Use of a phosphorylated spin trap to discriminate between the hydroxyl radical and other oxidising species

Jean-Louis Clément,^b Bruce C. Gilbert,^{*,a} Win F. Ho,^a Natalie D. Jackson,^a Maurice S. Newton,^a Stephen Silvester,^a Graham S. Timmins,^{†,a} Paul Tordo^b and Adrian C. Whitwood^a

^a Department of Chemistry, University of York, Heslington, York, UK YO10 5DD

^b Laboratoire Structure et Réactivité des Espèces Paramagnétiques, URA-CNRS 1412, Université de Provence, 13397 Marseille Cedex 20, France

The spin-trap 5-diethoxyphosphoryl-5-methyl-1-pyrroline *N*-oxide (DEPMPO) is shown to provide a simple method to distinguish free-radical reactions which lead to the production of 'OH from those which proceed *via* one-electron transfer followed by hydration or nucleophilic substitution of another adduct. In the first case, only an 'OH adduct is detected; in the latter, signals from the hydroxyl adduct (labelled with ¹⁷O when H_2 ¹⁷O is employed) are accompanied by a second signal believed to result *via* internal trapping of a radical formed from an intermediate radical cation. This provides a potentially useful mechanistic probe, for example for use in biochemical systems.

Introduction

Developments in the design of spin-traps have substantially increased the range and nature of the potential applications of EPR spectroscopy to free-radical chemistry. This is particularly true for biochemical systems and other experiments in which only minute amounts of material are available and for which only particularly low steady-state radical concentrations are generated. Nitrones are particularly effective spin-traps¹⁻³ and the cyclic nitrone 5,5-dimethyl-1-pyrroline *N*-oxide, DMPO (1)

especially, has proved invaluable *via* its ability to react with short-lived free-radicals (R[•]) to give relatively long-lived adducts (2) whose parameters [especially $a(\beta$ -H)] are characteristic of the type of initial radical (*i.e.* oxygen-, sulfur- or carbon-centred species). The hydroxyl adduct (3) is particularly well characterised [with, in water, a(N) = a(H) = 1.495 mT].

However, it is also now very well established that caution must be exercised when interpreting the results of EPR experiments involving these (and other) spin-traps since several other routes exist whereby apparent radical-adducts may arise. These include, for example, the result of *nucleophilic attack* on the nitrone followed by one-electron oxidation (the so-called Forrester–Hepburn mechanism⁴) and the '*inverse*' *spin-trapping* process whereby one-electron oxidation of a nitrone to a radical cation is followed by nucleophilic attack [see *e.g.* reactions (1) and (2), respectively which have been recently described by Eberson and co-workers^{5,6}].

Following preparation of a new range of phosphorylated spin-traps [see e.g. DEPMPO (4), for which longer-lived

Fig. 1 EPR spectrum of the HO' adduct of DEPMPO (7) obtained on photolysis of a solution of H_2O_2 (10 mM) in the presence of DEPMPO (50 mM)

hydroperoxyl (HO₂) adducts have been described]⁷ we have examined their potential ability for distinguishing different types of reaction in a series of experiments designed to differentiate between spin-adducts formed from free-radical pathways, electron-transfer chemistry or spin-adduct substitution reactions. It should be noted that traps such as **4** also have the potential to provide extra information as a result of expected differences which should arise in hyperfine splittings for the discrete *cis* and *trans* isomers [*e.g.* (**5**) and (**6**) which have been reported for the DEPMPO adducts of HO₂[•]].⁷

In situ photolysis ($\lambda > 250$ nm) of a hydrogen peroxide solution (10 mM) in the presence of 4 (50 mM) is found to give rise to a very strong and characteristic EPR spectrum (shown in Fig. 1) with hyperfine splittings of a(N) 1.35, a(H) 1.35, a(P) 4.75 mT; g 2.0061, and assigned to the *trans* hydroxyl adduct 7 (*cf.* also ref. 8). The same spectrum was also obtained in experiments in the presence of 4 (10 mM) involving the Fenton or related reactions (with Fe^{II}SO₄ 1 mM, H₂O₂ 5 mM, pH 7.4) and the related Ti^{III}-H₂O₂ system (Ti^{III}Cl₃ 1 mM, H₂O₂ 5 mM, pH 7.4), as well as experiments with Cu^{II}-H₂O₂ and ascorbate (Cu^{II}-

[†] Current address: EPR Center, Department of Radiology, Dartmouth Medical School, Remsen, 7785 Hanover, NH 03755, USA.

Fig. 2 EPR spectrum obtained on reaction of DEPMPO (4 mM) with $Cu^{II}SO_4$ (1 mM). Signals are assigned to the 'HO'' adduct (7) (\blacktriangle) and a carbon-centred radical adduct (10) (\Box).

 SO_4 bis(1,10-phenanthroline) 1 mM, H_2O_2 2 mM, ascorbate 2 mM, pH 7.0) in which Cu^I is believed to be produced.⁹ We believe that in all cases, this provides good evidence for the production of the hydroxyl radical.

In a number of other systems (in which DMPO is found to give simply the 'HO' adduct') a different spectrum was obtained from DEPMPO, comprising a mixture of the adduct 7 and a second species with parameters a(N) 1.45, a(H) 2.20, a(P)4.60 mT and g 2.0061 which is evidently characteristic of the trapping of a carbon-centred radical [for which a(H) values are typically in the range 2.0–2.4 mT^{2,3}]. In all experiments a ratio of *ca*. 1:1 was observed. This mixture of signals was obtained in experiments with DEPMPO (typically 4 mM) in the presence of Fe^{III}Cl₃ (4 mM) or Cu^{II}SO₄ (1 mM) or the high-valent manganese species **8** (12 μ M); an example is given in Fig. 2. When the

same experiments were carried out in ¹⁷O enriched water, only the adduct 7 showed evidence of extra splitting $[a(^{17}O) 0.42 \text{ mT}]$ associated with coupling to a β -¹⁷O (*i.e.* an apparent H¹⁷O' adduct). This observation suggests that hydration (with H₂¹⁷O) of a DEPMPO radical cation intermediate has occurred. In contrast, the lack of an observable ¹⁷O splitting in the second radical-adduct (any splitting must be less than 0.05 mT) supports our conclusion that this is not a *cis*-hydroxyl adduct, but a carbon-centred adduct.

When SO_4 . was generated in the presence of DEPMPO (50 mm) [either by photolytic decomposition of sodium peroxydisulfate (10 mm) ($\lambda > 250$ nm) or reaction of potassium peroxymonosulfate (10 mM) with 2 mM $Fe^{II}SO_4$ or $Ti^{III}Cl_3$] a first-formed adduct was observed [a(N) 1.35, a(H) 0.92, a(P)]4.58, a(γ-H) 0.16, a(γ-H) 0.04, a(γ-H) 0.02 mT; g 2.0061, see Fig. 3] which is attributed to the appropriate (trans) adduct (9) of the sulfate radical anion (cf. our detection of SO_4 - adducts of DMPO¹⁰). This adduct decayed (t_2 ca. 280 s at 293 K), to be replaced by a mixture of the two radicals noted above for the high-valent metal-ion species. When this experiment was carried out in ¹⁷O-enriched water only the hydroxyl adduct 7 showed evidence of enrichment. The behaviour of the SO₄. adduct can be understood in terms of the formation of a radical cation and its hydration to give the 'HO'' adduct (trans) 7 and, in addition, the second species. Since the HO-adduct 7 is evidently generated with trans stereochemistry, the mechanism for conversion of the SO₄⁻⁻-adduct 9 to the HO-adduct 7 must be via an S_N1 process.

(10 mM) in the presence of DEPMPO (50 mM). Signals are assigned to the SO₄^{•-} adduct of DEPMPO (9). The inset shows a portion of the spectrum recorded at lower modulation to reveal extra splittings due to the γ -protons.

1.0 mT

Since the final spectrum obtained via reaction of SO_4 . matches precisely those obtained for the high-valent metal ions described above, we conclude that in all of these examples, radical cation formation is involved and the detection of the two radicals is diagnostic of whether a reaction system produces HO' or a one-electron oxidant.[‡] We also observed that the ratio of 'HO'' to carbon-centred radical adducts is independent of the concentration of DEPMPO and also the nature of the oxidant. Hence, the formation of the carbon-centred radical is also believed to be a unimolecular process and therefore presumably involves an intramolecular rearrangement. We propose this proceeds via intramolecular electron-transfer to give a phosphorus/oxygen-centred radical cation which would be expected to deprotonate readily from the α -carbon of the ethyl group (see e.g. ref. 11). This generates a species which has both a carbon-centred radical and a nitrone double bond and therefore might undergo a self-trapping reaction to yield a bicyclic species. Given that the spectrum observed is inconsistent with the bicyclic aminoxyl (as this would be expected to have a very small β-proton splitting since this proton is constrained to lie almost in the plane of the N-O' bond) but is characteristic of a cis carbon-centred adduct (cf. ref. 12 in which splittings for cis aminoxyls are compared with those of the *trans*), we ascribe it to 10 formed by hydrolysis of the bicyclic aminoxyl species (see Scheme 1).

[‡] Note that this behaviour does not reflect a relative ease of oxidation of DEPMPO given the anodic peak potentials as determined electrochemically in CH₃CN: DMPO $E_a^{ox} = 1.87$ V; DEPMPO $E_a^{ox} = 2.24$ V (vs. NHE).⁷

Reactions under similar conditions using the closely related phosphorylated spin-trap 11 (OPMPO), for which such intra-

molecular reaction is precluded, gave only the HO[•] adduct 12 under all sets of conditions referred to above. This is as expected on the basis of the proposed mechanism described above.

Acknowledgements

We gratefully acknowledge the provision of financial support for studentships by the AICR (W. F. H.), EPSRC (S. S.), Unilever (M. S. N.), Interox (N. D. J.); for a fellowship by the YCRC (G. S. T.) and for instrumentation by the EPSRC and AICR.

References

- 1 E. G. Janzen, Acc. Chem. Res., 1971, 4, 31.
- 2 G. R. Buettner, Free Radicals Biol. Med., 1987, 3, 259.
- 3 M. J. Davies and G. S. Timmins, Adv. Spectrosc., 1996, 25, 217.
- 4 A. R. Forrester and S. P. Hepburn, *J. Chem. Soc.* (C), 1971, 701.
 5 L. Eberson, J. J. MacCullough and O. Persson, *J. Chem. Soc.*, *Perkin Trans.* 2, 1997, 133.
- 6 L. Eberson, J. Chem. Soc., Perkin Trans. 2, 1992, 1807.
- 7 B. Tuccio, R. Lauricella, C. Fréjaville, J.-C. Bouteiller and P. Tordo, J. Chem. Soc., Perkin Trans. 2, 1995, 295.
- 8 C. Fréjaville, H. Karoui, B. Tuccio, F. Le Moigne, M. Culcasi, S. Pietri, R. Lauricella and P. Tordo, *J. Chem. Soc.*, *Chem. Commun.*, 1994, 1793.
- 9 B. C. Gilbert, G. Harrington, G. Scrivens and S. Silvester, in *Free Radicals in Biology and Environment*, ed. F. Minisci, Kluwer Academic Publishers, Netherlands, 1997, pp. 49–62.
- 10 M. J. Davies, B. C. Gilbert, J. K. Stell and A. C. Whitwood, J. Chem. Soc., Perkin Trans. 2, 1992, 333.
- 11 B. C. Gilbert, P. A. Kelsall, M. D. Sexton, G. D. G. McConnacchie and M. C. R. Symons, J. Chem. Soc., Perkin Trans. 2, 1984, 629.
- 12 F. Le Moigne and P. Tordo, J. Org. Chem., 1994, 59, 3365.

Paper 8/04098B Received 1st June 1998 Accepted 29th June 1998