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An exhaustive search of C36H6 and symmetrical C36F6 isomers based on the cylindrical C36 fullerene predicts the
same D3h structure to have the lowest energy in each series. Some competitive structures of C36H6 have only trivial
symmetry but share the feature of 1,4 pairing of addends with the best isomer. Isostructural C36X6 (X = H, F)
molecules are predicted to have constant energy difference. All 84 000 geometry optimisations reported here used
the DFTB model, with checking of the new parameters for C/F and F/F interactions against LDA and GGA full
density-functional methods.

1 Introduction
A number of hydrogenated and halogenated fullerene cages
have been characterised in recent years 1–4 and parallels in the
extent and pattern of addition have been noted for both C60 and
C70 derivatives. For example, C60H18 and C60F18 are thought to
have the same C3v structure.5 Some theoretical work on the
energies of cages has lent support to this idea, but has explored
only a limited number of cases.6 In order to decide if the
observed parallels are part of a more general trend, it is clearly
desirable to consider a much larger test set.

Extensive comparisons of optimised structures and energies
for molecules as large as this are potentially expensive but for-
tunately an economical and semi-quantitatively accurate
method for their computation is already available. The DFTB
(density-functional tight-binding) method combines the econ-
omy of tight-binding with an accuracy approaching that of full
density-functional theory. It requires parameterisation for each
chemical combination of elements, but this can be done in a
straightforward way. The DFTB method has been used success-
fully, without further adjustment, for fullerenes and other
carbon cages,7–10 heteronuclear BN cages 11,12 and hydro-
carbons.13 Here we report the determination of the parameters
necessary to extend the method to fluorocarbons and we use
DFTB to identify low-energy forms of C36H6 and C36F6 so that
comparisons in energy and structure can be made across the
whole range of isomers.

Our test case for comparison of isostructural CnHm and CnFm

isomers is the C36 cage and its addition compounds C36X6. C36

has become a topical small fullerene, with the claim that it may
be possible to prepare it in the form of a tightly bound solid; 14

the building block for proposed (C36)∞ solids 15 is the cylindrical
D6h fullerene which may also exhibit its characteristic hexa-
valence by picking up six hydrogen atoms. An extensive
computational study of hypothetical C36H6 isomers identified a
low-energy D3h candidate for this molecule.15 In that work,
some 1885 isomeric C36H6 isomers were optimised with DFTB
and this set is here extended for complete coverage of all 82 123
possibilities. In the present paper, we discuss the survey of
C36H6 isomers and explore the H/F parallels, taking as the basis
for comparison the set of all 1885 C36H6 and C36F6 cages that
are based on the cylindrical fullerene and have any symmetry
higher than the trivial C1.

The structure of the paper is as follows. Section 2 describes
the determination of C/F and F/F parameters for the DFTB
model. These are tested against full density-functional calcu-
lations and experimental results for small fluorocarbons in

Section 3. Section 4 describes the generation of all possible
C36X6 addition patterns for cylindrical C36. In Section 5, the
results of the DFTB calculations are described, first for the full
set of C36H6 isomers and then for the H/F comparison set.
Finally, they are compared with full DFT calculations on a
small number of cage isomers.

2 Determination of parameters
The DFTB method is based on a linear combination of atomic
orbitals (LCAO) Ansatz for the Kohn–Sham molecular orbitals
ψi as a combination of basis functions φν centred at the atomic
sites 16,17 [eqn. (1)]. Several atomic orbitals φν may correspond to

ψi = o c i
ν φv (1)

any one site. For C and F sites these are 2s and 2p functions,
each represented as a contraction of Slater-type orbitals. The
expansion coefficients c i

ν in eqn. (1) are found by solving the
Kohn–Sham secular problem given in eqn. (2), which is

o
µ
 c i

µ(Fµν 2 εiSµν) = 0 ;ν (2)

expressed in terms of the Kohn–Sham matrix elements Fµν =
〈φµ |T̂ 1 Veff |φν〉 and overlap matrix elements Sµν = 〈φµ |φν〉. The
effective potential Veff is a sum of atomic contributions, each
determined by an LDA–DFT calculation on a fictitious spher-
ical pseudo-atom, subjected to an additional potential (r/r0)

n.
This extra potential was introduced by Eschrig 18 to improve
LCAO–LDA band-structure calculations on metals and has a
beneficial effect on quantitative binding energies 13 through its
compression of the basis functions and electron densities of the
pseudo-atoms. The valence wave functions and the effective
potential are both taken from the pseudo-atomic calculation.
With this approximation,19 it is necessary to consider only
two-centre elements of the Kohn–Sham matrix in eqn. (3),





〈φµ|T̂ 1 Vj 1 Vk|φν〉 for j ≠ k
Fµν = εµ for µ = ν (3)

0 otherwise

containing the effective potentials Vj, Vk of the atoms j and k
that carry functions φµ and φv. In the case of j = k, the one-
particle energies of the free atom εµ are used, giving the correct
reference energy in the dissociation limit. Restriction to two-
centre terms leads to a Kohn–Sham matrix similar to empiric-
ally parameterised non-orthogonal tight-binding schemes, but
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Table 1 Bond lengths R (Å), bond angles (8) and atomisation energies E a (kJ mol21) of small molecules CxFy. Experimental values of geometric
parameters are taken from ref. 28. The LDA–LSDA correction for carbon is 1.21 eV (calculated with AllChem, VWN, DZVP) and 1.12 eV
(calculated with Servedio’s program 26 using a Perdew-Zunger potential.27 For fluorine, the correction can be calculated (for technical reasons) only
with the latter code, and is 0.38 eV. For carbon, the AllChem value is used

Geometric parameters Atomisation energies

Molecule

F2

CF4

C2F2

C2F4

C2F6

C6F6

RFF

RCF

RCC

RCF

RCC

RCF

/FCF

RCC

RCF

/CCF

RCC

RCF

DFTB

1.393
1.328
1.205
1.246
1.319
1.319
112.0
1.520
1.347
111.9
1.392
1.321

LDA

1.393
1.326
1.203
1.285
1.333
1.317
113.8
1.545
1.332
111.5
1.393
1.326

GGA

1.461
1.356
1.200
1.304
1.340
1.345
113.3
1.591
1.363
109.9
1.405
1.365

Experiment

1.412
1.323

1.310
1.319
112.4
1.545
1.326
109.8

E a
DFTB

385.9
2871.6
2154.2

3358.9

4606.2

7359.0

E a
LDA

323.6
2476.6
1996.8

3083.7

4498.5

7171.2

E a
GGA

223.4
2133.9
1889.5

2765.3

3568.5

6592.2

all parameters are obtained here from LDA–DFT calculations.
After solving the secular equations for the single particle ener-
gies εi and eigenstates of the system, the total energy is written
as a sum of energies of occupied Kohn–Sham states and a
repulsive, short-range, two-particle interaction U 13,20 [eqn. (4)].

E =  Σ
occ

i
εi 1 ¹̄

²
Σ

j ≠ k
Ujk(Rjk) (4)

Fig. 1 Parameterisation of F/F and C/F potentials in DFTB. The
curves for the two test molecules show the bond length dependence of
LDA energies (×), sums of one-particle Kohn–Sham energies (e) and
full DFTB energies including the fitted repulsive potentials (s).

Following ref. 13, the repulsive energies for the different atom-
type combinations are derived as universal, short-range poten-
tials by fitting the curves of the differences between the sum of
energies of occupied Kohn–Sham states and LDA cohesive
energy for a reference molecule.

We applied this scheme for carbon and fluorine. The radius r0

for fluorine was chosen in the same way as for carbon 13

[r0(C) = 2.7 a0, r0(F) = 2.5 a0], and is about twice the covalent
radius of the atom. The reference molecules used for fitting the
repulsive potential were F2 and CF4. For the carbon–carbon
and carbon–hydrogen interactions, the data given in ref. 13 were
used.

Fig. 1 presents curves for the bond-length dependence of
LDA reference energies, sums of one-particle Kohn–Sham
energies and DFTB energies in the new parameterisation.

3 Benchmark calculations
Table 1 reports the results of a comparison between DFTB, two
self-consistent DFT methods (LDA and its gradient-corrected
form GGA) and experiment for six test molecules. The full
DFT calculations were performed with the program package
AllChem.21 In what follows, LDA designates calculations
performed using a Vosko–Wilk–Nusair exchange-correlation
functional,22 a DZVP basis set 23 and an A2 auxiliary basis
set, whereas GGA calculations are those performed with
the Becke88-LYP functional,24,25 a TZVP basis set 23 and
AllChem’s GEN-A3 automatic generator for auxiliary basis
functions (except for C36F6 where the A2 auxiliary basis set
was used).

The reference molecules (F2, CF4, C2F2, C2F4, C2F6 and C6F6)
are chosen to sample C–F interactions for carbon in all three
hybridisations. In Table 1, the geometries are compared with
DFTB calculations in the present C/F and F/F parameteris-
ation. The atomisation energies in the same table are obtained
with LSDA-corrected total energies of free spherical atoms.26,27

The overall picture from Table 1 is encouraging as it shows that
the new DFTB parameters give bond lengths and angles in
excellent agreement both with experiment 28 and with more
sophisticated DFT calculations.

DFTB atomisation energies are generally close to the values
from LDA calculations (with errors of <10% for all but CF4

and F2). Both DFTB and LDA values of these quantities could
be improved, as shown by the comparison with the more
sophisticated GGA model.

4 Generation of the isomers
The DFTB model including the new parameters was used in a
complete survey of all possible addition patterns C36X6 formed
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by decoration of the D6h fullerene (36 :15 29), the cage impli-
cated in the explanation of the experiments on C36 solids.14

C36X6 isomers were found by labelling the atoms of the cage
and then generating all 36!/(30!6!) binary sequences made up of
thirty 0 digits and six 1 digits, the positions of the latter corre-
sponding to the locations of the addends on the cage. Each of
the 1 947 792 codes was reduced to its lexicographically small-
est value and the symmetry of the corresponding isomer found
by applying the 24 projection operators of the D6h point group.
All repeated codes were filtered out of the original list and the
resulting unique isomers sorted into point group sets. The
82 123 C36X6 isomers produced in this way are classified by
maximal point group as 3 D3h, 3 D3d, 3 C6v, 4 C3v, 21 C2h, 46
C2v, 4 C3, 57 Ci, 439 C2, 1305 Cs and 80 238 C1.

The subset of C36H6 with non-trivial symmetry was treated
in our previous paper,15 and here the calculations were exten-
ded to include the C1 isomers that in fact form the majority of
the possibilities. Calculations on C36F6 were restricted to the
smaller set of 1885 symmetrical isomers.

Fig. 2 Distribution of relative energies of isomers C36H6 based on the
cylindrical fullerene cage. The full curve shows the distribution for all
symmetries based on a 5 kJ mol21 bin size. The dotted and inset curves
show the distribution for the 2.3% of isomers with non-trivial
symmetry.

Starting coordinates for each isomer were generated as fol-
lows. Coordinates for the carbon atoms were obtained by
DFTB optimisation of the bare C36 fullerene itself, with the
origin located at the centre of the cage. Coordinates of the
addends were found by extending the radial vectors of the car-
bon atoms. Initial C–X bond lengths were set at 1.10 Å for
hydrogen and 1.33 Å for fluorine. Full DFTB optimisation was
then performed. The conjugate-gradient technique was used,
and generally gave convergence to the optimum structure with-
in 60–100 steps.

All C36H6 and all but 1% (17) of C36F6 isomers converged to
local minima without change of bonding topology. The 17
cases of C36F6 which showed dissociation (C–F overlap popul-
ation <0.3) are all intrinsically radicaloid, involve isolated sp2

carbons, and are excluded from the comparisons made
below.

5 Results
C36H6

Energies of the optimised structures for the full set of C36H6

isomers span a range of 650 kJ mol21, and as Fig. 2 shows,
are distributed roughly symmetrically over this interval. The
subset of symmetrical isomers covers almost exactly the same
range (Fig. 2, inset), has a similar distribution and contains the
globally optimal D3h C36H6 molecule discussed in our earlier
paper.15 Although the C1 set does not contain the best candi-
date, many of the low-energy isomers, including three of the
best six, are without symmetry (Table 2, Fig. 3). The best iso-
mer is characterised by a D3h pattern of 1,4-addition in three
disjoint equatorial hexagons of C36. It has been argued 15 that
the C36 fullerene can use these six bonding sites to behave as a
‘superatom’ forming strong dimers, oligomers and solids. Many
of the low-energy isomers, including all of the best six, include
at least two equatorial 1,4 pairs.

Comparison of the symmetrical and full sets of calculations
suggests two conclusions. One is that symmetry restrictions can
be risky in a search for low-energy isomers; in the present case
the symmetric search captures the global minimum but misses
47 C1 structures out of a total of 82 within the first 100 kJ
mol21. The second is that, when low-energy structures have

Fig. 3 Six energetically favoured isomers of C36H6. Each isomer is shown from two orthogonal views and labelled by molecular point group and
energy relative to the best (D3h) isomer. The same six topologies are used for the comparative study of C36F6 isomers, as reported in Table 2.
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been identified, they may be rationalised by rather simple
chemical rules that cut across symmetry classifications. In this
case the rule is a preference for 1,4-addition in hexagons, which
is also found elsewhere in fullerene chemistry.30

C36F6

Calculations on the 1885 fluorofullerene isomers give an
energy range of 657 kJ mol21, almost exactly equal to that of
the hydrofullerenes. Significantly, the same favoured D3h addi-
tion pattern is predicted for both C36F6 and C36H6. The H/F
parallel is much more general than this, as is shown by Fig. 4,
where the relative energies of C36H6 and C36F6 cages are plotted.
When the energies are taken relative to that of the best isomer
in the series, a striking correlation is observed, with the slope of
almost exactly unity implying a constant difference between
isostructural C36H6 and C36F6 isomers. In other words, the
energy cost of rearranging six C–H or six C–F bonds from their
optimal D3h disposition is the same, according to the DFTB
model.

This parallel can be extended to the HOMO–LUMO gaps
(Fig. 5), where the correlation is poorer (r2 = 0.889) but is still
marked when a large gap is present. Although gap and stability
are not quantitatively correlated in these molecules, the correl-
ation is best for a large gap, and it is perhaps significant that the
favoured D3h isomer has by far the largest gap (2.3 eV in both
cases).

Comparison with full DFT calculations

The focus of the current application is on isomer energy differ-

Fig. 4 Energies of hydrogenated and fluorinated fullerenes C36X6. All
isomers with non-trivial symmetry are compared on the scatterplot
taking DFTB energies relative to the appropriate D3h isomer, with the
regression line [∆E(C36F6)/kJ mol21] = a[∆E(C36H6)/kJ mol21] 1 b
(a = 1.04, b = 4.69 and correlation coefficient r2 = 0.9902).

Table 2 Relative energies of C36X6 isomers (kJ mol21). The selected
cages are the six C36H6 isomers of lowest energy according to DFTB
calculations and their C36F6 analogues. Energies obtained from single-
point LDA and GGA calculations are shown for comparison. All
energies are given relative to the optimal D3h isomer in both series. The
optimised structures of the C36H6 isomers are illustrated in Fig. 3

C36H6 C36F6

1
2
3
4
5
6

G

D3h

C2v

C1

Cs

C1

C1

EDFTB

0.0
16.6
38.8
40.7
41.8
42.4

EELDA

0.0
20.1
42.8
43.6
48.9
44.9

EGGA

0.0
32.9
48.4
44.3
56.9
51.7

EDFTB

0.0
18.8
42.2
49.0
51.9
43.2

ELDA

0.0
8.9

12.9
48.1
46.1
32.5

EGGA

0.0
12.1
19.2
48.5
49.8
34.7

ences, and an excellent correlation has been observed between
DFTB energies of C36H6 and C36F6. This is in line with
chemical expectations. However, the density in a tight-binding
method is not calculated in a self-consistent way and so DFTB
could, in principle, fail to account correctly for charge separ-
ation in polar bonds between elements of widely different
electronegativity. In order to check whether incipent ionic char-
acter in the C–F bond has produced systematic errors in the
DFTB model, fully self-consistent DFT calculations were per-
formed for selected isomers employing both LDA and GGA
methods. Single-point calculations were performed on the six
C36H6 isomers of lowest energy according to the DFTB model,
and on their isostructural C36F6 analogues. In each case, the
energy was calculated at the higher level of theory but using the
DFTB-optimised structure.

Calculation of fixed-point energies at a higher level of theory
using geometries optimised at a lower level is, of course, a
common practice. Here it can be justified by our own tests
(Section 2) and other results for carbon clusters 13,15 which show
that DFTB and LDA geometries are in general close to each
other and to experiment, where available (Table 1, see also ref.
31). Single-point calculations with GGA methods at LDA or
similar geometries give the best mixture of energy and
structure.31

As Table 2 shows, the overall order of isomers is similar in all
three methods with the exception of isomer 3 of C36F6. Relative
energies differ by at most ≈30 kJ mol21 but more usually by
much less. The systematically higher energies of the less
stable isomers of C36F6 in the DFTB model suggest an over-
estimation of the stability of the best (D3h) cage by ≈10 kJ
mol21.

6 Conclusions
This paper reports the results of some 84 000 geometry optim-
isations. An extensive survey of all possible C36H6 and all sym-
metrical C36F6 isomers has confirmed that the thermodynamic-
ally favoured structure in each case has D3h symmetry,
accounted for by a simple chemical rule of 1,4-addition which
also rationalises the other low-lying isomers of lower symmetry.
The proposed tendency to parallel energy for isostructural
hydrogenated and fluorinated fullerenes is confirmed by this
large set, suggesting that it may be general amongst fullerene
derivatives. The new parameterisation of DFTB opens up the
possibility of further exploration of the factors influencing
fluorofullerene stability.

Fig. 5 HOMO–LUMO gaps of hydrogenated and fluorinated fuller-
enes C36X6. All isomers with non-trivial symmetry are represented on
the scatterplot where ∆ is the DFTB-computed gap in eV and the dot-
ted line of unit slope is drawn as a guide to the eye.
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