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Studies of lmidazole and Pyrazole Protonation using Electrostatically Trained 
Neural Networks 
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Department of Chemistry, Imperial College, London, UK S W7 2A Y 

A backpropagation neural network was trained with the molecular etectrostatic potentials (M EPs) 
of a series of substituted imidazoles to  predict their corresponding pKs. Using MEPs determined 
with a variety of semiempirical and ab initio methods, the predictive power of the trained network 
was found to be sensitive to  the quality of the basis set. The network was also trained to predict 
the proton affinity (€,) and pK,, both individually and combined, for a series of pyrazole MNDO 
MEPs. 

Neural networks are now finding regular application to a 
variety of chemical problems: spectroscopy,’*2 prediction of 
protein structure 3-6 and water binding sites,’ synthetic 
analysis,8-10 and solvation studies. This rapidly growing field 
has already spawned two reviews, by Burns and Whitesides,” 
and Gasteiger and Zupan.I3 The realm of quantitative 
structure-activity relationships (QSAR) has seen a great deal 
application of such neural paradigms ‘4-18 as they make an 
obvious alternative to the multivariate statistics traditionally 
used in Hansch analysis. 

In preliminary studies we successfully trained a neural 
network with a series of imidazole MEPs (AM1 derived) in 
an attempt to predict histidine pKa perturbation in triose 
phosphate isomerase.Ig Such a regime uses the neural network 
to derive a three-dimensional quantitative structure-activity 
relationship (3D-QSAR); inputs to the network are sourced 
directly from grid points of the MEP (freeing us from the 
restrictions imposed by substituent parameters). The network is 
then trained to map these points to the molecular property 
(pK,). Statistical techniques such as comparative molecular field 
analysis (CoMFA 2 0 )  have also been developed to perform 3D- 
QSAR, but these methods presuppose some form of non- 
parametric or more restrictive parametric 2o relationship 
between individual field points and the observable quantity. 
Neural networks offer an alternative where no assumption is 
made about the relationship between property and field; instead 
this is derived during the process of training the network. 

To test the 3D-QSAR abilities of the neural network further, 
this paper details the results of using different basis sets or 
Hamiltonians for deriving the MEP in the imidazole pK, case. 
The result of training pyrazole pK, and/or proton affinity (EPJ 
against MNDO MEPs are also discussed. 

Computational Methods 
All structures were optimised using either MOPAC22 or 
Gaussian 2 3  for the respective semiempirical method (AM 1, 
PM3 and MNDO, using EF and PRECISE) or basis set (STO- 
3G, 3-21G and 6-31G*). Each optimised molecule was then 
aligned such that atom 1 (Figs. 1 and 2) was placed at the origin, 
with atom 2 extending out along the positive X-axis and atom 3 
in the XY-plane. Atoms 1, 2 and 3 are consistently defined for 
all. The MEP was then evaluated, with each respective method, 
on a 1.5 A grid excluding points that were within the van der 
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Fig. 1 Imidazole atom numbering 

Fig. 2 Pyrazole tautomerism and atom numbering 

Waals radii and those which were more than 6 A from the 
closest atom.$ 

For suitable input to the neural network only grid points 
common to all molecules in either imidazde or pyrazole set 
were used. Each MEP point was then scaled such that the value 
presented to the network tay in the range 0.1 to 0.9 (in order to 
prevent network saturation): eqn. (1) where xpi is the scaled 

input for moleculep at grid location i, Vpi is the MEP value, 
V y  and Vrin are the respective maxima and minima for all 
molecules at the MEP point i. The pKa values to which the 
inputs would be trained against were also similarly normalised. 

The neural network used in this study was of the 
backpropagation type 24*25 with one hidden layer of 10 
neuronsf and a final rayer with one neuron, for single 
property prediction, or two, when combined properties are 
used. All neurons had a sigmoidal activation function and a 
single bias term (fixed input of 1.0). Initially, all neuronal 
weights were randomly set (uniform distribution) to values 
between kO.3. The scaled MEPs were trained to map to their 
respective properties in ‘batch mode’, ie., all patterns were 
presented and the network updated with the s u m  of errors. 
Network updates were performed using a fast adaptive learning 
algorithm (superSAB26). This method was found to be much 

t Current address: Center for Molecular Design, Washington 
University, Box 1099, St. Louis, MO 63130-4899, USA. 

1 Alternative grid definitions and numbers of neurons in the hidden 
layer have been tested but this prescription was found to be best in a 
trade-off between performance and computation time.33 
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Fig. 3 Leave-one-out cross-validation results for mapping of MEP to pKa for 26 imidazoles. The predicted pKa is the mean of five independent 
trainings with error bars as the standard deviation. 

more stable and to require far fewer iterations to achieve the 
required degree of training than the traditional generalised delta 
rule.24 

Owing to the initial random weights the network cannot be 
guaranteed to produce the same results for every random seed, 
hence many differently seeded trainings were used for each cross- 
validation step with all predictions included in the subsequent 
analysis. 

Results and Discussion 
(a) Imidazole pKa QSAR with MEPs.-A collection of small, 

conformationally invariant imidazoles of varied substitution 
were selected (Table l) ,  these covered a range of 10 pKa units. 
The geometry of each of these 26 imidazoles was optimised and 
MEPs calculated for all methods described (Table 2). A leave- 
one-out cross-validation analysis was then performed for all 26 
imidazoles training five differently seeded networks to map 
MEP to pKa for 25 of the imidazoles, then predicting the pKa 
of the excluded imidazole (Fig. 3). 

Two molecules (5-N02, 1-Me and 5-F, 1-Me) are expressed 
as outliers independent of the MEP derivation methods, this is 
due to the lack of 5-substituted moieties and the network is 
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relatively uneducated about these types of species. With the 
semiempirical methods and STO-3G the common outliers are 
all molecules containing chlorine suggesting a poor electrostatic 
description of chlorine by these methods due to an incorrect 
definition of the atomic core.27 

Overall, 6-31G* > 3-21G 9 MNDO > STO-3G > AM1 9 
PM3. The best performing networks were those trained with 
the high level ab initio derived MEPs, although there is little 
improvement (but considerable effort) in going from 3-21 G to 
6-31G*. The poor performance of PM3 is to be expected due to 
the poor parametrisation of nitrogen.28 

Table 1 Substituted imidazole pKa34 

Imidazole pKa Imidazole PK, 

2-NH,, 4,5-Me, 
2,4,5-Me3 
2-NHz, 1-Me 
2,4-Me2 

1,2-Me2 
2-Me 
1,5-Me2 
4-Me 
l-Me 
1,4-Me2 
Unsubstituted 
543, l-Me 

2-NH2 

9.2 1 
8.92 
8.65 
8.50 
8.46 
7.85 
7.85 
7.70 
7.56 
7.30 
7.20 
7.00 
4.75 

5-F, 1-Me 
2 x 1  
4-C1, I-Me 
4-F 
2-F 
2-F, 1-Me 
5-N02, 1-Me 
4-F, 1-Me 
4-N02, 2-Me 

2-NO,, l-Me 
4-N02, l-Me 

4-NO2 

2-NOz 

3.85 
3.50 
3.10 
2.44 
2.40 
2.30 
2.13 
1.90 
0.50 

- 0.05 
- 0.48 
-0.53 
-0.81 

Table 2 
imidazoles; each analysis is based on all five different trainings" 

Cross-validation statistics for mapping of MEP to pKa for 26 

MEP r2 r s  ru 

MNDO 0.91 0.96 1.06 
AM 1 0.89 0.94 1.69 
PM3 0.70 0.86 3.43 

3-21G 0.97 0.95 0.37 
STO-3G 0.89 0.90 1.32 

6-31G* 0.97 0.97 0.30 

r2  and Y, are the correlation coefficients of Pearson and Spearman, 
respectively; ru is the residual variance. 

Table 3 Experimental 3 1  pyrazole EPa 
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Fig. 4 Leave-one-out cross-validation results for mapping of MEP to 
(a)  Epa for 49 pyrazoles and (b) pKa for 91 pyrazoles. The predicted 
property is the mean of five independent trainings with error bars as 
the standard deviation. 

Pyrazole Epa/kcal mol-' Pyrazole Epa/kcalmol-' 

3S-(NOz), 

3-NO2 
5-NOz 

1-Me, 3,5-(NO,), 

I-Me, 3-NO2 
1-Me, 5-N02 
H 
4-Me 
3-Me 
5-Me 
1 -Me 
3-Ph 
5-Ph 
3-NH2 
5-NH2 
3-Bur 
5-Bd 
3,4-Me, 
4,5-Me2 
1,4-Me2 
1,3-Me2 
3-Me, 5-Ph 
3-Ph, 5-Me 
]-Me, 3-Ph 
3,5- Me, 

- 22.6 
- 15.3 
- 7.2 
- 7.2 
- 0.7 

0.0 
10.2 
13.3 
13.5 
13.5 
14.9 
15.9 
15.9 
17.6 
17.6 
17.9 
17.9 
18.9 
18.9 
19.2 
19.7 
20.1 
20.1 
20.2 
20.2 

1-Me, 5-Ph 
1 $Me, 
3-Et, 5-Ph 
3-Ph, 5-Et 
1-Me, 3-NH2 
1-Me, 5-Bu' 
I-Me, 3-But 
3-Me, 5-Bd 
3-Bu', 5-Me 

3,4,5-Me 
1,3,4-Me3 
l,4,5-Me3 
1-Me, 5-NH2 
3,5-Etz, 4-Me 

1,3,5-Me3 
1,5-Me2, 3-Ph 
1,3-Me2, 5-Ph 
1-Me, 3,5-Ph2 
3 3 4  Bu'),, 4-Me 
1,3,4,5-Me4 
I-Me, 3,5-(Bu'), 
1,4-Me2, 3,5-(Bur), 

3,5-Ph, 

3,5-(B~'), 

20.6 
20.7 
21.3 
21.3 
21.7 
22.2 
23.0 
23.1 
23.1 
23.3 
23.4 
24.1 
24.1 
24.2 
24.6 
24.8 
24.9 
25.2 
25.8 
26.7 
28.5 
29.3 
29.3 
32.1 
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Table 4 Experimental 32 pyrazole pK, 
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Pyrazole pKa Pyrazole pKa Pyrazole PKa 

4 N 0 ,  
3,4-Br2 
4,5-Br2 
1,5-Me2, 3,4-Br, 
3-Me7 
4-NO2, 5-Me 
3,4-Br,, 5-Me 
3-Me, 4,5-Br, 
1 ,3-Me,, 4,5-Br2 
3-Cl 
5-CI 
3,5-MeZ, 4-NO, 
1-Me, 4-Br 
3-Br, 4-Me 
4Me, 5-Br 
3-Ph7 4-C1 
4 4 ,  5-Ph 
3-C1, 5-Me 
3-Me, 5-C1 
3-Ph, 4-Br 
4-Br, 5-Ph 
3-Br, 5-Me 
3-Me, 5-Br 

4-Br 

1,3-Me,, 4-Br 
1,5-Me2, 4-Br 
1 ,3-Me2, 5-Br 
3-Me, 4-Br, 5-Ph 
3-Ph, 4-Br, 5-Me 

4-Cl 

4-1 

- 1.96 
- 1.83 
- 1.83 
- 1.52 
- 1.25 
- 1.25 
- 0.96 
- 0.96 
- 0.60 
- 0.48 
- 0.48 
- 0.46 

0.18 
0.24 
0.24 
0.26 
0.26 
0.30 
0.30 
0.30 
0.30 
0.45 
0.45 
0.60 
0.64 
0.82 
0.87 
0.91 
1.20 
I .20 
1.20 

3-Me, 4-Cl 
4C1, 5-Me 
3-Me, 4-Br 
4-Br, 5-Me 
3-Et, 4-C1 
4-C1, 5-Et 
3-Et, 4-Br 
4-Br, 5-Et 
3-Me,4-I 
4-1, 5-Me 
1 ,3,5-Me3, 4-Br 
1 -Me 
3-Ph 
5-Ph 
3,5-Me,, 4-C1 
3,5-Me2, 4-Br 
3,5-Me,,4-1 
1 ,4-Me, 
H 
3-Ph, 4-Me 
4-Me, 5-Ph 
1,3-Me2 
I ,3-Me, 
3-Me, 5-Ph 
3-Ph, 5-Me 
4-Me 
3-C3H5 
5-C3H5 
3-Et 
3-Bu' 

1.42 
1.42 
1.46 
1.46 
1 .50 
1.50 
I .53 
I .53 
1.59 
1.59 
1.78 
2.09 
2.13 
2.13 
2.22 
2.30 
2.36 
2.48 
2.52 
2.68 
2.68 
2.82 
2.89 
2.92 
2.92 
3.09 
3.10 
3.10 
3.30 
3.30 

5-Et 
5-Bu' 
3-Me 
5-Me 
3,4-[-camphyl-] 
3,4-Me,, 5-Ph 
3-Ph, 4,5-Me2 
3,4-C<CHd-I 
4,5-[-(CH,)3-1 
1,3,5-Me3 
3,4-Me, 
4,5-Me2 
3,4-C(CHz) 5-1 

3,4-[-(CHJ,-] 
4,5-[-(CH ,I4-] 

495- C-(CH 2)5-1 

3,5-Me2 
1,3,4,5-Me4 
3-C3H5, 4-Me, 5-Et 
3-Et, 4-Me, 5-C3H, 
3,4-[-(CH,),-], 5-Me 
3-Me, 4,5-[-(CH2)3-] 
3,5-Et,, 4-Me 
3 ,4-[-(CH,),-], 5-Me 
3-Me, 4,5(C-(CH,)5-1 
3,4-Me,, 5-Et 
3-Et, 4,5-Me, 
3,4,5-Me3 
3,4-[-(CH+], 5-Me 
3-Me-4,5-[-(CH2),-] 

3.30 
3.30 
3.32 
3.32 
3.35 
3.47 
3.47 
3.61 
3.61 
3.80 
3.91 
3.91 
3.96 
3.96 
4.01 
4.0 1 
4.12 
4.27 
4.30 
4.30 
4.38 
4.38 
4.5 1 
4.57 
4.57 
4.60 
4.60 
4.63 
4.65 
4.65 

Table 5 Cross-validation statistics for pyrazole MEP training; all five 
different leave-one-out cross-validations are included in each analysis a 

EPa/kcal mol-' P K  

Pyrazoles r2 rs rv r2  rs ru 

49 0.97 0.96 4.17 - - - 
91 - - - 0.95 0.98 0.17 
21 0.75 0.87 5.56 0.86 0.92 0.09 
21 0.72 0.87 6.80 - - - 

21 - - - 0.87 0.93 0.08 

a r2 and rs are the correlation coefficients of Pearson and Spearman, 
respectively; ru is the residual variance. 

In previous comparisons of MEP derivation  method^,^^.^' 
workers have assumed those determined for the highest feasible 
level of theory were the most 'realistic' and used this level as a 
standard. From this work with imidazoles one can suggest an 
order of how realistic the techniques are in producing MEPs by 
correlating them with real experimental data, rather than uia 
comparison with a presumed standard. 

(b)  Pyrazole pKa and Epa QSAR with MEPs.-Neural 
networks were also trained to map the MEP to the pKa and Epa 
of a series of pyrazoles. Recent experimental (Fourier transform 
ion cyclotron resonance spectroscopy) and theoretical (6-3 1 G 
geometries and energies) work has demonstrated that for the 
tautomerism of NH pyrazoles (Fig. 2) the equilibrium 
constant3' KT = 1, i e . ,  3- and 5-substituted moieties are 
inseparable, hence their pKa and Epa values are identical and 
both tautomers should be considered equally. 

Proton afhi ty  data 31 for 39 pyrazoles were used; 10 of these 
had equivalent tautomers, so a total of 49 pyrazoles were 
considered (Table 3). The geometries of these were optimised 

and the MEP evaluated as before for the imidazoles but only at 
the MNDO level. A complete leave-one-out cross-validation 
study for each pyrazole was carried out for five differently 
seeded networks. The results of this study are shown in Fig. 4(a). 
A much larger dataset of 58 pyrazole pK, values was 
available.32 Of these 33 had equivalent tautomers making an 
overall set of 9 1 pyrazoles (Table 4). Exactly the same approach 
was used as in the proton affinity study, results in Fig. 4(b). 

Training is not restricted to the mapping of only one property 
at a time, any number of outputs can be included and the 
network trained to predict many things at once. Of the 
pyrazoles considered 21 are coincident between the pKa and 
proton affinity sets. Thus, these were used in a cross-validation 
study but with training based on two outputs. For comparison 
purposes Epa and pKa were also trained independently for the 2 1 
pyrazoles. The results of this combined training (Table 5) are 
rather poor, the cross-validations are nowhere near as good for 
those observed previously. This is not a failure of the network to 
cope with two outputs, but is just due to a lack of training data. 
Independent trainings on just the 21 pyrazoles against proton 
affinity or pKa yield almost identical results, hence the training 
of multiple properties is not detrimental to predictive 
performance. 

Conclusions 
We have demonstrated the utility of neural networks in the 
correlation of complex quantum mechanically defined features 
(MEPs) with experimentally determined parameter@) for a 
given molecular series. The neural network, far from being 
the blind pattern classification method, shows the ability to 
generalise as it remains sensitive to the relative level of theory. 
Further studies based on trainings using alternative grid-based 
molecular descriptors and other properties (e.g., biological 
activities) will hopefully expand this technique fully within the 
realm of 3D-QSAR. 
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