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Investigation of a sample of 5436 fullerene isomers indicates a relationship between Kekulé structures and
the molecular orbital theory of these trivalent cages. In leapfrog fullerenes (those constructed by omnicapping
and dualising a fullerene parent), the edges of maximal Hückel π bond order define the Kekulé structure with
the maximum number of benzenoid hexagons (the Fries structure). For general fullerenes, the bond orders
rarely correspond exactly to a Kekulé structure: of 1812 C60 fullerene isomers, for example, only 23 have a
Hückel Kekulé structure.

Introduction
Fullerenes embrace a wide variety of potential shapes,
symmetries and electronic configurations,1 of which some are
systematically preferred according to experimental observation.
The present note explores one aspect of the connection between
fullerene molecular graphs and electronic structure: the defi-
nition of bond order in leapfrog fullerenes. Our aim is to shed
some light on the links between Hückel theory and Kekulé
structures for these prototypical closed-shell fullerenes.

Several regularities linking electronic structure and topology
have been identified for fullerenes, of which the most direct is
the leapfrog construction 2 of closed-shell 3 isomers C60 � 6k in
one-to-one correspondence with general fullerene parents
(C20 � 2k (k ≠ 1). The leapfrog isomer is obtained formally by
omnicapping the parent and then taking the dual, and the class
of leapfrogs has been shown to be identical with those obeying
the Fries stability criterion,4,5 i.e. leapfrog fullerenes Cn are
those that support a unique 6 Kekulé structure that achieves the
maximal number of benzenoid hexagons.7,8

The formal double bonds of this particular (Fries) Kekulé
structure play a special role in the proof of the closed-shell
property 3 and of the various symmetry theorems for leapfrog
polyhedra 9,10 from which, for example, the general tendency of
fullerenes to electron deficiency is rationalised.11 These bonds
lie along the n/2 edges of the leapfrog that cut the parent edges
transversely. Indeed, an alternative construction of leapfrogs is:
cross every edge of the parent with a new edge and join the ends
of all the new edges on each parent r-gonal face to form an inset
cycle of the same size rotated through π/r. In the Fries Kekulé
structure, all transverse edges are formally double, all inset
edges formally single, and so the leapfrog construction gives
a well defined ‘topological’ criterion for bond order based on a
localised model.

On the other hand, Hückel molecular orbital theory provides
an independent criterion based on the delocalised eigenvectors
of the fullerene adjacency matrix: the ‘double’ bonds can be
assigned to the n/2 edges of maximal π bond order prs, which is
given by eqn. (1).

prs = Σ
i
nicircis (1)

The sum runs over the partial mobile bond orders contributed
by all molecular orbitals i with occupation number ni and
coefficients cir and cis on the σ-bonded pair of atoms r and s.

The main question addressed in this note is simply: do the
localised and delocalised choices of double bonds for leapfrog
fullerenes agree?

Hückel and Fries leapfrog bond orders
An exact numerical match between the integral bond orders of
a Kekulé structure and the real numbers of Hückel theory is not
to be expected. However, if the Fries structure is indeed the
dominant resonance contribution to the Hückel ground state
for a leapfrog Cn molecule, it may fairly be expected to predict
the n/2 bonds of highest Hückel bond order. The Fries structure
for the smallest leapfrog, Ih C60, supports this claim: the 30
formally double hexagon–hexagon edges have simple Hückel π
bond order p66 = 0.6010 and the 60 formally single pentagon
edges have p56 = 0.4758. The X-ray structural determination of
a C60 derivative confirms the implied alternation in the hex-
agonal rings, with average bond lengths r56 = 1.432 Å and
r66 = 1.388 Å.12

To provide more extensive numerical evidence, calculations
of bond order and other Hückel properties were made for two
test sets of isomers, those obtained by leapfrogging once (L)
and then a second time (L2) the 1812 fullerene isomers of C60.
The parent isomers (P) span a wide range of structures and
relative stabilities, from the spherical isolated-pentagon Ih cage
to the fivefold symmetric D5d cylinder with 20 pentagon–
pentagon fusions that lies much higher in energy (e.g. by 2400
kJ mol�1 according to the QCFF/PI model 13). 1508 of the 1812
isomers have no symmetry at all, 189 have only C2 symmetry
and 67 have only mirror symmetry. Isomers of C60 have Kekulé
counts K varying from 8562 to 16501, with the most stable
isomer ranking only 21st, at K = 12500.14

The isomers are constructed from their spiral codes which
lead directly to fullerene adjacency matrices from which the
matrices for the leapfrogs can be derived with a simple com-
puter program. Diagonalisation then yields the Hückel eigen-
vectors and the related bond orders. The Fries double bonds
are easily identifiable in the labelling scheme used to construct
the leapfrog expansion of the parent. Leapfrogging preserves
molecular symmetry and, by the eigenvalue theorem,3 all C180

and C540 structures considered here have fully symmetric closed-
shell electronic configurations. The configurations of the 1812
parents include five open shells, 1806 pseudo-closed shells and
just one properly closed shell (Ih C60, which is itself a leapfrog of
C20). In fact, three of the five open-shell isomers are amongst
the 20 that have higher Kekulé counts than icosahedral C60.

14

The main result of the survey is simply stated: for all 3625
leapfrog isomers in the sample, the n/2 strongest bonds accord-
ing to their Hückel π bond orders are exactly the formal double
bonds of the Fries structure. Thus, there is a ‘Hückel’ Kekulé
structure for all of these cases, and it is identical with the Fries
Kekulé structure. All 3625 leapfrog structures have a well
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Table 1 Hückel parameters for the fullerene isomers of C60, their leapfrogs (C180) and double leapfrogs (C540). The delocalisation energy per atom
(Eπ) and HOMO–LUMO gap (∆) are in units of |β|. pj denotes the order of the jth π bond when the bonds of each isomer are arranged in non-
increasing order (p1 and p3n/2 are the orders of the strongest and weakest π bonds, respectively). ∆pd is the range of values for the n/2 strongest bonds
and ∆ps for the n weakest. ∆pd�s is the difference between bond orders pn/2 and pn/2 � 1. pd and ps are the average values for the n/2 strongest and n
weakest π bonds within an isomer. The values for the Ih isomers are compared with the maximum and minimum of the other 1811 isomers of each set
and the mean taken over all 1812. 

 Parent (C60) Leapfrog (C180) Double leapfrog (C540) 

 Ih Max Min Mean Ih Max Min Mean Ih Max Min Mean 

Eπ/|β| 
∆/|β| 
p1 
pn/2 
pn/2 � 1 
p3n/2 
∆pd 
∆ps 
∆pd � s 
pd 
ps 

0.5527 
0.7566 
0.6010 
0.6010 
0.4758 
0.4758 
0.0000 
0.0000 
0.1252 
0.6010 
0.4758 

0.5490 
0.4140 
0.6956 
0.5708 
0.5548 
0.4643 
0.1721 
0.2377 
0.0600 
0.5929 
0.5033 

0.5270 
0.0000 
0.5210 
0.5153 
0.5095 
0.2924 
0.0010 
0.0507 
0.0000 
0.5204 
0.4749 

0.5406 
0.1049 
0.6256 
0.5356 
0.5337 
0.3839 
0.0900 
0.1498 
0.0019 
0.5659 
0.4873 

0.5670 
0.5795 
0.5609 
0.5554 
0.5071 
0.4976 
0.0055 
0.0095 
0.0483 
0.5591 
0.5040 

0.5672 
0.5330 
0.6006 
0.5462 
0.5227 
0.4907 
0.0649 
0.0517 
0.0300 
0.5589 
0.5057 

0.5668 
0.2445 
0.5749 
0.5323 
0.5147 
0.4696 
0.0297 
0.0248 
0.0113 
0.5557 
0.5041 

0.5670 
0.4459 
0.5878 
0.5396 
0.5198 
0.4792 
0.0483 
0.0406 
0.0198 
0.5577 
0.5047 

0.5721 
0.3578 
0.5488 
0.5344 
0.5213 
0.5042 
0.0144 
0.0170 
0.0132 
0.5387 
0.5167 

0.5721 
0.3348 
0.5603 
0.5329 
0.5232 
0.5033 
0.0314 
0.0251 
0.0114 
0.5386 
0.5171 

0.5720 
0.1706 
0.5500 
0.5285 
0.5214 
0.4978 
0.0175 
0.0183 
0.0054 
0.5379 
0.5167 

0.5721 
0.2808 
0.5547 
0.5305 
0.5224 
0.5006 
0.0242 
0.0218 
0.0081 
0.5384 
0.5168 

defined gap between the lowest ‘double’ and highest ‘single’
bond orders and the match is therefore unambiguous. Hückel
theory thus predicts the dominance of the localised Fries
Kekulé structure, and this is consistent with the known lack of
correlation between raw Kekulé count, K, and overall stability
for fullerenes; 14 it appears that it is not necessary to have many
Kekulé structures to achieve low energy, but simply to have one
‘good’ structure that coincides with the requirement of avoiding
double bonds in pentagons and maximising the number of
benzenoid hexagons.

Table 1 shows the ranges for the various Hückel quantities
within and across the three sets. A general trend is that, after the
first application of the leapfrog operation, successive leapfrogs
have smaller band gaps. This is an illustration of the tendency
towards the semi-metallic configuration of the graphite sheet
with the falling proportion of non-hexagonal faces. Any
leapfrog fullerene, no matter how large, can have at most one
Fries structure, but the perturbing effects of the pentagons are
expected to become less important at large n. This is illustrated
for repeated leapfrogging by a marked decrease in the average
order of formal double bonds, an increase in the average order
of single bonds and a smaller difference between the orders of
the weakest formal double and strongest formal single bond
(see Table 1). In the infinite graphite limit, we could expect the
distinction between single and double bonds of the Fries
structure to vanish as the structure becomes fully delocalised.
As an alternant framework, graphite has three disjoint Fries
structures and every bond is formally double in precisely one of
them.

It is notable that almost all quantities in Table 1 have a
prominent outlier which corresponds to the icosahedral isomer
and its leapfrogs. Apart from any special considerations of
symmetry, this may simply reflect the fact that Ih C60 is already
a leapfrog and so it and its descendants are one leapfrog
order 6 ahead of the rest of their generation.

Hückel bond orders in general fullerenes
The successful match between Hückel and Fries bond orders
in leapfrog fullerenes suggests that a more subtle graph-
theoretical/valence-bond relationship may exist for general
fullerene isomers. Unlike leapfrogs, general fullerenes do not
have a simple ‘topological recipe’ that describes a dominant
valence-bond structure. As trivalent graphs, fullerenes have
at least three Kekulé structures,15 although it has been shown
that typical fullerenes, such as the isomers of C60, have Kekulé
counts of several thousand.14

There is no reason why any particular valence-bond structure
should dominate for an individual cage, although a clear link

exists between the calculated and pictorial bond-order proper-
ties for some isomers. For example, isomer 60 :1809 has been
identified as the only cage approaching Ih C60 in stability
according to the Fries criterion.14 This isomer is the unique
product of Stone–Wales rotation 16 of one of the hexagon–
hexagon bonds of the icosahedral cage and has a reduced sym-
metry of C2v, two pentagon adjacencies and a maximum of 18
benzenoid hexagons. The Stone–Wales bond is formally double
in the Fries structure of the Ih cage and its four neighbouring
bonds are all single. Intuition suggests that rotation of this
bond will cause only a small perturbation of the overall
Fries structure of the original cage, with the positions of the
29 other formal double bonds remaining the same in isomer
1809 (Fig. 1). This turns out to be the case: the Hückel model
generates a distinct set of 30 double bonds that correspond to
the 29 bonds that remain from the icosahedral Fries structure,
plus the rotated Stone–Wales bond.

The pictorial valence-bond structure also agrees with the
calculated bond orders for several other isomers that can be
obtained from Ih C60 by Stone–Wales transformations via
isomer 1809. Rotation of a second Stone–Wales bond that was
antipodal to the first in the original cage generates a D2h isomer
(60 :1810 in the spiral sequence) in which the 28 remaining
bonds from the Fries structure plus the two rotated bonds
account for the 30 strongest π bonds from the Hückel model.
The same is true for isomer 1811 of D3 symmetry that is
obtained by three simultaneous Stone–Wales transformations
around a threefold axis of the icosahedral cage. In all three
examples, each Stone–Wales transformation generates two
adjacent pentagons with one of each pair containing two
double bonds. Hence isomers 1809, 1810 and 1811 contain
two, four and six pentagon adjacencies and cyclopentadienoid
rings, respectively.

Despite the success of the ‘bond-rotation’ method for some
isomers, cages that are only two Stone–Wales steps away from
Ih C60 provide examples where the simple rotated π-bond
pattern does not match the calculated bond orders, either
because the n/2 strongest bonds do not yield a Kekulé structure

Fig. 1 Local effects on the π system around the Stone–Wales bond
transformation on going from 60 :1812 (Ih) to 60 :1809 (C2v).
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Table 2 Bond-order properties of the 23 isomers of C60 in which the calculated bond orders rigorously correspond to a Kekulé structure (see Fig. 3).
Isomers are identified by their sequence number in the lexicographic list of ring spirals. F is the Fries number and TP, TH(a), TH(b) and TP2 are the
Taylor numbers for each cage (see text and ref. 14 for definitions). H is the number of benzenoid hexagons in the Kekulé structure described by the
Hückel bond orders. HP and HP2 are the number of double bonds in pentagons and number of cyclopentadienoid rings, respectively, in the same
structure. ∆pd�s is the gap between the orders of the weakest formal double and strongest formal single bonds. 

Isomer F TP TH(a) TH(b) TP2 H HP HP2 ∆pd�s 

60 :44 
60 :220 
60 :356 
60 :993 
60 :1079 
60 :1123 
60 :1124 
60 :1286 
60 :1547 
60 :1548 
60 :1756 
60 :1757 
60 :1761 
60 :1793 
60 :1798 
60 :1803 
60 :1804 
60 :1805 
60 :1808 
60 :1809 
60 :1810 
60 :1811 
60 :1812 

16 
16 
12 
13 
9 

16 
14 
12 
14 
12 
14 
16 
16 
12 
12 
14 
16 
16 
14 
18 
16 
14 
20 

10 
10 
9 
8 

10 
8 

10 
12 
10 
10 
9 
7 
9 

12 
10 
6 
6 
8 
8 
4 
8 

10 
0 

16 
16 
12 
13 
8 

16 
14 
12 
14 
12 
14 
15 
16 
8 

10 
14 
15 
16 
12 
18 
16 
10 
20 

16 
16 
12 
13 
8 

16 
14 
12 
14 
12 
14 
15 
16 
8 

10 
14 
15 
16 
12 
18 
16 
8 

20 

4 
4 
3 
2 
6 
0 
0 
4 
2 
1 
1 
2 
0 
0 
4 
0 
1 
0 
4 
2 
4 
1 
0 

16 
16 
12 
13 
6 

16 
14 
12 
14 
12 
14 
15 
16 
8 

10 
14 
15 
16 
12 
18 
16 
14 
20 

10 
10 
9 
8 

12 
8 

10 
12 
10 
10 
9 
7 
9 

12 
11 
6 
6 
8 
8 
4 
8 

12 
0 

4 
4 
3 
2 
4 
0 
0 
4 
2 
1 
1 
2 
0 
0 
2 
0 
1 
0 
4 
2 
4 
6 
0 

2.56 × 10�2 
2.87 × 10�2 
3.64 × 10�4 
4.10 × 10�3 
1.60 × 10�2 
6.00 × 10�2 
3.00 × 10�3 
1.89 × 10�2 
1.40 × 10�2 
1.84 × 10�3 
2.50 × 10�3 
3.97 × 10�3 
4.07 × 10�2 
1.17 × 10�2 
4.13 × 10�3 
3.08 × 10�2 
3.43 × 10�2 
3.65 × 10�2 
3.07 × 10�2 
2.71 × 10�2 
2.53 × 10�2 
1.05 × 10�3 
1.25 × 10�1 

at all (e.g. isomer 60 :1807, C2 symmetry (Fig. 2)), or produce
one that differs from that predicted by Stone–Wales rotation of
the Ih Fries structure (e.g. isomer 60 :1804, Cs symmetry).

In order to investigate whether a general relationship exists
between geometric structure and bond order for fullerenes, the
bond orders of all 1812 isomers of C60 were calculated. The size
of the gap between the values of pn/2 and pn/2 � 1 when the orders
of the 3n/2 bonds are arranged in non-increasing order varies
between parent isomers, ranging from 0.1252 for 60 :1812 (Ih) to
effectively zero for 60 :1510. Hence, many general fullerene
isomers have no clear distinction between the sets of n/2
‘double’ and n ‘single’ bonds, e.g. in 130 of the 1812 isomers of
C60 pn/2 and pn/2 � 1 are separated by less than 1.0 × 10�5.

A total of just 23 of the isomers were found to have
calculated bond-order patterns rigorously corresponding to
a Kekulé structure, i.e. with the n/2 strongest bonds forming
a vertex-spanning set of 30 edges in which each of the 60 atoms
is common to one formally double and two formally single
bonds. This comparative scarcity of Hückel Kekulé structures
is rationalisable to an extent on symmetry grounds. Hückel
bond orders of a closed-shell or half-open state of a molecule
are necessarily equal for symmetry-equivalent bonds. A Hückel

Fig. 2 Valence-bond electronic structure of the C2 isomer 60 :1807.
The 28 solid-line double bonds are predicted by both the Hückel and
bond-rotation models. The dotted lines indicate the positions of the
final two bonds that would complete the pictorial Kekulé structure but
are, in fact, outside the set of 30 strongest bonds in the Hückel model
(the two bonds that complete this set are circled).

Kekulé structure, if one exists, must therefore have the full
symmetry of the molecule. For a general fullerene that has some
non-trivial symmetry, the totally symmetric Kekulé structures
constitute a small minority of the total set or may not exist at
all, as e.g. for C20, C26 and Td C28 (see ref. 17 for a tabulation).
In leapfrog fullerenes, however, the existence of at least one
totally symmetric Kekulé structure is guaranteed by the method
of their construction, making the Hückel/Fries identification
possible. In other classes of fullerene, the Hückel bond orders
may perhaps correspond to a totally symmetric superposition
of Kekulé structures, as they do in benzene, but matching to
a single structure is unlikely. This argument is clearly only
indicative, as the majority of the larger fullerenes in fact belong
to the trivial point group C1.

The 23 Hückel Kekulé isomers of C60 are illustrated in Fig. 3
and their bond-order properties are summarised in Table 2
using data taken from ref. 13, in particular the Fries numbers, F,
and Taylor numbers TH(a), TH(b), TP and TP2. For fullerenes, a
Fries number can be defined for an individual Kekulé structure
as the number of benzenoid hexagons that it contains; F is then
the maximum number of such hexagons taken over all possible
Kekulé structures. The Taylor number TH(a) is the maximum
number of benzenoid hexagons taken over all those Kekulé
structures that have the minimum number of double bonds in
pentagons, TP. TH(b) is the maximum number of benzenoid
hexagons taken over all the minimal-TP structures that also
have the minimum number (TP2) of cyclopentadienoid rings.
Use of the numbers TH(a) and TH(b) is motivated by Taylor’s
argument that minimisation of π bond order in pentagons
should take priority over maximisation of the number of
benzenoid hexagons in isolated-pentagon fullerenes.18 TH(b)

recognises the additional steric strain in pentagonal rings
containing two double bonds. The values H, HP and HP2 in
Table 2 are respectively the numbers of benzenoid hexagons,
double bonds in pentagons and cyclopentadienoid rings in the
Hückel-derived Kekulé structure.

The results summarised in Table 2 give support to the Taylor
criterion of stability and demonstrate that the graph-theoretical
Hückel model reflects the preference for minimisation of
double bonds in pentagons over unrestrained maximisation
of benzenoid hexagons. Sixteen of the isomers in the table
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Fig. 3 The 23 fullerene isomers of C60 (labelled by spiral number and maximal point-group symmetry) in which the n/2 strongest bonds according to
the equal-α, equal-β Hückel model rigorously correspond to a Kekulé structure. See Table 2 for a list of bond-order properties of these cages.

have F = TH(a) = TH(b), indicating that the maximum number of
benzenoid hexagons over all Kekulé structures is achievable
simultaneously with minimal values of TP and TP2. In all sixteen
cases, the values H, HP and HP2 match their counterpart Fries
and Taylor numbers, confirming the dominance of the
maximal-benzenoid Kekulé pattern in the Hückel-derived
electronic structure.

Of the other seven isomers, six have bond-order patterns that
correspond with fewer than the Fries number of benzenoid
hexagons, but the Hückel results still follow the Taylor criterion
in most cases, i.e. minimising TP2 (HP2) for a given minimal
value of TP (HP). For two isomers (1079 and 1798) the Hückel
model exceeds the Taylor numbers, generating a bond-order
pattern that has more double bonds in pentagons than the
minimum but at the same time allows a smaller number of
cyclopentadienoid rings than TP2.

In conclusion, the Hückel bond orders appear to provide
a realistic interpretation of the π-electronic distribution in
general fullerene isomers. Although only a small subset of iso-
mers have calculated bond orders that rigorously correspond to
a Kekulé structure, the Hückel model gives a reliable graph-
theory based illustration of the bond-order pattern for the vast

majority of isomers. The Hückel model supports the energetic
criterion of strain minimisation by reduction of bond orders in
pentagonal rings and stresses avoidance of cyclopentadienoid
rings in π-electronic structures.
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