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Kagan et al. (G, Balavoine, A. Moradpour and H. B. Kagan, J Am. Chem. Soc., 1974, 96, 5152) derived an equation
showing the relationship between the enantiomeric excess (ee) and the conversion for the irradiation of racemic
reactants with circularly polarized light (CPL). The equation was derived based on the assumption of first-order
kinetics for the reaction. However, the same equation can be derived from the general expression of the
photochemical rate equations without assuming first-order kinetics. The only assumption that is necessary for
deriving Kagan’s equation is Lambert-Beer’s law for the absorbance of the solutions. The relationship between ee
and the conversion does not depend on the initial absorbance of the solution, but depends only on the g factor.
Kagan’s equation proved to be applicable to asymmetric photodestruction and also asymmetric one-way
photoisomerization reactions. Numerical simulation is also a powerful method, particularly if the analytical solution
of the differential equations is not available. In such a case, by expressing the ee as a function of the conversion,

a relationship that does not depend on the initial absorbance is obtained.

In the preceding paper of this series,! we described a new abso-
lute asymmetric synthesis (NAAS), the photoisomerization of
a racemic reactant into the chiral product. In the theoretical
formulation of the evolution of enantiomeric excess (ee) of the
product and reactant by the irradiation of circularly polarized
light (CPL) we have followed the procedure provided by Kagan
et al? Kagan’s equation for the ee of the reactant, which was
applied originally for the photodestruction of racemic mix-
tures, has been shown to be valid also for the photoisomeriz-
ation of racemic mixtures. Our study has further provided a
method that could be used for the analysis of the ee of the
product.

In Kagan’s procedure of the formulation he assumed that
the rate constant of the photodecomposition obeys first-order
kinetics. The rate constants of the photodecomposition were
assumed to be proportional to the molar extinction coefficients
of each enantiomer. We have also assumed in the preceding
paper first-order kinetics for the photoisomerization. However,
Bonner et al.?® reported a discrepancy between the observed ee
and the one predicted by Kagan’s equation for the asymmetric
photodestruction of leucine. They claimed that the discrepancy
might arise from the over-simplified kinetic model.

In the present paper we have examined the applicability of
Kagan’s equations, which are based on first-order kinetics, for
an actual reaction system in which the photochemical reaction
does not often follow a first-order rate equation. We also pro-
pose the use of numerical simulation for predicting the results
of asymmetric synthesis. Curiously, numerical simulation has
scarcely been employed for the analysis of the rate of photo-
chemical reactions. However, if the reaction scheme is compli-
cated one cannot solve the rate equation analytically. In this
case the numerical method will be helpful for understanding
how each parameter in the rate equation affects the course of
the reaction.
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Results and discussion

Absorbance dependence of the rate of the photochemical
reactions

The rate expression [eqn. (1)] for a simple photochemical
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reaction was given by Rau et al.* If S is the same as the cross
section of the cuvette, the factor SI/V is equal to 10%, where c is
the reactant concentration, I, is the incident photonic flux
expressed as einstein cm™> s~ S is the area of the cross section
of the incident light (cm?), V is the volume of the solution
(dm?®), 4 is the absorbance of the reaction mixture in the reac-
tion cuvette at the wavelength of excitation, ¢ is the molar
absorption coefficient for the reactant, /is the path length of the
reaction cuvette (cm), @ is the quantum yield of the reaction.
This equation is obtained by applying Lambert-Beer’s law
when calculating the amount of photons absorbed by the
reactant.

The rate of photochemical reaction is often expressed in the
form of first-order kinetics using the rate constant k. This can
be justified if the absorbance of the reaction mixture is less than
0.01, because, by approximation, eqn. (1) is reduced to eqn. (2).
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In the case of the absorbance of 0.01-0.1 the first-order
approximation is not strictly, but is practically, applicable (Fig.
1). In the figures in the present paper the reduced reaction time,
t* = t1,&(SIIV)®D(In 10), is used as a measure of the progress of
the reaction.
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Fig. 1 The time profiles of the decrease of a reactant by a
photochemical reaction in solutions of various values of initial
absorbance. Only the reactant is assumed to absorb the light for
excitation. The reduced reaction time, * = ¢1,.&(S//V)®(In 10), is used
as a measure of the reaction time.

Kagan et al. started from this first-order approximation when
he derived the relationship between the ee and conversion for
CPL irradiation of a racemic mixture. However, in the actual
reaction system, the absorbance of the reaction mixture often
exceeds 0.1.13 Therefore, it is essential to examine the effect of
the value of the absorbance on the relationship between the ee
and the conversion of the product for the CPL irradiation of a
racemic mixture.

Derivation of Kagan’s equation starting from the general
expression of the rate equation

For the photodestruction or photoisomerization of racemic
sample A (A, and Ay), the rate of the decrease in the concen-
tration of the reactant enantiomers, c,g and c,g, is given by
eqns. (3) and (4), where eqn. (5) holds and @, is the quantum
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yield, e, and e, are the molar absorption coefficients for A,
and Ag. Here we assume that only the (R)- and (S)-isomers of
A absorb the incident light and the reaction proceeds in one
way.

By dividing each side of eqn. (3) by the corresponding sides
of eqn. (4) we get a differential equation, eqn. (6) or eqn. (7).
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By integrating this equation we obtain eqn. (8) from which
eqn. (9) follows.
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By using the definition of the conversion x and the ee (y) we
obtain eqns. (10) and eqns.(11). We can rewrite eqn. (9) in terms
of x and y (see Appendix for details), eqn. (12). This expres-
sion is equivalent to what has been presented by Kagan et a/
[eqn. (13)].2
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By the above procedure it has been proven that Kagan’s
equation can be derived from the general expression of the
photochemical rate equations without assuming first-order
kinetics. The only assumption that is necessary for deriving
Kagan’s equation is Lambert—Beer’s law for the absorbance of
the solutions.

The key equation in this derivation is eqn. (7), which
indicates that the ratio of the change (the decrease) in the con-
centrations of (R)- and (S)-isomers depends only on the ratio
of the ¢’s and the concentrations of themselves. It does not
depend on the initial absorbance of the solution. This is the
crucial reason why the relationship between y and x does not
depend on the initial absorbance of the solution.

Effect of the initial absorbance on the developing pattern of
enantiomeric excess for reactant and product in a one-way
photoisomerization of a racemic mixture

In the preceding paper of this series we have presented a one-
way photoisomerization of a racemic mixture as an example of
NAAS (Class (b)). In the reaction the product was also chiral,
and each enantiomer of the product does not convert into the
other. The product did not absorb the incident light, therefore
the back reaction did not occur.
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We have proven that, in this type of NAAS, the ee of the
reactant y follows Kagan’s equation and the ee of the product
y' is given by the eqn. (14).!

, 1l —x) (14)
X

Kagan’s equation is valid in any photodestruction of racemic
compounds, if the dependence of the absorbance on the
concentration follows Lambert-Beer’s law. Therefore eqn.
(14) is also valid, if the dependence of the absorbance on the
concentration follows Lambert—Beer’s law.

In order to visualize the difference in the time course of the
development of the ee by the difference in the initial absorb-
ance, we have simulated the reaction numerically by using the
Runge-Kutta method for the case, g=1 as an example. If
the initial absorbance of the solution differs, the time course of
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Fig. 2 Variation with time of the concentration of the enantiomers of
the reactant and product, the absorbance of the reaction mixture, and
the ee of the reactant and product, for the one-way photoisomerization
of the racemic mixture of A into B by CPL irradiation. The Kuhn’s
anisotropy factor (g) is assumed to be 1.0. The initial absorbance is
(a) 0.1 or (b) 2.0. The reduced reaction time, 1* =t I, {(exg + €a5)/2} X
(SIIV)®,(In 10), is used as a measure of the reaction time.

the reaction is different (Fig. 2). For example, the ee of the
reactant grows more slowly if the initial absorbance is larger.
However, in spite of this difference, the relationship between the
ee and the conversion is exactly the same for the two conditions.
In Fig. 3 the ee’s are plotted against the conversion, for any
value of the initial absorbance we get the same relationship
between the ee’s and the conversion.

The relationship between the ee of the reactant and product
and the conversion does not depend on the initial absorbance
of the solution, it also does not depend on the incident light flux
or the quantum yield of the reaction, it depends solely on the
g factor.

Comparison of the methods for obtaining the relationship
between the ee and conversion

The theoretical background for the first-order kinetics
approximation has already been implied, though not explicitly,
by Blume et al.* They showed that the rate equation became
first order if one uses the parameter v as a measure of the
progress of the reaction eqn. (15).
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If the expressions for the reactions are first order in terms
of 7, we can apply the procedure of Kagan for deriving the
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Fig. 3 Plots of ee against conversion for the one-way photo-
isomerization by CPL irradiation. The Kuhn’s anisotropy factor is
assumed to be 1.0.

relationship between ee and conversion. During the process
the parameter 7 is canceled out, thus we obtain an equation
for the relationship which does not contain any term for
absorbance.

However, for a more complicated system like reversible
photoisomerization (Class (a) NAAS),! even by applying the
first-order-kinetics approximation we cannot get any simple
analytical equation for the relationship between the ee and the
conversion. In such a case, after obtaining a numerical solution
for the time course of the reaction, by plotting ee as a function
of the conversion we obtain a relationship which does not
depend on the initial absorbance or absolute quantum yield of
the reaction. This procedure may be practically of much more
value.

Effect of the initial absorbance of the solution on the other types
of absolute asymmetric synthesis

In the above discussions we have verified the validity of Kagan’s
equation in asymmetrical photodestruction and in asym-
metrical one-way photoisomerization reactions (Class (b)
NAAS). In these asymmetrical photoreactions the same rela-
tionship between the ee and the conversion was applicable to
the system without regard to whether first-order kinetics was
met or not.

We will show, in the following paper of this series, for asym-
metric reversible photoisomerization (Class (a) NAAS), that
the relationship between the ee and the conversion does not
depend on the initial absorbance of the solution. For a com-
plicated system like the reversible photoisomerization the
numerical method was much more useful than the analytical
one.

We predict that, for any kind of absolute asymmetric syn-
thesis, the relationship between the ee and the conversion does
not depend on the initial absorbance of the reactant. The only
factors which are crucial for determining the relationship are
the g factors, the ratios of ¢’s and @’s. If the reaction is revers-
ible, we need the ratios of ¢’s and @’s in addition to the g factors
in order to estimate the contribution of the back reaction that
leads to a photostationary state.

Methods

Numerical simulation

For obtaining the numerical solution of differential equations a
fourth-order Runge-Kutta method was employed.! If we use
the reduced reaction time, t* =1, {(cxp + €a5)/2}(SUV)D,(In
10), as a measure of the reaction time, eqns. (4) and (5) are
transformed into eqns. (16)—(18), where ¢, = (64 + €55)/2.
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For the numerical integration we need the values of the three
parameters (45, £a5, and /) and the initial values of the concen-
trations (cag and cag). If we know the values of e, g4, the
initial concentration of the racemic mixture (c,) and the initial
absorbance of the solution (4,) we can calculate the values we
need in the following way.

By definition eqns. (19)—(22) apply.

Co=Caro T Caso = 2CaR0 = 2CAs0 (19)
ea=(ear T €as)/2 (20
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Ag=eacyl (22)

From eqns. (19)—(22) we obtain eqns. (23)—(26).

ear=(2 + ga)ea (23)
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Caro = Caso = Co/2 (25)

1= Agency (26)

Therefore, by using the values of ¢,, ga, ¢y, and A4,, we can
predict the time-dependent change of the concentrations of
the enantiomers. By plotting the ee of the enantiomers against
the conversion at each time interval we obtain a relationship
between the ee of the enantiomers and the conversion. During
this procedure all the parameters except the g factor are
canceled out, thus the obtained relationship depends only on
the g factor.

Conclusions

Kagan’s equation showing the relationship between the ee and
the conversion of reactant is also valid for systems in which the
approximation of first-order kinetics is not met. There is no
limitation of the value of the absorbance for the application of
Kagan’s equation, if the absorbance of the reaction mixture
follows Lambert-Beer’s law. The relationship between ee and
the conversion does not depend on the initial absorbance of the
solution, it depends only on the g factor.

Kagan’s equation was proved to be applicable to both
asymmetric photodestruction and also asymmetric one-way
photoisomerization reactions.
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Numerical simulation also proves to be a powerful method,
especially if the analytical solution of the differential equations
is not available or if it is too complicated. In such a case, by
expressing the ee as a function of the conversion, we can obtain
a relationship that does not depend on the initial absorbance of
the solution.

Appendix

The procedure of the transformation of eqn. (9) into eqn. (12)
is as follows. We can rewrite eqn. (9) into the form given in
eqn. (27). This expression is transformed to eqn. (28). By defin-
ition eqn. (10) holds, thus eqn. (29) holds. We can rewrite this
into the form, given in eqn. (30). By substituting the term c,g
in the right side of eqn. (28) by using eqn. (30), we obtain
eqn. (31). This can be transformed into eqn. (32), where we used
the relationship given in eqn. (33).

By definition eqn. (11) holds and based on this equation we
obtain eqn. (34) and also eqn. (35).

By definition eqn. (36) holds from which we obtain eqn. (37)
and thus eqn. (38).

By using eqns. (34), (35), and (38), eqn. (32) can be
transformed into eqn. (12).

We can easily show that this is equivalent to Kagan’s
equation in its original form [eqn. (13)].
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