# The Hammett equation and Snyder theory as a criterion for adsorption of a functional group under liquid—solid chromatography

## Mariana Palamareva \* and Sasho Chorbadjiev

Department of Chemistry, University of Sofia, Sofia 1126, Bulgaria



The application of the Hammett equation in a suitable form to TLC separations on silica of aromatic aldehydes,  $4-X-C_6H_4-Y$ , and related 5-arylidene thiazolidine-2,4-diones has shown some substantial deviations to higher values from the correlation lines which are considered on the basis of Snyder theory as a proof for adsorption of the corresponding group X (from a substituent, it becomes a new adsorption centre Y'). Based on this criterion, the data of this paper and previous papers support the adsorption of group X when it is 3-OH, 4-OH, 3-NO<sub>2</sub>, 4-NO<sub>2</sub> and 3-OCH<sub>3</sub>. The adsorption of X seems to occur when its adsorptivity is similar to that of Y and the electronic interaction between X and Y is of limited importance.

Elucidation of adsorption pattern, *i.e.*, which group of a solute is adsorbed under liquid-solid chromatography such as TLC, HPLC, *etc.*, is important because of the possibility to govern the separation process and to use this type of chromatography as a method for configurational determinations.<sup>1,2</sup> So far, indications for adsorption pattern have been received on the basis of the Soczewiński method<sup>2,3</sup> and the critical value of solvent strength,<sup>4-8</sup>  $\varepsilon_{r}^{crit.}$  (see below) from Snyder theory. The reaction constant,  $\rho$ , of the Hammett equation<sup>9</sup> is important for investigation of reaction mechanisms. Trying to use this equation for elucidation of adsorption pattern, our previous TLC study<sup>10</sup> has shown three substantial and puzzling deviations from the Hammett plots.

The present study reports the application of the Hammett equation in a combination with  $\varepsilon_i^{\text{crit.}}$  to TLC on silica of aromatic aldehydes 1–6 as simple model compounds and the related 5-arylidenethiazolidine-2,4-diones 7–12 with a more complex structure.



 $X = H, CH_3, OH, OCH_3, N(CH_3)_2, NO_2$ 

#### Theory

The Hammett equation<sup>9</sup> expresses the influence of a substituent X in *meta*- or *para*-position on reactivity of a reaction site Y. For TLC, it is given by eqn.  $(1)^{10}$  where  $R_{M(X)}$ 

$$R_{M(X)} = R_{M(0)} + \rho\sigma \tag{1}$$

$$R_{\rm M} \equiv \log k' = \log(1/R_{\rm F} - 1) \tag{2}$$

and  $R_{M(0)}$  are the retention  $R_M$  of compounds having  $X \neq H$ and X = H, respectively,  $\sigma$  is the Hammett constant of X depending on its electronic effects,  $\rho$  is a measure for the susceptibility of the adsorption centre to the electronic influence of X, k' is the retention factor in HPLC and  $R_F$  is the directly measured parameter in TLC. If there is enhanced resonance<sup>9</sup> between Y and electron-donating X,  $\sigma$  in eqn. (1) is replaced by the modified constant  $\sigma^+$ . An idea about Snyder theory<sup>4-7</sup> can be obtained from its model, the so-called displacement model. According to this model, retention is considered as a displacement process where a sample (solute) molecule S displaces n molecules of mobile

$$S_n + nM_a \Longrightarrow S_a + nM_n$$
 (3)

phase M from the adsorbent surface. The subscripts n and a denote non-adsorbed and adsorbed state, respectively.

Then the mobile phases are characterized by the following dimensionless parameters: strength,  $\varepsilon$ , measuring the dimensionless Gibbs energy ( $\Delta G^{\circ}/RT \ln 10$ ) of adsorption of the mobile phase per unit area of the adsorbent surface (having in mind eqn. (1), the greater the  $\varepsilon$  value, the weaker is the sample retention); localization, m, measuring the capability of the mobile phase for interaction via the available functional group(s) of the composing solvent(s) with specific adsorbent sites; polarity, P', measuring the total interaction of the mobile phase with the sample; it tunes the mobile-phase strength. The calculation of these parameters and especially of  $\varepsilon$  for mobile phases composed of two or more solvents requires a computer program.<sup>11</sup>

Another important point is that a solute group *i* is adsorbed if this process compensates the energy loss for desorption of mobile phase molecule(s) from the adsorbent surface (see the contribution of Snyder in ref. 12) [eqn. (4)], where  $Q_i^{\circ}$  is the

$$Q_{\rm i}^{\rm o} - \varepsilon a_{\rm i} > 0 \tag{4}$$

dimensionless Gibbs energy of adsorption of solute group i,  $a_i$  is its relative effective area under adsorption and  $\varepsilon$  is the strength of the mobile phase used. If the mobile phase has  $\varepsilon$  greater than the following [eqn. (5)] critical for group i value then this

$$\varepsilon_{i}^{\rm crit.} = Q_{i}^{\rm o}/a_{i} \tag{5}$$

group is not adsorbed any more (no energy of adsorption is gained).

#### **Experimental**

Compounds 1-6 were commercial products and compounds 7-12 were prepared.<sup>13</sup> TLC was done as in ref. 14 with adsorbent 1 = silica GF<sub>254</sub>, Merck, Germany and adsorbent 2 = silufol,  $UV_{254+366}$ , Kavalier, Czech Republic. The solvents used were of analytical-reagent grade. The  $R_F$  values were arithmetic means of four to six measurements showing a reproducibility of  $\pm 0.02 R_F$  units. The mobile phases used were selected by

**Table 1** Mobile phases used in TLC and their computer calculated <sup>11</sup> values of the dimensionless parameters strength,  $\varepsilon$ , localization, *m*, and polarity, *P*'

| No. | Mobile phase                               | Ratio (vol. %) | з     | m    | Ρ'   |  |
|-----|--------------------------------------------|----------------|-------|------|------|--|
| 1   | Hexane-diethyl ether                       | 73.6:26.4      | 0.300 | 0.64 | 0.81 |  |
| 2   | Hexane-diisopropyl ether                   | 30.1:69.9      | 0.300 | 0.10 | 1.71 |  |
| 3   | Hexane-acetone                             | 94.0:6.0       | 0.300 | 0.90 | 0.40 |  |
| 4   | Hexane-ethyl acetate                       | 84.7:15.3      | 0.300 | 0.59 | 0.76 |  |
| 5   | Hexane-methylenechloride-diethyl ether     | 83.4:10.0:6.6  | 0.300 | 0.56 | 0.58 |  |
| 6   | Chloroform-diisopropyl ether               | 48.7:51.3      | 0.300 | 0.05 | 3.23 |  |
| 7   | Chloroform-ethyl acetate                   | 92.4:7.6       | 0.300 | 0.11 | 4.12 |  |
| 8   | Toluene-diethyl ether                      | 90.4:9.6       | 0.300 | 0.25 | 2.44 |  |
| 9   | Toluene-methyl tert-butyl ether            | 96.5:3.5       | 0.300 | 0.23 |      |  |
| 10  | Toluene-tetrahydrofuran                    | 87.9:12.1      | 0.300 | 0.48 | 2.59 |  |
| 11  | Hexane-diethyl ether                       | 48.0:52.0      | 0.350 | 0.65 | 1.50 |  |
| 12  | Hexane-acetone                             | 84.4:15.6      | 0.350 | 0.92 | 0.88 |  |
| 13  | Tetrachloromethane-methyl tert-butyl ether | 86.8:13.2      | 0.350 | 0.73 | _    |  |
| 14  | Toluene-methy tert-butyl ether             | 92.8:7.2       | 0.350 | 0.45 |      |  |
| 15  | Hexane-diethyl ether                       | 34.0:66.0      | 0.380 | 0.66 | 1.88 |  |
| 16  | Hexane-methyl tert-butyl ether             | 50.4:49.6      | 0.380 | 0.81 |      |  |
| 17  | Hexane-tetrahydrofuran                     | 62.4:37.6      | 0.380 | 0.99 | 1.57 |  |

Table 2 Values of the dimensionless TLC retention,  $R_{M}$ ,<sup>*a*</sup> of aromatic aldehydes 1–6, values of  $\rho$  for the 'true Hammett plots'<sup>*b*</sup> and the corresponding correlation coefficient, *r* 

| Solute |                 | $R_{\rm M}$ with adsorbent 1 and indicated mobile phase |       |       |       |      |       |       |       |       |       |  |
|--------|-----------------|---------------------------------------------------------|-------|-------|-------|------|-------|-------|-------|-------|-------|--|
| No.    | X               | 1                                                       | 2     | 3     | 4     | 5    | 6     | 7     | 8     | 9     | 10    |  |
| 1      | Н               | -0.21                                                   | -0.63 | 0.03  | -0.14 | 0.16 | 0.95  | -0.87 | -0.31 | -0.07 | 0.66  |  |
| 2      | CH <sub>3</sub> | -0.21                                                   | -0.66 | 0.05  | -0.14 | 0.18 | -1.06 | -0.79 | -0.29 | -0.02 | -0.66 |  |
| 3      | OH              | 0.79                                                    | -0.21 | 0.95  | 0.69  | 1.38 | -0.16 | 0.41  | 0.75  | 1.00  | 0.03  |  |
| 4      | OCH,            | 0.23                                                    | -0.09 | 0.39  | 0.21  | 0.52 | -0.72 | -0.58 | 0.00  | 0.16  | -0.41 |  |
| 5      | $N(CH_3)_2$     | 0.50                                                    | 0.21  | 0.55  | 0.39  | 0.91 | -0.63 | -0.27 | 0.33  | 0.48  | -0.23 |  |
| 6      | NO <sub>2</sub> | 0.31                                                    | 0.00  | 0.52  | 0.25  | 0.58 | 0.79  | -0.69 | -0.21 | -0.02 | -0.55 |  |
|        | ρ               | -0.45                                                   | -0.53 | -0.32 | -0.33 | 0.47 | -0.23 | -0.36 | -0.40 | -0.33 | -0.27 |  |
|        | r               | 0.97                                                    | 0.96  | 0.98  | 0.97  | 0.98 | 0.84  | 0.99  | 0.98  | 0.99  | 0.97  |  |

<sup>a</sup> The values of  $R_{\rm M}$  are derived from the corresponding experimental  $R_{\rm F}$  values by eqn. (2). <sup>b</sup> The 'true Hammet plots',  $R_{\rm M}$  vs.  $\sigma^+$ , are constructed on the basis of compounds 1, 2 and 5 having non-adsorbing group X. The values of  $\sigma^+$  are from Table 4.

Table 3 Values of the dimensionless TLC retention,  $R_{M}$ ,<sup>*a*</sup> of thiazolidinediones 7–12, values of  $\rho$  for the 'true Hammett plots'<sup>*b*</sup> and the corresponding correlation coefficient, r

| Solute |                  | R <sub>M</sub> with | $R_{\rm M}$ with adsorbent 2 and indicated mobile phase |       |       |       |       |        |       |  |
|--------|------------------|---------------------|---------------------------------------------------------|-------|-------|-------|-------|--------|-------|--|
| No.    | X                | 1                   | 11                                                      | 12    | 13    | 14    | 15    | 16     | 17    |  |
| <br>7  | Н                | 0.60                | -0.27                                                   | 1.00  | 0.14  | 0.45  | -0.45 | - 1.06 | -0.55 |  |
| 8      | CH <sub>3</sub>  | 0.58                | -0.27                                                   | 0.95  | 0.16  | 0.48  | -0.50 | -1.06  | -0.55 |  |
| 9      | OH               | 1.38                | 0.45                                                    | 2.00  | 1.12  | 1.28  | 0.19  | 0.10   | 0.07  |  |
| 10     | OCH <sub>3</sub> | 0.91                | 0.09                                                    | 1.19  | 0.45  | 0.63  | -0.16 | -0.31  | -0.31 |  |
| 11     | $N(CH_3)_2$      | 1.19                | 0.27                                                    | 1.38  | 0.63  | 0.75  | 0.00  | -0.10  | -0.10 |  |
| 12     | NO <sub>2</sub>  | 0.95                | 0.10                                                    | 1.28  | 0.52  | 0.58  | -0.16 | -0.31  | -0.33 |  |
|        | ρ                | -0.37               | -0.34                                                   | -0.25 | -0.30 | -0.18 | -0.29 | -0.60  | -0.28 |  |
|        | r                | 0.96                | 0.97                                                    | 0.93  | 0.98  | 0.99  | 0.94  | 0.97   | 0.97  |  |

<sup>a</sup> The values of  $R_{\rm M}$  are derived from the corresponding experimental  $R_{\rm F}$  values by eqn. (2). <sup>b</sup> The 'true Hammett plots',  $R_{\rm M}$  vs.  $\sigma^+$ , are constructed on the basis of compounds 7, 8 and 11 having non-adsorbing group X. The values of  $\sigma^+$  are from Table 4.

the computer program  $^{11}$  LSChrom Ver. 2, 1994. Details about such a computer choice are given in ref. 15.

#### **Results and discussion**

The mobile phases 1-17 used are given in Table 1 together with their computer calculated <sup>11</sup> values of strength,  $\varepsilon$ , localization, *m*, and polarity, *P'*. Mobile phases 1-10 used for TLC of compounds **1-6** are with a constant  $\varepsilon$  value (0.300) but they differ significantly in their values of *m* and *P'*. Therefore these mobile phases are similar but not equivalent. The same is valid for mobile phases 11-14 with  $\varepsilon = 0.350$  and mobile phases 1517 with  $\varepsilon = 0.380$  all of them used for TLC of compounds 7–12. The overall variation of *m* and *P'* was  $0.05 \le m \le 0.99$  and  $0.40 \le P' \le 4.12$ . The expected tuning effect of *P'* on  $\varepsilon$  is seen as a greater value of *P'* means a stronger interaction of the mobile phase with the sample, *i.e.*, a weaker retention and *vice versa*. From mobile phases 1–10 with the same  $\varepsilon$ , mobile phase 3 has the lowest *P'* (0.40) and mobile phase 7 has the greatest *P'* (4.12) which accounts for the weaker retention and smaller  $R_{\rm M}$  of any compound with mobile phase 7.

The values of the TLC retention  $R_{\rm M}$  of aromatic aldehydes 1– 6 and related thiazolidinediones 7–12 are given in Table 2 and Table 3, respectively. The values of  $\rho$  of the 'true Hammett

962 J. Chem. Soc., Perkin Trans. 2, 1996

**Table 4** Data <sup>4,9</sup> for the dimensionless parameters  $Q_i^o$ ,  $a_i$ ,  $\varepsilon_i^{\text{crit.}}$  on silica and  $\sigma_i^+$  for the groups  $i^a$  participating in the compounds studied

|   | Group i                             | Qi   | ai    | ε <sup>crit.</sup> | $\sigma_{i}^{+}$ |
|---|-------------------------------------|------|-------|--------------------|------------------|
| x | С Н Н                               | 1.50 | 6.00  | 0.25               | 0.00             |
|   | Ar-CH3                              | 0.11 | 0.80  | 0.14               | -0.30            |
|   | Ar-OH                               | 4.20 | 7.60  | 0.55               | -0.92            |
|   | Ar-OCH <sub>3</sub>                 | 1.83 | 4.60  | 0.40               | -0.78            |
|   | Ar-N(CH <sub>3</sub> ) <sub>2</sub> | 2.52 | 9.20  | 0.27               | -1.70            |
|   | Ar-NO <sub>2</sub>                  | 2.77 | 7.50  | 0.37               | 0.81             |
| Y | Ar-CHO                              | 3.48 | 8.30  | 0.42               |                  |
|   | R-CONH <sub>2</sub>                 | 9.60 | 10.30 | 0.93               |                  |
|   | R-S-R                               | 2.94 | 7.40  | 0.40               |                  |
|   | Ar-CH=CR <sub>2</sub>               | 0.50 | 2.00  | 0.25               |                  |

<sup>a</sup> In bold.

plots' (see below) and the corresponding correlation coefficient, r, are also included. Compounds 7–12 were studied with adsorbent 2 because of some tailing on adsorbent 1.

Table 4 summarizes the adsorption properties ( $Q_i^{\circ}$ ,  $a_i$  and  $\varepsilon_i^{\text{crit.}}$ ) of the groups *i* participating in the compounds studied and their values of  $\sigma^+$  used.

Let us discuss in detail the agreement of the data for  $R_M$  obtained with the Hammett eqn. (1). Passing from a reaction to a case where adsorption takes place, the Hammett equation could have the following particularity: except the usual cases when X is a non-adsorbing substituent modifying the electron density of the adsorption centre Y, there will be cases when X transforms from a substituent to a new adsorption centre Y'. The latter is possible if Gibbs energy of adsorption  $Q_X^{\alpha}$  is similar to  $Q_Y^{\alpha}$  (from compounds 1–12, see compounds 2 and 3, respectively) and the



interaction between Y and Y' is small because the values of  $Q_i^{o}$  refer to such a case.

The presence of a second adsorption centre Y' will lead to a better adsorption of the solute and its  $R_M$  will deviate only to higher values from the Hammett correlation line. Group X in the compounds studied is in *para*-position enabling its enhanced resonance<sup>9</sup> with Y. Thus, the hydroxy group X in compound 3 could either increase the adsorption of Y by its positive resonance effect or become an adsorbing group Y' leaving Y unaffected to a significant extent.

This discussion shows that the experimental study of the Hammett eqn. (1) is important. The construction of the corresponding plots should exclude the compounds where both X and Y are adsorption centres. We will call such plots 'true Hammett plots'. To this end, we combined the Hammett equation with Snyder theory using the following procedure. The values of  $\varepsilon$  given in Table 1 were compared with the values of  $\varepsilon_i^{crit}$  of the groups participating in the compounds studied (Table 4) on the basis of the following relationships arising from eqn. (5).

 $\varepsilon \begin{cases} > \varepsilon_i^{\text{crit.}}, & \text{the group X or Y is non-adsorbing} \\ \approx \varepsilon_i^{\text{crit.}}, & \text{the conclusion is uncertain} \\ < \varepsilon_i^{\text{crit.}}, & \text{the group X or Y is adsorbing} \end{cases}$ 

This comparison showed that the phenyl group (benzene ring) is non-adsorbing in all cases studied because  $\varepsilon_{C_0H_0}^{eit.} = 0.250$  is less than  $\varepsilon$  of the mobile phases used (0.300–0.380). This comparison also showed that the compounds with X = H, CH<sub>3</sub> and N(CH<sub>3</sub>)<sub>2</sub> in the *para*-position should satisfy the Hammett



Fig. 1 Illustrations of the 'true Hammett plots' and the deviations from them in the TLC cases studied. The adsorbent and the mobile phase used are given in parentheses.

equation because X is non-adsorbing and Y (CHO for 1-6 and the heterocyclic ring for 7–12) is adsorbing. Thus,  $\varepsilon$  used varies in the range 0.300–0.380 being greater than  $\varepsilon_i^{crit.}$  for these three groups X, namely 0.25, 0.14 and 0.27, respectively. The corresponding 'true Hammett plots' were constructed and the points for the remaining compounds with  $X = OH, OCH_3$  and NO<sub>2</sub> were incorporated to these plots as illustrated in Fig. 1. In all cases studied, the Hammett equation was really obeyed by the compounds with X = H,  $CH_3$  and  $N(CH_3)_2$  in the paraposition as best agreement (r in the range 0.84–0.99) was obtained with the modified substituent constants  $\sigma^+$  showing the presence of the expected enhanced resonance from X to Y. The 'true Hammett plots' have the expected <sup>4</sup> negative  $\rho$  values which are in the range from -0.60 to -0.18. These values correspond to an increase in the electron density and adsorption energy of Y by an electron-donating group X, *i.e.*, the group Y in these cases has possibility for a stronger hydrogen bonding to the silanol hydroxy groups of the adsorbent. Such a bonding is the most important with mobile phase 16 when  $\rho$  has the greatest absolute value of 0.60.

Substantial deviations from the 'true Hammett plots' were established for all compounds with X = OH and  $NO_2$  in the *para*-position. Having in mind the above discussion, these deviations support the adsorption of the two groups and indicate that their electronic influence on Y is of limited importance. Except in the case of TLC with mobile phase 16, the compounds with X = 4-OCH<sub>3</sub> did not show considerable deviations and therefore 4-OCH<sub>3</sub> should not be adsorbed in these cases. In comparison with OH for instance, the methoxy group has smaller  $Q_i^o$ , value (Table 4) and weaker adsorption

J. Chem. Soc., Perkin Trans. 2, 1996 963



Fig. 2 'True Hammett plot' ( $\rho = -0.20, r = 0.88$ ) and the deviations from it obtained on the basis of the  $R_F$  on silica reported in ref. 16. The values of  $\sigma^+$  are from ref. 9. In the cases when more than one substituent is available on the benzene ring, the additivity rule is used for calculation of  $\sigma^+$ .

which enables its enhanced resonance with Y to become a dominant factor in the majority of the cases with X = 4-OCH<sub>3</sub>.

The procedure used was applied also to the  $R_{\rm F}$  values of a series of aromatic aldehydes X–C<sub>6</sub>H<sub>4</sub>–CHO from ref. 16. The corresponding Hammett plot (see Fig. 2) shows apparent deviations to a greater adsorption for the compounds with X = 3-OH, 4-OH and 3-NO<sub>2</sub>, *i.e.*, adsorption of these groups.

On the basis of this criterion, the deviations in ref. 10 denote adsorption of  $3-NO_2$  and  $3-OCH_3$ . On the contrary,  $4-OCH_3$  is not adsorbing which supports the above mentioned idea about the dominant role of the enhanced resonance in a similar case.

#### Conclusions

The present application of the Hammett equation to TLC has shown substantial deviations to higher  $R_M$  values from the corresponding plots which are more important for deriving conclusions about the adsorption pattern than the values of  $\rho$ .

### Acknowledgements

This study was supported by the National Research Fund, Bulgaria.

#### References

- 1 M. Palamareva, M. Haimova, J. Stefanovsky, L. Viteva and B. Kurtev, J. Chromatogr., 1971, 54, 383.
- 2 M. D. Palamareva and I. D. Kozekov, J. Chromatogr., 1992, 606, 113.
- 3 E. Soczewiński, J. Chromatogr., 1987, 388, 91, and the refs. cited therein.
- 4 L. R. Snyder, *Principles of Adsorption Chromatography*, Marcel Dekker, New York, 1968.
- 5 L. R. Snyder and J. J. Kirkland, Introduction to Modern Liquid Chromatography, Wiley, New York, 2nd ed., 1979.
- 6 L. R. Snyder, in *High-performance Liquid Chromatography*, ed. Cs. Horváth, Academic Press, New York, 1983, vol. 3, p. 157.
- 7 L. R. Snyder, J. L. Glajch and J. J. Kirkland, *Practical HPLC Method Development*, Wiley, New York, 1988.
- 8 M. Palamareva, I. Kozekov and I. Jurova, J. Chromatogr. A, 1994, 670, 181.
- 9 N. S. Isaacs, *Physical Organic Chemistry*, Longman, Harlow, 1987.
- 10 M. D. Palamareva, B. J. Kurtev and I. Kavrakova, J. Chromatogr., 1991, 545, 161.
- 11 M. D. Palamareva and H. E. Palamarev, J. Chromatogr., 1989, 477, 235.
- 12 E. Soczewiński, Anal. Chem., 1969, 41, 179.
- 13 S. N. Baranov, Zh. Obshch. Khim., 1962, 32, 1230.
- 14 L. R. Snyder, M. D. Palamareva, B. J. Kurtev, L. Z. Viteva and J. N. Stefanovsky, J. Chromatogr., 1986, 354, 107.
- 15 M. D. Palamareva, J. Chromatogr., 1988, 438, 219.
- 16 Y. C. Young, J. Chromatogr., 1977, 130, 392.

Paper 5/05605E Received 23rd August 1995 Accepted 21st November 1995