Interaction of anisole and thioanisole with the nitrosonium cation: π - vs. n-complex formation

Gennady I. Borodkin,*^{,a} Vladimir A. Podryvanov,^{a,b} Makhmut M. Shakirov^a and

Vyacheslav G. Shubin^a

^a Novosibirsk Institute of Organic Chemistry, Siberian Division of the Russian Academy of Sciences, Novosibirsk 630090, Russia

^b Novosibirsk State University, Novosibirsk 630090, Russia

¹H, ¹³C and ¹⁵N NMR studies and the results of MINDO/3 calculations show the interaction between anisole, thioanisole and the nitrosonium cation to result in the formation of π - and n-complexes, respectively.

While the intermediacy of n- and π -complexes has often been postulated in the nitrosation reaction of arenes bearing heteroatom substituents¹ there is as yet no irrefutable evidence for the existence of such complexes in solution (*cf.* refs. 2–7).

In this work we have prepared complexes of compounds PhEMe (E = O, S) with the nitrosonium cation under long-life conditions and studied them by NMR spectroscopy.

The interaction of anisole with NO⁺AlCl₄⁻ in SO₂-CD₂Cl₂ at -70 °C results in formation of the π -complex **2a** (Scheme 1),

Fig. 1 MINDO/3 optimized structures for the complexes of anisole and thioanisole with nitrosonium cation and their heats of formation (in parentheses, $\Delta_t H \text{ kJ mol}^{-1}$)

as determined from the ¹H and ¹³C NMR spectra (Tables 1 and 2), particularly from the relatively small down-field shifts of the signals of the methyl and phenyl groups (*cf.* refs. 3, 7–11).

It should be noted that the chemical shifts for σ -complexes of type **4** are expected to be much larger (*cf.* ref. 12). The equivalence of 2- and 6-H, 3- and 5-H as well as C-2 and -6, -3 and -5 atoms observed in the ¹H and ¹³C NMR spectra of the π -complex **2a** may be explained by the fast (on the NMR time scale) rotation of the MeO group and by the fast inter- or intra-molecular migration of the NO⁺ group from one position of the phenyl ring to another (*cf.* refs. 8–10).

Additional evidence for the formation of π -complex **2a** has been obtained by ¹⁵N NMR spectroscopy. When anisole is added at -70 °C to a solution of the labelled salt Na¹⁵NO₂ (mole ratio PhOMe: Na¹⁵NO₂ = 1:1) in FSO₃H–SO₂, the ¹⁵N NMR spectrum no longer shows the signal of ¹⁵NO⁺ (δ = 2.6) (*cf.* ref. 10), but contains the signal at 78.6 ppm at lower field from external CH₃NO₂. This value is very close to those for π -complexes of 1-methyl- and 1,3-dimethyl-naphthalene with NO⁺ ($\delta_{-70^{\circ}C}$ are 75.8 and 76.6, respectively).¹⁰

Interestingly, in contrast to anisole the interaction of thio-

anisole with NO⁺AlCl₄⁻ (SO₂-CD₂Cl₂, -70 °C) results in formation of the n-complex **3b** (Scheme 1). This is indicated by the ¹H and ¹³C NMR data (Tables 1 and 2), particularly by the significant down-field shifts of the signals of the methyl group in the ¹H and ¹³C NMR spectra and the high-field shift of the signal of C-1 in comparison with corresponding shifts for thioanisole. The latter evidently results from attraction of π -electron density to C-1 by electron-acceptor substituent Me-S⁺-NO (*cf.* ref. 12). It is rather interesting that a similar effect is observed for the related sulfonium ions RS⁺MePh (R = H, ¹³CH₃¹⁴).

We have obtained further evidence of the n-complex character of the cation **3b** using ¹⁵N NMR spectroscopy. Addition of thioanisole to a solution of the labelled salt Na¹⁵NO₂ (mole ratio PhSMe:Na¹⁵NO₂ = 1:1) in FSO₃H–SO₂ results in the formation of a complex whose ¹⁵N chemical shift ($\delta_{-70^\circ C} = 291.6$) is rather close to that for the complex Me₂S with NO⁺ prepared under the same conditions ($\delta_{-70^\circ C} = 258.6$).

When the PhEMe: NO⁺AlCl₄⁻ ratio, medium and temperature are varied, the chemical shifts change only slightly (Tables

Table 1 $^{-1}$ H NMR data for the complexes 2a and 3b and the neutral precursor	s 1a	a,	b
--	------	----	---

		npound <i>T</i> /°C A		Anion Solvent	Mole ratio, PhEMe:NO ⁺	δ^{a}					
Compou	Compound		Anion			СН3	2,6-H	3,5-H	4-H		
	1a	- 50		SO, -CD,Cl,		3.72	6.88	7.30	6.98		
	2a	-70	AlCl₄ [−]	SO ₂ -CD ₂ Cl ₂	1:1	4.01	7.34	7.73	7.56		
	2a	-50	AlCl ₄ ⁻	$SO_2 - CD_2Cl_2$	1:1	4.05	7.45	7.90	7.76		
	2a	50	AlCl	SO ₂ -CD ₂ Cl ₂	1:4	4.05	7.44	7.89	7.76		
	2a	-30	AlCl ₄ ⁻	$SO_2 CD_2Cl_2$	1:1	4.03	7.31	7.73	7.63		
	2a	-50	SO ₃ F	FSO ₃ H-SO ₂	1:1	4.12	7.34	7.71	7.54		
	1b	-50		SO,-CD,Cl,		2.35	7.13	7.37	7.23		
	3b	-70	AlCl	SO ₂ -CD ₂ Cl ₂	1:1	3.16	7.70	7.28	7.70		
	3b	-50	AlCl ₄ ⁻	SO,-CD,Cl,	1:1	3.40	7.80	7.40	7.80		
	3b	-50	AlCl ₄ ⁻	SO, -CD, Cl,	1:4	3.38	7.79	7.38	7.79		
	3b	-30	AlCl	SO ₂ -CD ₂ Cl ₂	1:1	3.32	7.77	7.40	7.77		
	3b	50	SO ₃ F ⁻	FSO ₃ H–ŠO ₂	1:1	3.33	7.8	7.6	7.8		

" From internal CH_2Cl_2 (δ 5.33). CH_3 group signals are singlets, those of 2,6-H, 3,5-H and 4-H are multiplets.

Table 2 ¹³C NMR data for the complexes 2a and 3b and the neutral precursors 1a, b

				Mole ratio	δ^{a}				
Com	pound $T/^{\circ}$	C Anion	Solvent	PhEMe: NO ⁺ Y ⁻	CH3	C-1	C-2,6 ^{<i>b</i>}	C-3,5 ^b	C-4
1a	- 50		SO ₂ -CD ₂ Cl ₂		54.9	159.5	114.8	130.7	122.0
2a	- 70	AlCl ₄ ⁻	SO ₂ -CD ₂ Cl ₂	1:1	56.4	166.0	121.0	137.0	129.2
2a	- 50	AlCl ₄ ⁻	SO ₂ -CD ₂ Cl ₂	1:1	56.6	166.4	121.2	137.1	129.5
2a	-30	AlCl ₄ ⁻	SO ₂ -CD ₂ Cl ₂	1:1	56.8	166.6	121.4	137.2	129.6
2a	- 50	SO ₃ F ⁻	FSO ₃ H-SO ₂	1:1	57.8	163.3	120.3	135.8	129.2
1b	- 50		SO ₂ -CD ₂ Cl ₂		13.6	135.9	125.9	129.7	126.3
3b	-70	AlCl ₄ ⁻	SO ₂ -CD ₂ Cl ₂	1:1	18.1	129.6	130.8	128.4	133.2
3b	- 50	AlCl ₄	SO ₂ -CD ₂ Cl ₂	1:1	18.3	129.8	130.9	128.5	133.3
3b	- 30	AlCl ₄ -	SO ₂ -CD ₂ Cl ₂	1:1	18.8	129.7	130.9	128,6	133.7
3b	- 50	SO_3F^-	FSO ₃ H-SO ₂	1:1	20.7	131.1	131.5	130.4	135.1

^{*a*} From internal CD₂Cl₂ (δ 53.6). ^{*b*} The shifts of C-2,6 and C-3,5 may be reversed.

1 and 2), indicating a virtually complete shift of the equilibrium *i* or *ii* (Scheme 1) towards the complexes **2a** and **3b**, respectively (*cf.* refs. 7, 10, 11).

The results of the MINDO/3 calculations ¹⁵ of the complexes of NO⁺ with anisole and thioanisole are in agreement with experimental data. Fig. 1 represents key geometrical features, heats of formation of the most stable n-, π - and σ -complexes. In the case of anisole the π -complex is more favourable than the isomeric σ - or n-complex while in the case of thioanisole the n-complex is found to be more stable.

The above results show the nature of heteroatom E in the substituent ER to be decisive for the type of interaction between compounds PhER and the nitrosonium cation (π - vs. n-coordination). Two main factors are probably responsible for the observed difference in complex formation of anisole and thioanisole with NO⁺: greater p, π -conjugation between the aromatic ring and the CH₃O rather than the CH₃S group,¹⁶ and the smaller electronegativity of the S atom than the O atom.

This work was supported by the Russian Basic Research Foundation, Grant 93-03-4715.

References

1 D. L. H. Williams, in *Adv. Phys. Org. Chem.*, ed. V. Gold and D. Bethell, Academic Press, London, 1983, vol. 19, p. 381.

- 2 Z. J. Allan, J. Podstata, D. Snobl and J. Jarkovsky, *Collect. Czech. Chem. Commun.*, 1967, **32**, 1449.
- 3 S. Brownstein, A. Morrison and L. K. Tan, *Can. J. Chem.*, 1986, 64, 265.
- 4 L. Eberson and F. Radner, Acc. Chem. Res., 1987, 20, 53.
- 5 F. Radner, J. Org. Chem., 1988, 53, 702.
- 6 A. S. Morkovnik, Usp. Khim., 1988, 57, 254.
- 7 J. K. Kochi, Acta Chem. Scand., 1990, 44, 409.
- 8 G. I. Borodkin, Sh. M. Nagy, Yu. V. Gatilov, V. I. Mamatuyk, I. L. Mudrakovskii and V. G. Shubin, *Dokl. Akad. Nauk SSSR*, 1986, 288, 1364.
- 9 G. I. Borodkin, I. R. Elanov, M. M. Shakirov and V. G. Shubin, *Izv. Akad. Nauk, Ser. Khim.*, 1992, 2104.
- 10 G. I. Borodkin, I. R. Elanov, M. M. Shakirov and V. G. Shubin, J. Phys. Org. Chem., 1993, 6, 153.
- 11 G. I. Borodkin, I. R. Elanov, M. M. Shakirov and V. G. Shubin, Zh. Org. Khim., 1991, 27, 889.
- 12 V. A. Koptyug, Top. Curr. Chem., 1984, 122, 1.
- 13 M. Eckert-Maksić, J. Chem. Soc., Perkin Trans. 2, 1981, 62.
- 14 G. A. Olah, P. W. Westerman and D. A. Forsyth, J. Am. Chem. Soc., 1975, 97, 3419.
- 15 QCPE Program 506, Department of Chemistry, Indiana University, Bloomington, IN, USA.
- 16 I. P. Romm and E. N. Gurianova, Usp. Khim., 1986, 55, 225.

Paper 5/01091H Received 23rd February 1995 Accepted 4th April 1995