UV-induced isomerisation and ring transformation of (E)-3-arylidene-1-thiochromanones and -1-thioflavanones ## Gábor Tóth,*,a Judit Halász, Albert Lévai, Csaba Nemes and Tamás Patonay ^a Technical Analytical Research Group of the Hungarian Academy of Sciences, Institute for General and Analytical Chemistry, Technical University, St. Gellért tér 4, H-1111 Budapest, Hungary ^b Department of Organic Chemistry, Lajos Kossuth University, Egyetem tér 1, H-4010 Debrecen, Hungary Depending on the substituent of the arylidene moiety, photoisomerisation of (E)-3-arylidene-1-thiochroman-4-ones 1 and 3 afforded either the expected (Z)-1 and (Z)-3 isomers or the products (2d,e) and (2d,e) of an unprecedented phototransformation. We have developed a simple and convenient method for synthesising (E)-3-arylidene-1-thiochroman-4-ones (E)-1 and (E)-3-arylidene-2-phenyl-1-thiochroman-4-ones (E)-3 [(E)-3-arylidene-1-thioflavan-4-ones] by the piperidine-catalysed reaction of 1-thiochroman-4-one or 1-thioflavan-4-one with aromatic aldehydes. ¹⁻³ Since we planned a comparative investigation of the reactivities of the E and E isomers of these compounds, it was necessary to develop an efficient method for the preparation of the E isomers as well. Except for the E-3-benzylidene-6-methyl-1-thioflavan-4-one E- no substituted derivative of such E- compounds has hitherto been reported in the literature. Previously we have reported that the UV-irradiation of (E)-3-benzylidene-chromanone and -flavanone and their 1-thio analogues resulted in the formation of their Z isomers. 5.6 Now we aim to prepare derivatives of these compounds substituted in the arylidene moiety. ¹H NMR data of the E and Z isomers show a characteristic downfield shift (ca. 0.3 ppm) of the $\delta_{2\text{-H}_2}$ chemical shift of the E isomers compared with those of the Z isomers as a result of the spatial proximity of the aryl group, while a paramagnetic shift was observed for the δ_{9-H} signal due to the anisotropy of the C-4=O moiety.^{5.7} ¹³C NMR investigations revealed a γ-steric interaction on the C-2 signal of the E isomers which resulted in a 5-8 ppm upfield shift in comparison with the Z isomers. In the E isomers there is conjugation between the C-4=O and C-9 aryl group, while in the Z isomers, because of steric reasons, the C-9 aryl moiety is nearly perpendicular to the plane of the carbonyl group, which is reflected in a $\Delta\delta$ ca. 1 ppm C-4 downfield shift in these isomers. 6 These observations make possible an unambiguous differentiation of the Z and E isomers.6 #### Results and discussion (E)-3-Arylidene-1-thiochroman-4-ones [(E)-1a-e] in anhydrous benzene dried on sodium was irradiated with a mercury arc lamp (Scheme 1). The careful drying of the solvent with sodium is essential to eliminate the acid traces which may help the reconversion of the Z isomers formed into the starting E isomers. For the same reason, acid-free C_6D_6 and $CDCl_3$ were used for the 250 and 62.5 MHz NMR studies. Photoisomerisation of (E)-1a-c afforded (Z)-1a-c as sole isolable products in moderate yields (35-46%). A longer irradiation time resulted in an increase in decomposition instead of a higher yield. However, the same reaction of compounds (E)-1d,e gave 3-methylidene-1-thioflavan-4-ones (2d,e) and no Z isomers could be detected in the reaction mixtures. Scheme 1 **Table 1** ¹H Chemical shifts of (Z)-1 and 2 (C_6D_6) | | (Z)-1a | (Z)-1b | (Z)-1c | 2d | 2e | |---------|--------|-------------------|--------|------|------| | 2-H | 3.91 | 3.37 | 3.35 | 4.89 | 4.81 | | 5-H | 8.28 | 8.49 | 8.38 | 8.46 | 8.30 | | 6-H | 7.25 | 6.90 | 6.91 | 6.87 | 6.78 | | 7-H | 7.40 | 6.96 | 6.99 | 6.93 | 6.85 | | 8-H | 7.31 | 7.11 | 7.10 | 7.09 | 6.98 | | $9-H_F$ | 6.93 | 6.57 | 6.34 | 5.09 | 5.00 | | $9-H_z$ | _ | _ | _ | 6.48 | 6.35 | | 2',6'-H | 7.48 | 7.68 | 7.32 | 7.29 | 7.18 | | 3',5'-H | 7.17 | 7.11 | 7.13 | 6.73 | 6.65 | | Others | Me | $\mathbf{Pr^{i}}$ | | OMe | OEt | | | 2.39 | 2.75 | | 3.32 | 3.50 | | | | 1.18 | | | 1.07 | [&]quot; Measured in acid free CDCl3. On the basis of ^1H and ^{13}C NMR measurements it can be concluded that instead of the S–C-2H₂–C-3=C-9–Ar moiety of the 3-arylidene-1-thiochromanones an S–C-2H–C-3=C-9H₂ structural element has been introduced (Tables 1 and 2). In the ^1H NMR spectrum the 2-H signal is broad and non-resolved at 4.89 and 4.81 ppm, respectively, while the 9-H_z 6.48/6.35 and 9-H_E 5.09/5.00 signals of the terminal methylidene group are triplets with a 1.5 Hz coupling constant [2J (9-H_E, 9-H_Z) $\approx ^4J$ (2-H, 9-H) ≈ 1.5 Hz]. The assignment was corroborated by the 9-H_z (33.6%), 2-H (2.2%) and 2',6'-H (1.5%) NOE values measured on the irradiation of the 9-H_E. A *ca.* 1.4 ppm difference in the chemical shifts of the terminal methylidene protons is a consequence of the anisotropic effect of the C-4=O Table 2 ¹³C Chemical shifts of 1 and 2 (C₆D₆) | | (Z)-1a | (Z)-1b | (Z)-1c | 2d | 2e | |---------|--------|----------|--------|-------|-------| | C-2 | 36.8 | 37.1 | 36.8 | 50.2 | 50.3 | | C-3 | 130.8 | 131.6 | 133.0 | 145.5 | 145.6 | | C-4 | 186.6 | 186.4 | 186.0 | 185.1 | 185.0 | | C-4a | 131.9 | 133.2 | 133.9 | 132.3 | 132.3 | | C-5 | 129.7 | 130.2 | 130.2 | 130.3 | 130.3 | | C-6 | 124.9 | 125.3 | 125.4 | 125.9 | 125.9 | | C-7 | 132.7 | 132.9 | 133.2 | 133.3 | 133.3 | | C-8 | 127.2 | 127.5 | 127.6 | 127.9 | 127.9 | | C-8a | 141.3 | 141.9 | 141.9 | 140.7 | 140.8 | | C-9 | 137.4 | 137.6 | 135.9 | 123.6 | 123.6 | | C-1' | 132.0 | 133.1 | 132.7 | 129.4 | 129.2 | | C-2',6' | 129.4 | 130.6 | 131.5 | 129.8 | 129.8 | | C-3',5' | 128.6 | 126.4 | 128.4 | 114.3 | 114.8 | | C-4' | 138.6 | 149.8 | 134.6 | 159.8 | 159.2 | | Others | Me | Pr^{i} | | OMe | OEt | | | 21.1 | 34.2 | | 54.7 | 63.2 | | | | 23.8 | | | 14.8 | [&]quot; Measured in acid free CDCl₃. **Table 3** Results of semi-selective 1D INEPT [J(C,H) = 7 Hz] measurements | | Proton | Carbon | |--------|-----------------------------------|---| | (Z)-1a | 2-H ₂
9-H | C-3; C-4; C-8a; C-9
C-2; C-3; C-4; C-1'; C-2',6' | | (Z)-1b | 2-H ₂
9-H
9-H " | C-3; C-4; C-8a
C-4; C-2′,6′
C-2; C-3; C-4; C-1′ | | (Z)-1c | 2-H ₂
9-H | C-3; C-4; C-8a; C-9
C-2; C-3; C-4; C-2',6' | | 2d | 9-H <i>ª</i>
2-H
5-H
8-H | C-2; C-3; C-4; C-1'; C-2',6'
C-3; C-4; C-8a; C-9; C-1'; C-2',6'
C-4; C-7; C-8a
C-4a; C-6 | $^{^{}a}J(C,H) = 3 Hz.$ group on the neighbouring proton. The presence of the S-C-2H-C-3=C-9H₂ structural unit has been proven by ¹³C DEPT measurements. The C-9 signal showed a ca. 14 ppm diamagnetic shift and the C-2 signal a ca. 13 ppm paramagnetic shift in the rearranged products 2 compared with the (Z)-3-arylidene-1thiochroman-4-ones 1, which is in accordance with the presence of the aryl substituent on C-2 instead of C-9. A further proof of this fact is the semi-selective 1D INEPT 8 measurement starting from 2-H, optimised for the J(C,H) = 7 Hz long-range coupling, which reveals the carbon atoms at two or three bond distances (C-1', C-2',6', C-3, C-4, C-8a and C-9) (Table 3). Semi-selective 1D INEPT measurements starting from 5-H and 8-H allowed the unambiguous assignment of the ¹³C signals of the condensed aromatic ring. The significant paramagnetic shift of C-3 signals (ca. 14 ppm) in the case of the ring-transformed products 2 is in accordance with the fact that a phenyl group in the β-position of the C-3=C-9 double bond results in a diamagnetic shift, while a phenyl group at the β-position of the C-3-C-2 single bond results in a paramagnetic shift. #### **Conformational effects** In the course of the conformational analysis of the (E)- and (Z)-3-arylideneflavanones and their thio analogues we have found that the condensed six-membered ring may adopt two, energetically slightly different envelope conformers (A and B) where the C-2 phenyl group is axial in A and equatorial in B.⁶ In flavanone and 1-thioflavanone the equatorial arrangement of the C-2 phenyl group is more favourable than the axial one. In the E and Z isomers, as a result of the presence of the C-3 exo double bond the axial position is more favourable owing to the 1,3-allylic strain, ⁹ and the ratio of the envelope A is enhanced in the conformational equilibrium. In the E isomer as a result of a steric interaction between the C-2 phenyl group and the peripositioned β -substituent of the exo double bond, the A \Longrightarrow B conformational equilibrium is shifted in the direction of A (ca. 90%). It has also been concluded that the ³J(C-8a, 2-H) coupling constants make possible a nearly quantitative description of the A \Longrightarrow B conformational equilibrium. Investigation of model compounds show that the expected coupling constant values are J(C-8a, 2-H_{eq}) ca. 8 Hz and J(C-8a, 2-H_{ax}) ca. 1 Hz. In compound 2d J(C-8a, 2-H) is 3.6 Hz which reveals an A:B conformer ratio of ca. 37:63. In the case of compound 2d AM1 (Mopac-6, version 1990) 10 calculations have also been performed and the results are in accordance with the NMR data (the energies of the two conformers are very similar with ΔE ca. 1.3 kcal mol⁻¹† in favour of the B conformer). Conformation of the C-2 aryl group can be evaluated from the ${}^{3}J(C-2',6',2-H)$ coupling constants. If the C-2-H bond and the connecting C-2-aromatic ring are coplanar, the coupling constant should be 5-6 Hz which gradually decreases with the ratio of this conformer. 5.6.11 Conformational analysis is made difficult by the fact that an A \Longrightarrow B conformational equilibrium should be considered in the case of compound 2d. In conformer B the exo double bond is in spatial proximity to the aromatic ring which adopts a perpendicular position to this and, therefore, the C-2'-C-1'-C-2-2-H moiety is almost coplanar. In the case of compound 2d the AM1 calculations gave the dominant conformer of the aryl group for both conformers (see Scheme 2). The C-2'-C-1'-C-2- Scheme 2 Preferred conformations of compound 2d obtained by AM1 2-H dihedral angle is 11° for conformer **B** and -56° for conformer **A**. ${}^3J(\text{C-2'},6',2\text{-H}) = 4.2$ Hz coupling constant, an average value determined by semi-selective 2D INEPT ¹² measurement is in accord with the results of the semi-empirical calculations, since 5–6 and 2–3 Hz coupling constants belong to dihedral angles 11 and 56°, respectively, and the observed value belongs to a fast equilibrium. #### Mechanism for ring transformation The unprecedented ring transformation of compounds (E)-1d,e may probably take place as shown in Scheme 3. Homolytic splitting of the S-C-2 bond maybe promoted by the stabilisation of the radical centre on the arylidene group with alkoxy substituent. (E)-3-Arylidene-1-thioflavan-4-ones 3 have also been included in our study. Since beside the $E \rightarrow Z$ isomerisation a ring transformation may take place as well, formation of four products, viz. (E)-3, (Z)-3, (E)-4 and (Z)-4 (Scheme 4) should be considered. Irradiation of the (E)-3a,b resulted in the formation of (Z)-3a,b which is reflected in the characteristic changes of the 2-H; 9-H and C-2 chemical shift values (Table 4). In the case of (E)-3c a mixture was obtained and in the 1 H spectrum two major components (55 and 28%) and two minor components $[\]dagger 1 \text{ cal} = 4.184 \text{ J}.$ Scheme 3 Table 4 Characteristic ¹H and ¹³C chemical shifts of 3 and 4 (C₆D₆)^a Scheme 4 | | $\delta_{ extsf{2-H}}$ | $\delta_{9 ext{-H}}$ | $\delta_{ extsf{C-2}}$ | $\delta_{ ext{C-4}}$ | $\delta_{ ext{C-9}}$ | $\delta_{ ext{C-1}^{\prime\prime}}$ | |--------|------------------------|----------------------|------------------------|----------------------|----------------------|-------------------------------------| | (Z)-3b | 4.98 | 6.73 | 53.9 | 187.2 | 137.7 | | | (E)-3b | 5.77 | 8.32 | 46.4 | 185.6 | 138.7 | | | (Z)-3c | 4.93 | 6.48 | 53.2 | 186.9 | 136.1 | | | (Z)-4c | 4.76 | 6.62 | | | | | | (E)-3c | 5.53 | 8.04 | 46.0 | 185.4 | 137.0 | | | (E)-4c | 5.55 | 8.20 | | | | | | (Z)-3d | 4.99 | 6.72 | 54.0 | 187.2 | 137.1 | 138.1 | | (Z)-4d | 5.01 | 6.70 | 53.2 | 187.4 | 137.9 | 129.1 | | (E)-3d | 5.79 | 8.30 | 46.4 | 185.5 | 138.8 | 140.7 | | (E)-4d | 5.71 | 8.24 | | | | | [&]quot;The chemical shifts of compounds 3-4c,d were obtained from the spectra of the isomeric mixtures. (7 and 10%) have been detected, but in the 13 C NMR spectra assignment of only the two major components could be made. On the basis of the 2-H, 9-H and C-2 signals, the component which is present in 55% is (Z)-3c and that present in 28% is the starting compound (E)-3c. Irradiation of (*E*)-3d resulted in the formation of four products as well. The two *Z* isomers [(Z)-3d and (Z)-4d] have been differentiated by the C-1" chemical shift since it is known that a *p*-OMe group results in a ca. 8 ppm diamagnetic shift. Semi-selective 1D INEPT measurements starting from the 2-H of the *Z* compound and optimised for J(C,H) = 7 Hz longrange coupling revealed the C-3, C-4, C-8a, C-9, C-1" and C-2".6" signals. In (*Z*)-3d δ_{C-1} is 138.1 ppm and 129.1 ppm in (*Z*)-4d which prove that in the latter isomer a *p*-OMe-phenyl group is connected to the C-2 atom, viz. a ring transformation Table 5 Physical constants of the isolated products | Compound | Formula a | Yield (%) | Mp/°C | | |----------|--------------------------------------|-----------|------------|--| | (Z)-1a | C _{1.7} H _{1.4} OS | 35 | 53–55 | | | (Z)-1b | $C_{19}H_{18}OS$ | 41 | Yellow oil | | | (Z)-1c | $C_{16}H_{14}CIOS$ | 46 | Yellow oil | | | 2d | $C_{17}H_{14}O_{2}S$ | 42 | 94-95 | | | 2e | $C_{18}H_{16}O_{2}S$ | 36 | 77–78 | | | (Z)-3a | $C_{23}H_{18}OS$ | 55 | Yellow oil | | | (Z)-3b | $C_{25}H_{22}OS$ | 39 | Yellow oil | | | (Z)-3c | $C_{22}H_{15}CIOS$ | 42 | Yellow oil | | ^a Elemental analyses (C,H) were in good agreement with the calculated values. took place due to the irradiation, similar to 3-arylidene-1-thiochroman-4-ones. Prolongation of the irradiation time resulted in a pronounced decomposition of 3 and 4 and after 12 h irradiation they could not be detected in the reaction mixture by NMR spectroscopy. Irradiation for 3 h resulted in ca. 50% decomposition and the formation of a four component mixture (Z)-3d:(Z)-4d:(E)-3d:(E)-4d = 1:2:1:1. We failed to isolate the rearranged products (Z)-3d and 4c,d from the reaction mixture. In summary, we have observed an unprecedented phototransformation of alkoxy substituted 3-arylidene-1-thiochroman-4-ones leading to 3-methylene-1-thioflavan-4-ones. This reaction may serve as a synthetic procedure for the preparation of 3-methyldiene-1-thioflavan-4-ones. A similar phototransformation with the analogous 3-arylidene-1-chroman-4-ones and 3-arylidene-1-flavan-4-ones was not observed. 7-13-15 The only example of such compounds is the 3-methylidene-1-thioflavan-4-one itself obtained by the reaction of 1-thioflavan-4-one with bis(dimethylamino)methane. 16 #### **Experimental** Melting points were determined on a Kofler hot-stage apparatus and are uncorrected. NMR spectra were recorded on a Bruker AC-250 spectrometer at room temperature in CDCl₃ or in C_6D_6 . Chemical shifts are given on the δ scale and referenced to internal TMS. In the 1D measurements 32 K data points were used for the FID. A delay time of 5 s was applied for homonuclear NOE experiments. The 1D semi-selective INEPT measurements were optimised for J(C,H) = 7 Hz coupling and 25 Hz selectivity. In the 2D semi-selective INEPT measurement the data matrices were 8 K × 64 data points and the spectral width in the F1 (proton) dimension was 10 Hz. ### General procedure for the photoisomerisation of (E)-1a-e and (E)-3a-d Compounds (E)-1a-e and (E)-3a-d (10 mmol) were dissolved in anhydrous benzene (300 cm³) and irradiated with a 400 W mercury arc lamp at ambient temperature for 3 h. The solvent was evaporated under reduced pressure (ca. 20 Torr) and the residue was purified on a silica gel (Merck) column using dichloromethane: hexane (3:2 v/v) as eluent to afford substances (Z)-1a-c, 2d,e, (Z)-3a-c (Schemes 1 and 4, Table 5). #### Acknowledgements The authors are grateful to the Hungarian National Research Foundation (Grant No. OTKA T 014864) and to the European Communities (COST Project D2/0005/94) for financial support. J. H. thanks the J. Varga Foundation (Budapest, Hungary) for a fellowship and Cs. N. the UNIVERSITAS Foundation of the Hungarian Commercial Bank (Debrecen, Hungary) for a grant. #### References - 1 A. Lévai and J. B. Schág, *Pharmazie*, 1979, **34**, 749. 2 A. Lévai, Z. Dinya, J. B. Schág, G. Tóth and Á. Szöllôsy, *Pharmazie*, 1981, 36, 465. - 3 A. Lévai, Á. Szöllôsy and G. Tóth, Acta Chim. Hung., 1991, 128, 359. - 4 J. J. Bierne and W. I. O'Sullivan, Proc. R. Irish Acad., 1977, 77b, 331. - 5 G. Tóth, A. Lévai, Á. Szöllôsy and H. Duddeck, Tetrahedron, 1993, 49, 863. - 6 G. Tóth, Á. Szöllôsy, A. Lévai, Gy. Oszbach, W. Dietrich and H. Kühne, Magn. Reson. Chem., 1991, 29, 801. - 7 D. D. Keane, K. G. Marathe, W. I. O'Sullivan, E. M. Philbin, R. M. Simons and P. C. Teague, J. Org. Chem., 1970, 35, 2286. - 8 A. Bax, J. Magn. Reson., 1984, 57, 314. - 9 F. Johnson, Chem. Rev., 1968, 68, 375. - 10 M. J. S. Dewar, E. G. Zoebisch, E. F. Healy and J. J. P. Stewart, J. Am. Chem. Soc., 1985, 107, 3902. - 11 G. Tóth, A. Lévai and H. Duddeck, Magn. Reson. Chem., 1992, 30, - 12 T. Jippo, O. Kamo and K. Nagayama, J. Magn. Reson., 1986, 66, - 13 D. D. Dhavale, P. Joshi and K. G. Marathe, J. Chem. Soc., Perkin Trans. 2, 1987, 449. - 14 Cs. Nemes, A. Lévai, T. Patonay, G. Tóth, S. Boros, J. Halász, W. Adam and D. Golsch, J. Org. Chem., 1994, 59, 900. - 15 A. Lévai, Cs. Nemes and T. Patonay, submitted for publication in Org. Prep. Proced. Int. - 16 F. E. Ward, D. L. Garling, R. T. Buckler, D. M. Lawler and D. P. Cummings, J. Med. Chem., 1981, 24, 1073. Paper 5/06316G Received 25th September 1995 Accepted 1st November 1995