 
31.9' 
30.7' 
32.5 ' 
52.7' 
14.9' 
26.8 ' 
24.5 
15.49 
17.8' 
15.2 ' 
22.5 ' 
22.7 ' 
24.4 ' 
19.5 ' 
16.1 
14.5 ' 
18.0 ' 
23.9 ' 

2.0' 
8.4' 

10.6' 
21.8 
13.5' 
14.3' 
25.1 ' 
26.3 
13.3' 
15.2' 
17.6' 
19.1' 
21.3' 
25.9 
32.0' 
31.0' 
34.5' 
31.5' 
41.9' 
20.4' 
25.4' 
31.0' 
34.3' 
23.4' 
15.7' 
27.0' 
27.0" 
32.5" 
24.0' 
23.4' 
17.0' 
21.6' 
18.0' 
13.4' 
41.3 

12.1 
11.4 
15.9 
30.7 
9.6 

18.9 
17.9 
22.6 
23.4 
28.7 
27.5 
29.7 
49.7 
18.9 
25.8 
19.3 
22.0 
16.0 
17.8 
22.9 
19.4 
24.8 
16.2 
19.7 
18.7 
15.3 
26.9 
- 0.9 
- 1.4 
16.7 
17.8 
15.2 
13.0 
21.0 
23.2 
15.6 
16.7 
18.0 
19.2 
20.6 
28.5 
28.6 
31.1 
32.0 
36.7 
37.7 
23.9 
25.7 
30.9 
28.7 
21.4 
11.4 
28.4 
27.6 
40.4 
23.6 
28.1 
20.9 
21.8 
15.5 
13.3 
41 .O 

10.5 
11.9 
14.8 
28.9 
11.9 
20.4 
17.6 
23.2 
23.2 
28.9 
28.9 
31.7 
48.6 
16.5 
27.7 
24.1 
20.2 
15.9 
15.9 
21.5 
22.1 
27.7 
16.5 
19.3 
14.5 
18.2 
26.3 

3.5 
10.8 
13.6 
21.0 
13.6 
13.6 
26.9 
19.3 
14.0 
15.4 
16.8 
18.2 
19.6 
24.4 
27.3 
28.7 
30.1 
32.9 
35.7 
22.4 
29.0 
30.4 
31.8 
25.3 
16.2 
22.7 
29.5 
39.7 
24.1 
24.9 
19.8 
21.8 
19.3 
14.5 
37.9 

Max. error 
Mean error 
rL 

3.5 10.1 8.9 
1.4 2.5 1.8 
0.97 0.87 0.92 

Theoretical prediction using crystal packing. Neural network prediction (Run 3, see Table 2). ' Multilinear Regression Analysis prediction from 
eqn. (5). References: d z 9 ,  eZ4, f 30, g31, h',  i3=, j z ,  k33, 134, m3', d6, 037 a n ~ l p ~ ~ .  

leading to confusion in the network. The inclusion of both 
compounds simultaneously during training may be enough to 
make the results more stable during prediction. 

Theoretical crystal packing calculations 
In order to understand the principles which govern the wide 
variety of solid state properties and structures of organic 
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Table 2 Analysis of predictions of AsubH 

Network 
parameters a 

Max. Av. 
Run H P Em,, error errorb r2 SD‘ 

NN1 7 1.13 
NN2 5 1.68 
NN3 5 1.68 
”4 4 2.21 
N N 5  3 3.26 
“6 4 2.21 
NN7 7 1.13 
NN8 7 1.13 
Theory 
MLRAd 

0.001 
0.001 
0.0005 
0.001 
0.001 
0.0005 
0.0005 
0.00001 

14.472 
16.194 
15.072 
19.324 
16.934 
16.771 
10.126 
24.247 

3.5 
8.9 

2.501 
2.374 
2.509 
3.565 
2.881 
3.205 
2.489 
3.672 
1.385 
1.777 

0.803 
0.797 
0.826 
0.701 
0.757 
0.706 
0.865 
0.599 
0.97 1 
0.917 

2.396 
2.751 
2.529 
3.089 
2.714 
3.309 
2.174 
4.23 1 
0.939 
1.623 

’ H = number of hidden neurons including a bias neuron in the hidden 
layer, p defined in eqn. (2). Em,, = optimisation error threshold (eqn. 1). 

Standard deviation based upon unsigned 
mean of errors in prediction. Multilinear regression analysis. 

Unsigned mean error. 

Table 3 MLRA results 

Entry Parameters r2 

C H N 0 PI HBD HBA 
C PI HBD HBA 
C PI HBD HBA HBX 
C PI MW HBD HBA 
C HBD HBA 
C HBD HBA A R  ARH S 
C HBD HBA A R H  CSQ 
C H B D  HBA ARH 

0.93 
0.93 
0.93 
0.93 
0.92 
0.94 
0.94 
0.94 

materials it is important to describe the interactions of 
molecules in specific orientations and directions. As a result of 
the pioneering work of Williams 2o and Kitaigordsky *’ on the 
use of atom-atom potentials, and in more recent times, the 
elegant work of Gavezzotti and co-workers,22 it is now possible 
to interpret packing effects in organic crystals in terms of 
interaction energies. The basic assumption of the atom-atom 
method is that the interaction between two molecules can be 
considered to consist simply of the sum of the interactions 
between the constituent atom pairs. 

The lattice energy AlattH often referred to as the crystal 
binding or cohesive energy, can, for molecular materials, be 
calculated by summing all the interactions between a central 
molecule and all the surrounding molecules. The lattice energy 
can be compared to the experimental sublimation enthalpy, 
having the same magnitude but the opposite sign. Each 
intermolecular interaction can be considered to consist of the 
sum of the constituent atom-atom interactions. If there are n 
atoms in the central molecule and n’ atoms in each of the M 
surrounding molecules then lattice energy can be calculated by 
eqn. (4), shown below. In most cases y1 and n‘ will be equal, but in 
the case of molecular complexes they may differ. M is simply the 
total number of molecules in the crystal. 

M n n’ 

Elat* = 1/2 1 1 1 vkij (4) 
k =  l i =  1 j =  1 

Vkij is the interaction between atom i in the central molecule 
and atom j in the kth surrounding molecule. It includes the 
electrostatic and Van der Waals’ terms found in typical force 
field methodologies. 

The lattice energy ( -Asub l l )  is a crucial parameter to be 
determined in the study of molecular materials. The calculated 
value has the advantage that the value can be broken down into 
the specific interactions along particular directions and further 

partitioned into the constituent atom-atom contributions. This 
is the key link between molecular structure and crystal packing 
arrangement. This allows a profile of the important 
intermolecular interactions to be built up within families of 
compounds and an understanding of the interactions which 
contribute to particular packing motifs. 

The calculated lattice energies for the 62 compounds are 
reported in Table 1. The sources of the calculated data are 
clearly referenced. The details of those calculations are des- 
cribed within those references. Calculations carried out by the 
authors will be outlined in a future publication. They essentially 
involve the use of the HABIT program,24 with a summation 
limit of 30 A. Partial atomic charges were assigned using the 
AM1 2 5  method within the MOPAC program.26 No minimi- 
sation of the experimental structure was permitted during either 
the molecular orbital or the crystal packing calculations. 

Multinuclear regression analysis of sublimation enthalpy data 
In order to check if the NN model for sublimation enthalpy of 
the data set already discussed was superior to conventional 
statistical modelling of the data, a MLRA was undertaken.” 
The independent variables and abbreviations used were exactly 
those used in the NN analysis above, with the following 
additional ones: the square of the number of carbon atoms 
(CSQ = C*C), product of HBD and HBA (HBX) ,  number of 
aromatic rings in the molecule (AR) ,  number of aromatic 
hydrogen atoms ( A R H ) ,  the symmetry number of the molecule 
in its most symmetrical conformation ( S ) ,  the molecular weight 
( M W )  and an indicator variable to reflect if the molecule was 
dipolar (DIP = 1) or not (DIP = 0). 

As a pre-evaluation of the independent variables, the Pearson 
correlation matrix was determined. This revealed strong co- 
linearities amongst some variables. In particular, it was found 
that C correlates strongly with PI (0.789), A R  (0.828), ARH 
(0.768) and M W  (0.939). Thus, it is statistically unacceptable 
to include any of these other parameters as well as C in the 
MLRA. Next, various parameter combinations were checked 
for multilinearities. Of special relevance is the correlation 
between C and HBD and HBA. The square of the regression 
coefficient was found to be 0.21, and it was concluded that 
this combination would not result in coefficient bias. The 
original 7 NN input data are shown in Appendix 1 .  The 
additional parameters discussed above are not included 
because of their high correlation with the number of carbon 
atoms. 

The AsubH values were then regressed against various 
parameter combinations. Statistical results are recorded in 
Table 3. It should be noted that it was not the intention of this 
part of the study to develop an optimal model based upon 
MLRA. Rather, the aim was to determine how the molecular 
parameters used in the NN development performed in MLRA. 
Admittedly, a few extra parameters were checked in the MLRA, 
but a good additive model would probably need more subtle 
features of molecular structure than reflected by the list of 
parameters used here. 

Results and discussion 
The calculated AsubH from the best of the NN predictions 
(Run 7, from Table 2), the theoretical crystal packing 
calculations and the best MLRA model are presented in Table 
1, alongside the experimental values. Statistical results for all of 
the NN runs are shown in Table 2. Regression results from the 
MLRA appear in Table 3. Deviations are generally given as 
absolute values, however, the relative deviations in these 
predictions show a slightly different perspective on the results. 
For example, in the MLRA case of N,, the error is 1.4 kcal mo1-l 
on an absolute value of 2.0, which is an error of 70%, whilst for 
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ovalene, the error is 2.0 in 50.6 kcal mol-', which is only 4%. 
Nevertheless, we feel that quoting such errors unfairly biases 
the results against the smaller molecules, whereas it is often 
the largest molecules that have thc grcatest experimental 
error. 

The results have been plotted in Figs. 1, 2 and 3. In all 
cases, the plots are of predicted us. experimental sublimation 
enthalpy, and the straight line represents the linear regression 
of the data, from which the gradient, intercept and r2 values 
have been determined. 

It is clear that the NN results are less statistically accurate 
than the crystal packing calculations, as would be expected from 
such a simplifed model. Nevertheless, Fig. 1 shows that with the 
exception of a few outliers, the NN reproduces the experimental 
trends reasonably well. In general, the NN predictions are worse 
for larger values Of AsubH, which is in line with the fact that there 
are fewer large molecules in the training set. The larger 
molecules, which tend to have the largest values of AsUbH, are 
also inclined to have the largest values for the 7 input 
parameters. It is documented that neural nets, although good 

HBD = 0 and HBD > 0 

I /  L 

OV 
0 10 20 30 40 50 

Experimental As& kcat mol-' 
Fig. 3 Plot of MLRA prediction us. experimental As"& 

at interpolation, are relatively poor at extrapolating beyond 
the maximum values within the training set. Indeed, the 
PSDD program issues warnings if any parameters in the test 
set are greater than the maximum found in the training set.I6 
This could partly explain the poor performance for these 
molecules. 

The MLRA results are presented in Table 3, and it is clear 
that a 7-parameter combination (entry 1)-which in any case is 
statistically unreliable-is hardly any better than a 3-parameter 
model based on C, HBA and HBD (entry 5). Inclusion of the 
alternative extra parameters CSQ, HBX, A R  and S caused no 
improvement in the model. While ARH was statistically 
significant, it was chemically insignificant, in that its coefficient 
was negative, implying that aromatic hydrogen atoms should 
lead to a lowering of the AsubH, contrary to chemical experience. 
The fact that it correlates so strongly with Cprobably causes the 
magnitude of its coefficient in the first place, and re-emphasises 
the need for careful pre-assessment of independent variable 
colinearity prior to MLRA. 

It is therefore concluded that a simple 3-parameter MLRA 
model [entry 5; eqn. (5 ) ]  is the best, both statistically and 

ASubH = (3.47k0.88) + (1.41 kO.06) C + 
(4.55 k 0.30) HBD + (2.27 k 0.24) HBA ( 5 )  

(n = 62, r2 = 0.92, s = 1.6 kcal mol-') 

chemically, that can be derived with the data used. A plot of 
calculated values of AsubH, based on the model following, and 
experimental AsubH is shown above in Fig. 3. 

A crude physical interpretation of this model can be 
attempted as follows, It is believed that the C parameter is 
simply reflecting the size of the molecule. It is apparent that 
larger molecules have higher SE, other factors being equal. 
Parameter C correlates highly with molecular weight, M W, 
but substitution of the latter parameter to reflect size leads 
to no improvement in the model (r2 = 0.91), and leads to 
TNT becoming a serious outlier. The HBD parameter reflects 
potential for intermolecular H-bonding, which inevitably 
increases the As,,&. The magnitude of the regression coefficient 
suggests that each H-bond is worth about 4.5 kcal mol-' to the 
AsubH. The HBA parameter must complement HBD, but we 
believe that its role is mainly to reflect the polar nature of 
functional groups in the molecules studied, since it is possible to 
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Table 4 Predictions of AsubH of a test by neural networks and MLRA model (all values in kcal mol-') 

MLRA Neural network 
Expt." 

Molecule A,,,H Pred. Dev. Pred. Dev. 

Pentadecane 
Adamantane 
trans-Stilbene 
Tetraphenylmethane 
2-Isopropyl-5-methylphenol 
Furan- I -carboxylic acid 
Azabicyclononane 
Dimethyl glyoxime 
Pentaerythritol tetranitrate 
DMCTCN" 
Mean unsigned deviation 
Standard unsigned deviation 

25.80 
14.30 
23.70 
36.00 
21 .SO 
25.90 
13.85 
23.20 
36.30 
26.70 

24.80 
17.50 
23.40 
39.40 
24.50 
21.85 
21.60 
22.70 
37.90 
29.70 

-1.00 27.6 
3.20 16.0 

3.40 41.4 
2.70 22.5 

7.80 17.8 

1.60 21.7 
3.00 27.4 
2.80 
2.50 

-0.35 22.5 

-4.10 25.3 

-0.50 32.0 

1.8 
1.7 

-1.2 
5.4 
0.7 

- 0.6 
4.0 
8.8 

- 14.6 
0.7 
3.95 
4.58 

Ref. 40. NN prediction using all 7 parameters, 5 hidden nodes. ' 4,5-Dimethyl-4-cyclohexene-l, 1,2,2-tetracarbonitriIe. 

have hydrogen bond acceptors in a molecule, without having 
donors. Indeed, both dipole-dipole and dipole-induced dipole 
interactions will lead to an increased AsubH. 

The standard deviation of the model is 1.6 kcal mol-', which 
is, in general, within experimental error. The main outliers are 
indigo 1, octadecane, N,N-dimethyl-p-nitroaniline, and succinic 
anhydride. The first of these is widely overestimated by the 
model, whilst the other three compounds are underestimated. 

O H  

1 Indigo 

Indigo has two potential N-H hydrogen-bond donor sites, but 
each of these is strongly involved in intramolecular H-bonds. 
They are therefore less available for intermolecular H-bonding, 
and would be expected to contribute less to the sublimation 
enthalpy. In fact, the crystal structure of indigo 28  indicates only 
weak intermolecular H-bonds, with long H-bond distances of 
2.1 A. If the HBD parameter for indigo is given a value of zero to 
reflect the absence of intermolecular H-bonding, and the MLRA 
re-run, the model improves (v2 = 0.94) and indigo falls nicely 
onto the regression line. Unfortunately, there are no other 
comparable molecules in the current dataset where potential for 
intramolecular H-bonding weakens intermolecular H-bonding. 

The deviations of the other three molecules are harder to 
rationalise. Perhaps conformational effects in octadecane are 
significant, and these are omitted from the NN and MLRA 
models. Thcre may also be multipolar effects in succinic 
anhydride and dimethyl-p-nitroaniline which go beyond the 
crude additive model of eqn. (5). 

The MLRA model is far from optimal. There are chemical 
features of these molecules which contribute to the inter- 
molecular forces in the solid state which are not included in the 
parameter values used. On the other hand, it is interesting and 
very surprising that a model which is so crude should reproduce 
the trend in the sublimation enthalpy as closely as shown in Fig. 
3. Furthermore, the derivation by MLRA of the model is much 
simpler and faster than the derivation of the NN, although 
prediction of the ASubH of a new molecule would be equally 
quick by either method. In this study using these parameters at 
least, the NN approach has nothing to add to the results of 
conventional MLRA. 

The work of Gavezzotti '*' has shown that the lattice energy 
(and consequently the AsubH) can be predicted based upon 

linear regression studies on molecular crystals. The heat of 
sublimation can be estimated from the packing potential energy 
(PPE) which correlates with molecular descriptors such as 
molecular weight, Van der Waals' surface, volume and 
molecular outer surface. Others have shown that the AsubH can 
be modelled by linear rcgrcssion, but in a much more restricted 
series of molecules containing only hydrocarbons. 39 

Following the success of the three parameter MLRA study, 
the same three inputs were used in a NN containing 8 hidden 
neurons (p = 1.72, Em,, = 0.001) in a comparative study. This 
yielded (in kcal mol-') a mean error of 3.1, maximum error = 
27.4 (Ovalene), SD of 4.7 and Y' = 0.60. These results are worse 
than Run 7 in Table 2. The maximum error here is significantly 
greater than that obtained using theoretical crystal packing 
methods for which the value is 3.5 kcal mol-'. 

Although neither neural network (mean error 2.5, max. error 
10.1 kcal mol ') nor regression analysis (mean error 1.8, max. 
error 8.9 kcal mol-') reproduced the experimental results nearly 
as accurately as the theoretical crystal packing calculations 
(mean error 1.4, max. error 3.5 kcal mol-'), both have yielded 
surprisingly good models. It is particularly interesting that the 
AsubH could be reproduced from the simple three parameter 
MLRA, and this in itself could be a useful tool. We are currently 
investigating much larger data sets to determine the scope and 
limitations of MLRA models for predicting AsubH. 

In the meantime, the two NN and the MLRA models have 
been tested by using them to predict the A & €  of a series of 
molecules not used in the model development. These were 
selected to be roughly the same size of those of Table 1, and 
include molecules from different chemical classes to those used 
in the training set. The experimental and predicted ASu,Hvalues 
and deviations are recorded in Table 4. 

The predictions derived from the MLRA model, eqn. (5) ,  are 
reasonably good, giving a mean unsigned error of 2.8 kcal 
mol-'. However, they are inferior to the model fit for the data in 
Table 1. The major deviant is 3-azabicyclo[3.2.2]nonane by 7.8 
kcal mol-'. If the HBA and HBD terms are artifically set to zero 
for this molecule, implying no intermolecular dipole-dipole or 
H-bonding interactions between molecules in the crystal, the 
deviation reduces to 0.8 kcal mol-'. However, this may be pure 
serendipity. Preliminary application of the simple MLRA 
model to larger molecules indicates that extrapolation beyond 
the scope of the data set in Table 1 is not warranted. 
Interpolation appears to be satisfactory. 

The NN predictions are less satisfactory but in most cases 
still reasonable. The unsigned mean deviation is 3.9 kcal mol-' 
(standard deviation 4.6 kcal mol-'), with a maximum deviation 
of 14.6 kcal mol- ' for pentaerythritol tetranitrate. The molecule 
has 12 oxygens and 12 donors, both figures being significantly 
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Appendix 1 Input parameters for neural network and MLRA analyses 

Column 
1 
2 
3 
4 
5 
6 
7 
8 
9 
PENTAN 
HEXANE 
OCTANE 
OCTADE 
BENZEN 
BIPHEN 
NAPHTH 
ANTHRA 
PHENAN 
CHRYSE 
TRIPHE 
PERYLE 
OVALEN 
BENZOQ 
ANTHRO 
BENZOP 
MEPHEN 
SUCCIN 
MALEIC 
PHTHAL 
NAPHAQ 
PHENAN 
CYCLOH 
TETRAM 
TRIOXA 
TETRA0 
PHENYL 
NITROG 
CYANOG 
DICYAN 
ETHYLE 
PYRIMI 
PYRAZI 
TNTXXX 
DIMETH 
FORMIC 
ACETIC 
PROPAN 
BUTYRI 
VALERI 
OXA LIC 
SUCCIN 
GLUTAR 
ADIPIC 
SUBERI 
SEBACI 
BENZOI 
OXAMID 
MALONA 
SUCCIN 
UREAXX 
FORMAM 
DIKETO 
TCNQXX 
INDIGO 
ACRID1 
AZOBEN 
NITRIL 
N-METH 
P-DICY 
TRIAZI 
STERIC 

Meaning 
Code for molecular name 
Number of carbons 
Number of hydrogens 
Number of nitrogens 
Number of oxygens 
Number of n-atoms 
Number of hydrogen-bond donors 
Number of hydrogen-bond acceptors 
Experimental value (used in NN training) 
5 1 2 0 0  0 0  0 9.9 
6 1 4 0  0 0 0 0 12.6 
8 1 8 0 0  0 0 0 15.9 

18 38 0 0 0 0 0 37.8 
6 6 0  0 6 0 0 12.5 

12 10 0 0 12 0 0 20.7 
10 8 0 0 10 0 0 17.3 
14 10 0 0 14 0 0 24.4 
14 10 0 0 14 0 0 20.7 
18 12 0 0 18 0 0 28.4 
18 12 0 0 18 0 0 27.4 
20 12 0 0 20 0 0 31.0 
32 14 0 0 32 0 0 50.6 
6 4 0  2 8 0 2 14.9 

14 8 0 2 16 0 2 26.1 
13 10 0 1 14 0 1 23.9 
7 8 0  1 7 1 1 17.7 
4 4 0  3 4 0 3 19.6 
4 2 0  3 6 0 3 16.4 
8 4 0 3 10 0 3 21.1 

10 6 0 2 12 0 2 21.7 
14 8 0 2 16 0 2 25.8 
6 8 0  2 4 0 2 20.2 
8 1 2 0  2 4 0 2 17.3 
3 6 0  3 0 0 3 13.8 
4 8 0  4 0 0 4 19.0 

13 10 0 2 14 0 2 23.7 
0 0 2  0 2 0  0 2.0 
2 0 2  0 4 0  2 8.7 
4 0 2  0 6 0 2 10.6 
6 0 4 0 10 0 4 20.6 
4 4 2  0 6 0 2 11.7 
4 4 2  0 6 0 2 14.5 
7 5 3 6 15 0 6 24.4 
8 1 0 2 2  9 0 2 23.8 
1 2 0  2 2 1 2 15.2 
2 4 0  2 2 1 2 16.3 
3 6 0  2 2 1 2 17.7 
4 8 0  2 2 1 2 19.2 
5 1 0 0 2  2 I 2 20.2 
2 2 0  4 4 2 4 24.8 
4 6 0  4 4 2 4 29.3 
5 8 0  4 4 2 4 29.0 
6 1 0 0 4  4 2 4 32.1 
8 1 4 0 4  4 2 4 35.4 

10 18 0 4 4 2 4 39.6 
7 6 0  2 8 1 2 23.0 
2 4 2  2 4 4 2 28.2 
3 6 2  2 4 4 2 28.8 
4 8 2  2 4 4 2 32.3 
1 4 2  1 2 4 1 22.2 
1 3 1  1 2 2 1 17.5 
4 6 2  2 4 2 2 26.0 

12 4 4 0 16 0 4 26.5 
16 10 2 2 20 2 2 31.8 
13 9 1 0 14 0 1 22.0 
12 10 2 0 14 0 2 22.0 
10 11 1 0 8 0 1 18.6 
13 11 1 0 13 0 0 22.8 
8 4 2 0 10 0 2 21.2 
3 3 3  0 6 0 3 13.4 

18 36 0 2 2 1 2 39.8 

greater than the values in the training set. In fact, the PSDD 
software gives a warning that this molecule is outside the limits 
defined by the training set. 

Overall, we conclude that both the neural networks and the 
MLRA model are able to give reasonable estimates for 
unknown sublimation enthalpies, especially if the test molecules 
are restricted to interpolations. It should also be noted that 
there is at times a large degree of uncertainty in the experimental 
data. For example, two values quoted for biphenylene in 
Pedley's collection of physical data4' differ by over 10 kcal 
mol-' . 

It should also be stressed that the theoretical and predicted 
methods are not in direct competition. Whilst the former 
requires prior knowledge of the crystal structure, it yields 
detailed analysis of the important forces involved in the solid 
state structure formed. This is vital information relating the 
molecular structure to solid state properties. The latter methods 
yield no such information, but are quick and simple, requiring 
no experimental data in the input, and therefore have potential 
in novel molecule design. 

This study has also shown that in this case, neural network 
predictions are inferior to those from the regression analysis. 
This is probably because of the unexpectedly highly linear 
dependency of the sublimation enthalpy upon the input data, 
and the NN would be anticipated to perform better in other, 
non-linear cases. Furthermore, it is possible that the neural 
network would benefit further from a different choice of 
molecules in the training set. Pre-selection of molecules that 
have a more even distribution of both experimental AsubH and 
of input data values would be likely to enhance the network 
performance. 
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