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Examples of SN2 reactions with small or non-existent
energy barriers
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The potential energy profiles of the following SN2 reactions were obtained using the G2 quantum chemical method:
H3N 1 CH3OH2

1→1H3NCH3 1 H2O, H2O 1 CH3FH1→1H2OCH3 1 FH and H3N 1 CH3FH1→1H3NCH3 1 FH.
The activation energy for the first is only ∆E 8 = 6.9 kJ mol21, while the others have no energy barrier. These findings
are discussed in the light of Marcus theory.

Introduction
In the preceding paper we reported results from quantum
chemical calculations on the following cationic identity SN2
reactions [eqn. (1)], 1 for which we found that the barrier heights

A 1 CH3A
1→1ACH3 1 A (A = NH3, H2O, HF) (1)

increase linearly with the proton affinity of the nucleophile A.
In this paper we report new data from quantum chemical calcu-
lations of the reactions in eqns. (2)–(4) where the nucleophile
and nucleofuge (leaving group) are different.

H3N 1 CH3OH2
1→1H3NCH3 1 H2O (2)

H2O 1 CH3FH1→1H2OCH3 1 FH (3)

H3N 1 CH3FH1→1H3NCH3 1 FH (4)

We want to examine if it is possible to extract information
about the barrier heights of these reactions from the corre-
sponding identity reactions using Marcus theory.2,3 Previously,
it has been reported that the barriers of anionic SN2 reactions,
where the nucleophile and the nucleofuge are different, can be
quite precisely estimated using Marcus theory.4–6 One import-
ant difference between a cationic and an anionic SN2 reaction
is that in the former case the nucleophile is much weaker. In
addition, reactions (2)–(4) are quite exothermic, so it would
be of great interest to see if this affects the validity regime of
Marcus theory.

Methods
Quantum chemical calculations were carried out using the pro-
gram system GAUSSIAN 94.7 The methods used were Møller–
Plesset perturbation theory to second order (MP2) 8 with the
6-31G(d,p) basis set,9 and the compound G2 method.10 Only
the G2 results are reported here. More detailed data of the MP2
and G2 calculations may be obtained from the author upon
request.

All critical points found (reactants, transition structures,
intermediates and products) of the potential energy surface
were characterized by complete optimization of the molecular
geometries [MP2/6-31G(d,p)]. Harmonic frequencies were
obtained by diagonalizing the mass-weighed Cartesian force
constant matrix, calculated from the analytical second deriv-
atives of the total energy (the Hessian). Harmonic frequencies
obtained in this manner were used to calculate the zero point
vibrational energies (zpve).

Results and discussion
Fig. 1 shows a schematic potential energy diagram of a general
gas phase cationic SN2 reaction.11 It has the characteristic
double well form found for a wide variety of ion–molecule
reactions. The two wells correspond to the stable ion–neutral
configurations, A ? ? ? CH3B

1 and ACH3
1 ? ? ? B, which are

usually referred to as the reactant complex and product
complex, respectively. The transition structure, A ? ? ? CH3 ? ? ?
B1, is located between these two stable ion structures. Fig. 1
also includes definitions of the potential energy parameters
necessary for the following discussion.

According to Marcus theory the potential energy barrier of
a reaction—formulated in eqn. (5) for a general cationic SN2

A 1 CH3B
1→1ACH3 1 B (5)

reaction—may be expressed with reference to the potential
energy barriers of the two identity reactions [eqn. (1) and (6)]
(A ≠ B) and the reaction energy.

B 1 CH3B
1→1BCH3 1 B (6)

The potential energy barrier, ∆E‡, the energy difference
between the transition structure, [A ? ? ? CH3 ? ? ? B]1, and the
reactant complex, A ? ? ? CH3B

1, is then given by eqn. (7).12 In

∆E‡ = ∆E
8
‡ S1 1

∆E 8

4E
8
‡
D2

(7)

this equation the reaction energy, ∆E 8 is the energy difference
between the product and reactant complexes involved, i.e.
between B ? ? ? CH3A

1 and A ? ? ? CH3B
1. The so-called intrinsic

Fig. 1 Schematic potential energy diagram for a general cationic SN2
reaction, including definitions of the energy parameters used.
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Fig. 2 Potential energy profiles of reaction (3) (left panel) and reaction (4) (right panel). The ordinate axis corresponds to the energy obtained
with MP2/6-31G(d,p), but without zero point vibrational energy correction. Each data point was obtained by subjecting the system to energy
minimization, keeping the indicated reaction co-ordinate fixed as explained in the text.

barrier, ∆E
8
‡, is given by eqn. (8), where ∆E

8
‡,AA and ∆E

8
‡,BB are

the barriers for the identity reactions (1) and (6), respectively.

∆E
8
‡ = ¹̄

²
(∆E

8
‡,AA 1 ∆E

8
‡,BB) (8)

In the case of the nucleophilic displacement of water by
ammonia in protonated methanol, reaction (2), it was possible
to locate the minima corresponding to the complexes
H3N ? ? ? CH3OH2

1 and H3NCH3
1 ? ? ? OH2. Both these struc-

tures have the features typical of species where the interaction
between the ionic and the neutral part to a large degree is due
to ion–dipole and ion–induced dipole forces. For example, the
C–O bond of 1.567 Å in the H3N ? ? ? CH3OH2

1 complex is
0.051 Å longer than in free CH3OH2

1, while the C–N bond of
1.516 Å in the H3NCH3

1 ? ? ? OH2 complex is 0.006 Å longer
than in free CH3NH3

1. Although the interaction is mainly
electrostatic, there is a small but noticeable degree of covalent
interaction between H3N and CH3OH2

1 in the H3N ? ? ? CH3-
OH2

1 reactant complex. The bond distances are r(C–O) = 1.756
Å and r(C–N) = 2.264 Å. The potential energy barrier (Table 1)
measured from the reactant complex is only ∆E 8 = 6.9 kJ mol21.
This is in good qualitative agreement with Okada et al. who
have reported results of MP3/6-31G(d)//HF/3-21G calculations
for this reaction.13

From the intrinsic barriers of the identity reactions [eqn. (9)

H2O 1 CH3OH2
1→1H2OCH3 1 H2O (9)

and (10)] (see the preceding paper), we obtain [eqn. (8)] an

H3N 1 CH3NH3
1→1H3NCH3 1 NH3 (10)

intrinsic barrier of ∆E
8
‡ = 65.1 kJ mol21 for reaction (2). We are

now in the position of using Marcus theory [eqn. (7)] when
we also introduce the G2 value for the reaction exoergicity,
∆E 8 = 2148 kJ mol21. This gives an estimated barrier of 12.1
kJ mol21, which should be compared to the G2 barrier of
∆E 8 = 6.9 kJ mol21. Although the deviation is not large, it

Table 1 G2 reaction energies

Energy/kJ mol21

Reaction ∆E rxn ∆E 8,A ∆E 8,B ∆E‡ ∆E 8 ∆E
8
‡

NH3/H2O (6)
H2O/HF (7)
NH3/HF (8)

160.2
151.6
311.8

45.2
—
—

33.0
30.0
25.5

6.9
—
—

148.0
—
—

65.1 a

24.4 a

49.3 a

a Taken from ref. 1.

implies that simple Marcus theory has some limitations in this
case. The reason for this may be that in Marcus theory, energy
is truncated after the second order term, which may be
inappropriate in this case. Alternatively, and perhaps more
likely, the reaction requires the use of a two-dimensional
reaction co-ordinate.14–20

In the transition structure of reaction (2), H3N ? ? ? CH3 ? ? ?
OH2

1, an imaginary frequency of vibration, corresponding to
the antisymmetric vibration of the reaction co-ordinate, of
ν = 423i cm21 was found. This should be compared with the
values ν = 499i and 614i cm21 for reactions (9) and (10), respect-
ively, which reflects the lower and flatter TS region of reaction
(2).

Quite surprisingly to us, reactions (3) and (4) turned out to
be barrier-less. This means that the reactant complexes
H2O ? ? ? CH3FH1 [reaction (3)] and H3N ? ? ? CH3FH1 [reaction
(4)] do not exist as stable species, which also implies that there
are no SN2 transition structures on any of the two potential
energy surfaces. Despite serious attempts to locate the reactant
complexes and the transition structures they could not be
found. Potential energy scans were then performed. In the scan
for reaction (3), the distance O ? ? ? C was taken as the reaction
co-ordinate and it was varied in steps of 20.1 Å, starting from
the local minimum of the product complex 1H2OCH3 ? ? ? FH.
Redundant internal co-ordinates 21 were used, and the energy
was minimized with respect to all degrees of freedom, except
the reaction co-ordinate. The scan for reaction (4) was per-
formed analogously, using the distance N ? ? ? C as the reaction
co-ordinate. The scans give rise to the potential energy profiles
of Fig. 2. It is clear from these findings that reactions (3) and (4)
are without barriers. To the best of our knowledge these are the
first examples of SN2 reactions with this property.

It should be realized, however, that the absence of an energy
barrier does not necessarily imply absence of a free energy
barrier.13

Marcus theory was also applied to reactions (3) and (4). The
intrinsic barriers obtained from the identity reactions are
∆E

8
‡ = 49.3 kJ mol21 [reaction (3)] and ∆E

8
‡ = 24.4 kJ mol21

[reaction (4)]. Because stable reactant complexes do not exist on
the potential energy surfaces of the two reactions, ∆E 8 is not
defined, and eqn. (7) can therefore not be applied rigorously.
Instead we approximate this figure with ∆E 8 ≈ ∆E rxn. This
gives 2∆E 8 > 4∆E

8
‡, which means that the expression within

the parenthesis of eqn. (7) is negative for both reactions. The
outcome of this situation is that simple Marcus theory “breaks
down”; a result which is in good accord with the finding that
∆E 8 = 0.

According to Ingold the digit “2” in the term SN2 designates
the molecularity of the reaction, and not the kinetic order.22
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Molecularity is “a salient feature of the mechanism, meaning
the number of molecules undergoing covalency change”. We
therefore see that the apparently peculiar barrier-less reactions
reported here are still SN2 reactions in Ingold’s sense.

In conclusion, the results given here show that, for some
reactions, the combination of a moderate intrinsic barrier and
a large exothermicity result in a small or vanishing reaction
barrier.
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