# The Ionic Products of Water and Methanol in Methanol-Water Mixtures 

By C. H. Rochester, Chemistry Department, The University, Nottingham NG7 2RD

The ionic products and acid ionization constants of water and methanol in methanol-water mixtures at $25^{\circ} \mathrm{C}$ have been calculated from the apparent ionic products of the solvent mixtures and the free energies of transfer of the proton from water to methanol-water mixtures. Methanol is a stronger acid than water over the entire range of solvent composition, the difference in acid strength becoming greater as the methanol content of the solvent is increased.

Koskikallio ${ }^{1}$ measured the apparent ionic product of methanol-water mixtures but did not deduce the separate contributions to the ionic product of the ionization of water and of methanol. Gaboriaud et al. ${ }^{2}$ calculated the ratios of hydroxide ions to methoxide ions in the solvent mixtures and obtained reasonable agreement between calculated ionic products and the experimental values. The present paper describes a new approach to the calculation of the separate ionic products of water and methanol in methanol-water mixtures.

## Table 1

The apparent ionic product of methanol-water mixtures at $25^{\circ} \mathrm{C}$; units of $K_{\mathrm{S}}$ are $\mathrm{mol}^{2} \mathrm{~kg}^{-2}$

| $\begin{gathered} \mathrm{MeOH} / \\ \%(\mathrm{w} / \mathrm{w}) \end{gathered}$ | $X_{\text {MeOH }}$ | $\mathrm{p} K_{\text {S }}$ | $\begin{gathered} \mathrm{MeOH} / \\ \%(\mathrm{w} / \mathrm{w}) \end{gathered}$ | $X_{\text {меОН }}$ | $\mathrm{p} K_{\text {s }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | $13.997{ }^{\text {a }}$ | 60 | $0 \cdot 4575$ | $14.127^{\text {c }}$ |
| 10 | 0.0588 | $14.037{ }^{\text {c }}$ | 70 | 0.5675 | $14.218^{\circ}$ |
| 20 | $0 \cdot 1232$ | $14.055^{\text {b }}$ | 80 | 0.6922 | $14.423{ }^{\text {c }}$ |
| 28.5 | $0 \cdot 1831$ | $14.067{ }^{\text {c }}$ | 90 | 0.8350 | $14.845{ }^{\text {b }}$ |
| 50 | $0 \cdot 3599$ | $14.097{ }^{\text {c }}$ | 100 | 1.0000 | $16.708{ }^{\text {b }}$ |

${ }^{a}$ Ref. 4. ${ }^{b}$ Ref. 1. ${ }^{c}$ Values interpolated from data in ref. 1.

The apparent ionic product $K_{8}$ (Table 1) for a methanol-water mixture is given by equation (1) ${ }^{1}$ in

$$
\begin{equation*}
K_{\mathrm{S}}=m_{\mathrm{H}^{+}+}\left(m_{\mathrm{OH}^{-}}+m_{\mathrm{OM}_{\mathrm{e}^{-}}}\right)=K_{\mathrm{w}}+K_{\mathrm{m}} \tag{1}
\end{equation*}
$$

which $m_{\mathrm{H}^{+}}$represents the sum of the molalities of $\mathrm{H}_{3} \mathrm{O}^{+}$ and $\mathrm{MeOH}_{2}{ }^{+}$and $K_{\mathrm{w}}$ and $K_{\mathrm{m}}$ are the ionic products of water and methanol respectively in the solvent mixture. The separate contributions of $K_{\mathrm{w}}$ and $K_{\mathrm{m}}$ to $K_{\mathrm{S}}$ were evaluated as follows.
$K_{\mathrm{H}_{2} \mathrm{O}}$ and $K_{\text {MeOH }}$ are equilibrium constants, defined by equations (2) and (3), for the ionization [equations

$$
\begin{align*}
K_{\mathrm{H}, \mathrm{O}} & =\left(a_{\mathrm{H}}+a_{\mathrm{OH}} /-/ a_{\mathrm{H}, \mathrm{O}}\right)  \tag{2}\\
K_{\mathrm{MeOH}} & =\left(a_{\mathrm{H}+}+a_{\mathrm{OMe}-}-/ a_{\mathrm{MeOH}}^{\mathrm{m}}\right) \tag{3}
\end{align*}
$$

[^0](4) and (5)] of water and methanol respectively in a
\[

$$
\begin{array}{r}
\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-} \\
\mathrm{MeOH} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OMe}^{-} \tag{5}
\end{array}
$$
\]

methanol-water mixture. In equations (2) and (3) the activities $a_{\mathrm{H}^{+}}, a_{\mathrm{OH}}$, and $a_{\mathrm{OM}_{\mathrm{e}}-}$ refer to the solvent mixture as standard state and therefore for the pure solvent $a_{\mathrm{H}^{+}}=m_{\mathrm{H}^{+}}, a_{\mathrm{OH}^{-}}=m_{\mathrm{OH}^{-}}$, and $a_{\mathrm{OMe}^{-}}=m_{\mathrm{OMe}^{-}}$. Hence combination of equations (1)-(3) leads to equation (6)
in which $a^{\mathrm{w}} \mathrm{H}_{\mathbf{2}} \mathrm{O}$ is the molal activity of water referred to pure water standard state and $a^{m}{ }_{\text {Mеон }}$ is the molal activity of methanol referred to pure methanol standard state. The acid ionization constant $K^{w_{1}}, \mathrm{O}$ of water in water is related to $a_{\mathrm{H}^{+}}$and $a_{\mathrm{OH}^{-}}$for a methanol-water mixture by equation (7) in which $\gamma_{\mathrm{H} *}+$ and $\gamma_{\text {OH }}$ are activity coefficients defined by equation (8) where $\mu^{\circ}{ }_{\text {w }}$ is the chemical potential of an ion in a hypothetical $1 m$ ideal solution in water and $\mu_{\mathrm{s}}{ }^{\circ}$ is the chemical potential of the same ion in a hypothetical $1 m$ ideal solution in the solvent S. ${ }^{3}$ Similarly the acid ionization constant

$$
\begin{align*}
& K_{\mathrm{w}_{2} \mathrm{O}}=\left(a_{\mathrm{H}+}+\gamma_{\mathrm{H}}+a_{\mathrm{OH}}-\gamma_{\mathrm{OH}}-\left(a^{\mathrm{w}}\right.\right.  \tag{7}\\
&\left.\Delta \mu_{\mathrm{H}_{2} \mathrm{O}}^{\circ}\right)=\mu_{\mathrm{s}}^{\circ}-\mu_{\mathrm{H}}^{\circ}{ }_{\mathrm{w}}=R T \ln +\gamma_{\mathrm{H}}-  \tag{8}\\
&
\end{align*}
$$

$K^{\mathrm{m}_{\text {меО }}}$ of methanol in water is related to $a_{\mathrm{H}^{+}}$and $a_{0 \mathrm{Me}^{-}}$ for a methanol-water mixture by equation (9) in which

$$
\begin{align*}
& K_{\text {МеОН }} \gamma_{\mathrm{B}}+\gamma_{\mathrm{OMe}}-\left(a^{\mathrm{m}}{ }_{\mathrm{MeOH}} / a^{\mathrm{w}}{ }_{\text {MeОН }}\right) \tag{9}
\end{align*}
$$

$a^{w}{ }_{\text {meOH }}$ is the molal activity of methanol referred to pure water standard state. Combination of equations (6), (7), and (9) leads to equation (10).

[^1] 929.

The acid ionization constants of water and methanol in water at $25^{\circ} \mathrm{C}$ are given by equations (11) ${ }^{4}$ and (12) ${ }^{5}$

$$
\begin{align*}
& \mathrm{p} K^{\mathrm{w}_{\mathrm{H}, \mathrm{O}}}=-\log _{10} K_{\mathrm{H}_{2} \mathrm{O}}^{\mathrm{w}^{2}}=13 \cdot 9965+  \tag{11}\\
& \log _{10} 55 \cdot 509=15 \cdot 7409  \tag{12}\\
& K^{\mathrm{w}_{\mathrm{MeOH}}}=-\log _{10} K^{\mathrm{w}}{ }_{\mathrm{MeOH}}=15 \cdot 55
\end{align*}
$$

respectively. Kayama ${ }^{6}$ has measured activity coefficients for methanol and water in methanol-water mixtures at five temperatures. Values for $f^{\mathrm{W}_{\mathrm{H}}^{2} \mathrm{O}}$, the activity coefficient (mole fraction concentration scale) of water referred to water standard state, and $f^{m}{ }_{\text {meoн }}$, the activity coefficient of methanol referred to methanol standard state, at $25^{\circ} \mathrm{C}$ were interpolated from his results (Table 2). The chemical potential $\mu_{\mathrm{H}_{2} \mathrm{O}}$ of water in a methanol-water mixture is given by equation (13)

$$
\begin{equation*}
\mu_{\mathrm{H}_{2} \mathrm{O}}=\mu_{\mathrm{H}_{2} \mathrm{O}}^{\circ}(m)+R T \ln a^{\mathrm{w}_{\mathrm{H}_{2} \mathrm{O}}}=\mu^{\mu^{\circ}{ }_{\mathrm{H}}^{2} \mathrm{O}} \mathrm{O}(X)+ \tag{13}
\end{equation*}
$$ $R T \ln X_{\mathrm{H}_{2} \mathrm{O}} f^{\mathrm{W}} \mathrm{H}_{2} \mathrm{O}$

in which $\mu_{H_{2} \mathrm{O}}^{\circ}(m)$ and $\mu_{\mathrm{H}_{3} \mathrm{O}}^{\circ}(X)$ refer (water standard state) to the molal and mole fraction concentration
$\left(m_{\mathrm{MeOH}} \longrightarrow 0\right), a^{\mathrm{m}} \mathrm{MeOH} \longrightarrow m_{\mathrm{MeOH}}, f^{\mathrm{meOH}} \longrightarrow 1.521$ (Table 2), $X_{\mathrm{MeOH}}$ is given by equation (18) and therefore

$$
\begin{equation*}
X_{\mathrm{MeOH}} \longrightarrow\left(m_{\mathrm{MeOH}} / 55.509\right) \tag{18}
\end{equation*}
$$

equation (19) follows. Combination of equations (17)

$$
\begin{equation*}
\mu_{\mathrm{MeOH}}^{\circ}(m)-\mu_{\mathrm{MeOH}}^{\circ}(X)=R T \ln (1.521 / 55.509) \tag{19}
\end{equation*}
$$

and (19) leads to equation (20) which enabled calculation

$$
\begin{equation*}
a^{\mathrm{W}}{ }_{\mathrm{MeOH}}=\left(55.509 X_{\mathrm{MeOH}} f^{\mathrm{m}} \mathrm{MeOH} / 1.521\right) \tag{20}
\end{equation*}
$$

of $\boldsymbol{a}^{\mathrm{m}}{ }_{\mathrm{MeOH}}$ (Table 2) from $f^{\mathrm{m}_{\mathrm{MeOH}}}$.
Free energies of transfer $\Delta \mu_{H^{+}}{ }^{+}$of the hydrogen ion from water to methanol-water mixtures quoted elsewhere ${ }^{3,7-9}$ agree on the general form of the variation of $\Delta \mu^{\circ}{ }_{H}{ }^{+}$with solvent composition but differ in their estimates of the absolute magnitude of $\Delta \mu_{H^{+}}^{\circ}$. In the present calculations $\gamma_{\mathbf{H}+}$ [equation (8); Table 2] has been evaluated from $\Delta \mu_{{ }_{\mathbf{H}}}{ }^{+}$values interpolated from the results of Alfenaar and de Ligny. ${ }^{3}$

The data in Table 2 combined with $K^{\mathrm{m}_{\mathrm{H}}^{2}} \mathbf{O}$ [equation

Table 2
Data ( $25^{\circ} \mathrm{C}$ ) used for the evaluation of $\Delta \mu^{\circ}$ of transfer of methoxide and hydroxide ions from water to methanol-water mixtures

| $\mathrm{MeOH} /$ |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \% (w/w) | $n_{\mathrm{H}_{2} \mathrm{O}}$ | $m_{\text {MeOH }}$ | $f{ }^{\mathbf{w}} \mathrm{H}_{2} \mathrm{O}$ * | $f^{\mathrm{m}} \mathrm{MeOH}^{*}$ | $-\log _{10} \gamma_{\mathbf{H}^{+}}+$ | $10^{3} \gamma_{\mathbf{H}^{+}}{ }^{+}$ | $a^{\mathrm{w}} \mathrm{H}_{2} \mathrm{O}+$ | $a^{\text {WeOH }}{ }_{\text {MeO }}{ }^{+}$ |
| 0 | 55.509 | $0 \cdot 000$ | 1.000 | 1.521 | $0 \cdot 000$ | 1000 | $55 \cdot 509$ | $0 \cdot 0000$ |
| 10 | $49 \cdot 958$ | $3 \cdot 121$ | 1.000 | 1.552 | $0 \cdot 214$ | 610.9 | $52 \cdot 245$ | 3.3292 |
| 20 | $44 \cdot 407$ | $6 \cdot 242$ | 1.002 | 1.522 | $0 \cdot 488$ | $325 \cdot 1$ | 48.768 | 6.8456 |
| 28.5 | 39.689 | 8.895 | 1.010 | $1 \cdot 456$ | $0 \cdot 740$ | 182.0 | $45 \cdot 799$ | $9 \cdot 7292$ |
| 50 | $27 \cdot 755$ | $15 \cdot 605$ | 1.074 | $1 \cdot 226$ | 1.470 | $33 \cdot 88$ | 38-161 | $16 \cdot 102$ |
| 60 | 22.204 | 18.725 | $1 \cdot 133$ | 1-138 | $1 \cdot 874$ | $13 \cdot 37$ | 34-119 | 19.001 |
| 70 | 16.653 | 21.846 | $1 \cdot 211$ | $1 \cdot 067$ | $2 \cdot 233$ | $5 \cdot 848$ | 29.073 | 22.098 |
| 80 | 11-102 | 24.967 | $1 \cdot 298$ | $1 \cdot 024$ | $2 \cdot 558$ | $2 \cdot 767$ | 22.177 | $25 \cdot 866$ |
| 90 | $5 \cdot 551$ | 28.088 | $1 \cdot 386$ | 1.004 | $2 \cdot 706$ | 1.968 | $12 \cdot 694$ | $30 \cdot 596$ |
| 100 | 0.000 | 31.209 | 1.429 | 1.000 | 1.4469 | 35.74 | 0.0000 | 36.497 |

* Interpolated from results in ref. 6. $\dagger$ Interpolated from results in ref. $\mathbf{3} . \ddagger$ Molality concentration scale.
scales respectively and $X_{\mathrm{H}_{2} \mathrm{O}}$ is the mole fraction of water. For pure water $X_{\mathrm{H}_{2} \mathrm{O}}=1, f^{\mathrm{W}_{\mathrm{H}_{2} \mathrm{O}}=1, a^{\mathrm{W}} \mathrm{H}_{2} \mathrm{O}}$ is given by equation (14), and therefore equation (15)

$$
\begin{gather*}
a_{\mathrm{H}_{2} \mathrm{O}}^{\mathrm{w}}=55 \cdot 509  \tag{14}\\
\mu_{\mathrm{H}_{2} \mathrm{O}}^{\circ}-\mu_{\mathrm{H}_{2} \mathrm{O}}(m)=R T \ln (55 \cdot 509) \tag{15}
\end{gather*}
$$

follows. Values of $a^{W}{ }_{H} \mathrm{O}$ (Table 2) were calculated from $f^{W_{H_{2} O}}$ by use of equation (16) which follows from equations

$$
\begin{equation*}
a_{\mathrm{H}_{2} \mathrm{O}}^{\mathrm{W}}=55 \cdot 509 X_{\mathrm{H}_{2} \mathrm{O}} f_{\mathrm{H}_{2} \mathrm{O}} \tag{16}
\end{equation*}
$$

(13) and (15).

The chemical potential $\mu_{\mathrm{MeOH}}$ of methanol in methanolwater is given by equation (17) in which $\mu^{\circ}{ }^{\text {Meö }}(m)$ (water standard state) and $\mu_{\text {Meor }}^{\circ}(X)$ (methanol standard state) refer to the molality and mole fraction concentration

$$
\begin{align*}
& \mu_{\text {MeOH }}=\mu_{\text {MeOH }}^{\circ}(m)+R T \ln a^{w_{\text {MeOH }}}=\mu_{\mathrm{MeOH}^{\circ}}(X)+ \\
& R T \ln X_{\text {MeO甘 }} f^{m}{ }_{\text {MeOH }} \tag{17}
\end{align*}
$$

scales respectively and $X_{\text {MeOH }}$ is the mole fraction of methanol. As the methanol concentration tends to zero
${ }^{4}$ H. S. Harned and R. A. Robinson, Trans. Faraday Soc., 1940, 36, 973.
${ }_{5}{ }^{\prime}$ P. Ballinger and F. A. Long, J. Amer. Chem. Soc., 1960, 82, 795.
${ }^{8}$ T. Kayama, Kagaku Kogaku, 1962, 26, 490.
(11)] and $K^{w_{\text {meö }}}$ [equation (12)] would enable [equation (10)] calculation of the separate contributions of the ionization of water and methanol to the apparent ionic product $K_{\mathrm{S}}$ of methanol-water mixtures if $\gamma_{\mathrm{OH}}{ }^{-}$and $\gamma_{\text {ome }}$ - were known as a function of solvent composition. Alfenaar and de Ligny ${ }^{3}$ deduced $\Delta \mu_{C_{1-}}^{\circ}, \Delta \mu^{\circ}{ }_{\mathrm{Br}}{ }^{-}$, and $\Delta \mu_{\mathrm{I}}^{\circ}$ - for the transfer of chloride, bromide, and iodide ions respectively from water to methanol-water. The values of $\Delta \mu^{\circ}$ for each of the three anions closely approximate to a direct proportionality with methanol mole fraction in the range $0<X_{\text {меон }}<0.9$. The present analysis is based on the assumption that $\Delta \mu^{\circ}{ }_{\mathrm{OH}}$ - and $\Delta \mu^{\circ}{ }_{\mathrm{OMe}}{ }^{-}$- for the transfer of hydroxide ions and methoxide ions are also linear functions of methanol mole fraction with proportionality constants $k_{\mathrm{OH}^{-}}$and $k_{\mathrm{OMe}^{-}}$respectively. Equations (21) and (22) follow from

$$
\begin{gather*}
\gamma_{\mathrm{OH}^{-}}=\exp \left(k_{\mathrm{OH}}-X_{\mathrm{MeOH}} / R T\right)  \tag{21}\\
\gamma_{\mathrm{OMe}^{-}}=\exp \left(k_{\mathrm{OM} \mathrm{e}^{-}}-X_{\mathrm{MeOH}} / R T\right) \tag{22}
\end{gather*}
$$

${ }^{7}$ C. L. de Ligny and M. Alfenaar, Rec. Trav. chim., 1965, 84, 81 .
${ }_{8}$ A. L. Andrews, H. P. Bennetto, D. Feakins, K. G. Lawrence, and R. P. T. Tomkins, $J$. Chem. Soc. ( $A$ ), 1968, 1486.
${ }^{9}$ D. Feakins, ' Physico-Chemical Processes in Mixed Aqueous Solvents,' ed. F. Franks, Heinemann, London, 1967, p. 71.
equation (8) and on substitution in equation (10) lead to equation (23). The only unknown parameters in

$$
\begin{align*}
& \log _{10}\left\{\left(\frac{K_{\mathrm{s}} \gamma_{\mathrm{H}+}}{a^{\mathrm{W}} \mathrm{H}_{\mathrm{z}} \mathrm{O}}\right)-\left(\frac{K^{\mathrm{w}} \mathrm{MeOH}^{a^{\mathrm{w}}}}{a_{\mathrm{MeOH}}}\right)\right. \\
& \left.\quad \exp \left(-\frac{k_{\mathrm{OMe}-}-X_{\mathrm{MeOH}}}{R T}\right)\right\} \\
& \quad=-2 \cdot 303\left(\frac{k_{\mathrm{OH}}-X_{\mathrm{Me} \mathrm{OH}}}{R T}\right)+\log _{10} K^{\mathrm{m}_{\mathrm{H}} \mathrm{O}} \tag{23}
\end{align*}
$$

equation (23) are $k_{\mathrm{OH}^{-}}$and $k_{\mathrm{OMe}_{\mathrm{e}}-}$. These were determined by choosing $k_{\mathrm{OM}_{\mathrm{e}}-}$ such that a linear plot of the left-hand side of the equation against $X_{\text {MeOH }}(\mathrm{O}<$ $X_{\text {Meö }}<0.9$ ) was obtained. Hence $k_{\text {OMe }}=5759 \mathrm{cal}$ $\mathrm{mol}^{-1}$ and from the slope of the graph $k_{\mathrm{OH}^{-}}=6546 \mathrm{cal}$ $\mathrm{mol}^{-1}$. Estimates of the increment to $k_{\mathrm{OMe}^{-}}$or ${k_{\mathrm{OH}}-1 .}^{-1}$ necessary to produce a significant deviation from linearity suggest that the error in the quoted values is less than ca. $20 \mathrm{kcal} \mathrm{mol}^{-1}$. The observation that equation (23) can be made linear by the insertion of a particular value for $k_{\mathrm{OMe}}$ - is strong support for the basic assumption made in this treatment that $\Delta \mu^{\circ}{ }^{\circ}{ }^{\mathrm{OH}}$ - and $\Delta \mu^{\circ}{ }^{\circ} \mathrm{OM}_{0}{ }^{-}$are approximately linear functions of $X_{\mathrm{MeOH}}$.
$\Delta \mu^{\circ}{ }^{\circ}{ }^{\circ}-$ and $\Delta \mu^{\circ}{ }^{\circ}{ }^{\text {OM }}{ }^{-}$, calculated as $6546 X_{\text {Meö }}$ and $5759 X_{\text {Meoн }}$ respectively ( $0<X_{\text {MeoH }}<0.9$ ), are compared in the Figure with the values of $\Delta \mu^{\circ}{ }_{\mathrm{Br}}{ }^{-}$and $\Delta \mu^{\circ}{ }_{\mathrm{I}}{ }^{-}$ deduced by Alfenaar and de Ligny. ${ }^{3}$ For pure methanol $\Delta \mu^{\circ}{ }_{0 \times 1}{ }^{-}$was calculated via equation (9) with $K^{w_{\text {meö }}}$ given by equation (12), $\gamma_{\mathrm{H}^{+}}=0.03574$ (Table 2), and $K_{\text {MeOH }}$ [equation (3)] given by equation (24) (Tables 1

$$
\begin{equation*}
\mathrm{p} K_{\text {MeöII }}=16 \cdot 708+\log _{10}(31 \cdot 209)=18 \cdot 202 \tag{24}
\end{equation*}
$$

and 2). Equation (25) is analogous to equation (16)

$$
\begin{equation*}
a^{\mathrm{m}}{ }_{\mathrm{MeOH}}=31 \cdot 209 X_{\mathrm{MeOH}} f^{\mathrm{m}}{ }_{\mathrm{MeOH}} \tag{25}
\end{equation*}
$$

( $X_{\text {Meоп }}=1$ ) and combined with equation (20) leads to equation (26). Hence (equation 11) $\log _{10} \gamma_{0 \mathrm{Me}}-$
$\left(a^{\omega_{\text {МееО }}} / a^{\mathrm{m}_{\text {меоН }}}\right)=(55 \cdot 509 / 31 \cdot 209) 1 \cdot 521=1 \cdot 1694$
$=4 \cdot 1672$ and $\Delta \mu^{\circ}{ }_{\text {OMe }}{ }^{-}=5686 \mathrm{cal} \mathrm{mol}^{-1}$ for the transfer of the methoxide ion from water to methanol.
The standard chemical potentials of transfer of $\left(\mathrm{H}^{+}+\mathrm{OH}^{-}\right)$and $\left(\mathrm{H}^{+}+\mathrm{OMe}^{-}\right)$are shown in the Figure and illustrate the primary medium effect on the ionic products of water and methanol respectively. For methanol the medium effect is small ( $<14 \%$ change in $\gamma_{\mathrm{H}}+\gamma_{\text {оме }}{ }^{-}$) up to $c a .60 \%$ ( $\mathrm{w} / \mathrm{w}$ ) methanol. The ionic products $K_{\mathrm{w}}$ and $K_{\mathrm{m}}$ [equation (1)] of water and methanol respectively in methanol-water mixtures were evaluated from equations (27) and (28) which follow from equations

$$
\begin{align*}
& K_{\mathrm{w}}=K_{\mathrm{w}_{\mathrm{H}, \mathrm{O}}\left(a_{\mathrm{w}, \mathrm{O}} / \gamma_{\mathrm{H}}+\gamma_{\mathrm{OH}^{-}}\right)}  \tag{27}\\
& K_{\mathrm{m}}=K^{\mathrm{w}}{ }_{\mathrm{MeOH}}\left(a^{\mathrm{m}}{ }_{\mathrm{MeOH}} / \gamma_{\mathrm{H}}+\gamma_{\mathrm{OM} \mathrm{O}^{-}}\right) \tag{28}
\end{align*}
$$

(1) and (10). The figures are in Table 3 together with the calculated [equation (1)] values for $K_{\mathrm{s}}$, the apparent ionic product of the solvent mixtures. The calculated and experimental (Table 1) $K_{\mathrm{S}}$ values are in excellent
agreement ( $\Delta$, Table 3) over the complete range of solvent composition. The agreement is further support for the validity of the assumption made in this treatment that the free energies of transfer of hydroxide ions and methoxide ions from water to methanol-water mixtures are approximately linear functions of the mole fraction of methanol. Ratios of methoxide ion concentration to hydroxide ion concentration and the acid ionization constants $K_{\mathrm{a}}\left(\mathrm{H}_{2} \mathrm{O}\right)=\left(K_{\mathrm{w}} / m_{\mathrm{H}, \mathrm{O}}\right)$ and $K_{\mathrm{a}}(\mathrm{MeOH})=$ ( $K_{\mathrm{m}} / m_{\mathrm{MeOH}}$ ) of water and methanol respectively in the solvent mixtures are also in Table 3. The ionization constants are referred to a standard state in the particular solvent composition to which they refer. The

$\Delta \mu^{0}$ (Molality scale) for the transfer of some ions from water to methanol-water mixtures
activities of water and methanol referred to the standard state are therefore equal to the molalities of the two components.

Calculations have also been carried out to test whether separation of $K_{\mathrm{S}}$ into $K_{\mathrm{w}}$ and $K_{\mathrm{m}}$ was possible by use of the free energies of transfer of the proton from water to methanol-water mixtures quoted by Andrews et al. ${ }^{8}$ These differ somewhat from the values (Table 2) evaluated by Alfenaar and de Ligny. ${ }^{3}$ The corresponding free energies of transfer of the chloride, bromide, and iodide ions do not approximate to linear functions of $X_{\text {Meor }}$ and therefore equations (21) and (22) are unlikely to be applicable. However the free energies of transfer of the three anions are good linear functions of each other. Equations (29) and (30), in which $k_{\text {OH- }}$ and

$$
\begin{align*}
& \Delta \mu_{\mathrm{OH}}{ }^{\circ}=\frac{1}{3} k^{\prime}{ }_{\mathrm{OH}}-\left(\Delta \mu_{\mathrm{Cl}}{ }^{\circ}+\Delta \mu_{\mathrm{Br}^{-}}^{\circ}+\Delta \mu_{\mathrm{I}^{-}}^{\circ}\right)  \tag{29}\\
& \Delta \mu_{\mathrm{OMe}^{-}}^{\circ}=\frac{1}{3} k^{\prime} \mathrm{OMe}^{-}-\left(\Delta \mu_{\mathrm{Cl}}{ }^{\circ}+\Delta \mu_{\mathrm{Br}}{ }^{\circ}+\Delta \mu_{\mathrm{I}}^{\mathrm{I}} \mathrm{I}^{\circ}\right) \tag{30}
\end{align*}
$$

$k_{\text {OMe }}{ }^{-}$are proportionality constants, can be written on the assumption that the free energies of transfer of hydroxide ions and methoxide ions are similarly linear

Table 3
Calculated * apparent ionic products of methanol-water mixtures and ionic products and acid ionization constants of water and methanol in methanol-water mixtures at $25^{\circ} \mathrm{C} ; K_{\mathrm{w}}, K_{\mathrm{m}}$, and $K_{\mathrm{s}}$ in $\mathrm{mol}^{2} \mathrm{~kg}^{-2}$; $K_{\mathrm{a}}$ in $\mathrm{mol} \mathrm{kg}^{-1}$

| $\begin{aligned} & \mathrm{MeOH} / \\ & \%(\mathrm{w} / \mathrm{w}) \end{aligned}$ | $\mathrm{p} K_{\text {w }}$ | $\mathrm{p} K_{\mathrm{m}}$ | $\mathrm{p} K_{8}$ (calc) | $\Delta \dagger$ | $\left(\frac{m_{\mathrm{OMa}^{-}}}{m_{\mathrm{OH}^{-}}}\right)$ | $\mathrm{p} K_{\mathrm{a}}\left(\mathrm{H}_{2} \mathrm{O}\right)$ | $\mathrm{p} K_{\mathrm{a}}(\mathrm{MeOH})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 13.997 | $\infty$ | 13.997 | $0 \cdot 000$ | 0 | 15•741 | $15 \cdot 55 \pm$ |
| 10 | 14.091 | 15.061 | 14.047 | 0.010 | $0 \cdot 107$ | $15 \cdot 790$ | 15.556 |
| 20 | $14 \cdot 156$ | $14 \cdot 746$ | 14.057 | 0.002 | $0 \cdot 257$ | 15.804 | $15 \cdot 542$ |
| 28.5 | $14 \cdot 219$ | 14.595 | 14.066 | $-0.001$ | 0.421 | 15.818 | $15 \cdot 544$ |
| 50 | $14 \cdot 416$ | $14 \cdot 392$ | $14 \cdot 103$ | 0.006 | 1.06 | $15 \cdot 860$ | 15.585 |
| 60 | 14.529 | $14 \cdot 328$ | $14 \cdot 116$ | $-0.011$ | 1.59 | 15.876 | $15 \cdot 601$ |
| 70 | $14 \cdot 768$ | $14 \cdot 368$ | $14 \cdot 222$ | 0.004 | 2.51 | 15.989 | 15.707 |
| 80 | $15 \cdot 158$ | 14.501 | 14.415 | $-0.008$ | $4 \cdot 54$ | 16.204 | $15 \cdot 898$ |
| 90 | $15 \cdot 938$ | 14.883 | 14.846 | 0.001 | 12.75 | 16.682 | 16.331 |
| 100 | $\infty$ | 16.708 | 16.708 | $0 \cdot 000$ | $\infty$ |  | 18.202 |

* Calculations based on the results of Alfenaar and de Ligny ${ }^{3}$ for the activity coefficient of the proton in methanol-water mixtures. $\dagger \Delta=\mathrm{p} K_{\mathrm{s}}$ (calc) $-\mathrm{p} K_{\mathrm{g}}$ (expt.). $\ddagger$ Ref. 5.

Table 4
Calculated * apparent ionic products of methanol-water mixtures and ionic products of water and methanol in methanol-water mixtures at $25^{\circ} \mathrm{C} ; K_{\mathrm{w}}, K_{\mathrm{m}}$, and $K_{\mathrm{S}}$ in $\mathrm{mol}^{2} \mathrm{~kg}^{-2}$

| $\mathrm{MeOH} / \%$ (w/w) | $-\log ^{10} \gamma_{H}{ }^{+}$ | $\log _{10} \gamma_{h} \dagger$ | $\mathrm{p} K_{\text {w }}$ | $\mathrm{p} K_{\mathrm{m}}$ | $\mathrm{p} K_{\text {S }}$ | $\Delta \pm$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | $0 \cdot 000$ | $0 \cdot 000$ | 13.997 | $\infty$ | 13.997 | $0 \cdot 000$ |
| 10 | 0.272 | 0.346 | 14.093 | $15 \cdot 068$ | 14.050 | 0.013 |
| 20 | $0 \cdot 684$ | $0 \cdot 824$ | $14 \cdot 183$ | 14.772 | 14.084 | 0.029 |
| $28 \cdot 5$ | 1.207 | 1-375 | $14 \cdot 232$ | $14 \cdot 594$ | 14.076 | 0.009 |
| 50 | $2 \cdot 406$ | $2 \cdot 671$ | $14 \cdot 396$ | $14 \cdot 347$ | 14.070 | $-0.027$ |
| 60 | $2 \cdot 991$ | $3 \cdot 341$ | 14.521 | $14 \cdot 294$ | 14.092 | -0.035 |
| 70 | $3 \cdot 521$ | $4 \cdot 061$ | 14.774 | $14 \cdot 348$ | 14.210 | $-0.008$ |
| 80 | 3.952 | $4 \cdot 776$ | $15 \cdot 166$ | 14.493 | 14.409 | $-0.014$ |
| 90 | $3 \cdot 995$ | 5.405 | 15.988 | 14.945 | 14.907 | 0.062 |
| 100 | $2 \cdot 251$ |  | $\infty$ | 16.708 | 16.708 | 0.000 |

* Calculations based on the results of Andrews et al. ${ }^{8}$ for the activity coefficient of the proton in methanol-water mixtures. $\dagger$ Molal activity coefficients $\gamma$ were interpolated from molar activity coefficients in ref. $8 . \quad \ddagger \Delta=\mathrm{p} K_{\mathrm{s}}$ (calc) $-\mathrm{p} K_{\mathrm{S}}$ (exp.).
functions of the values for halide ions. Equations (31)

$$
\begin{equation*}
\log _{10} \gamma_{\mathrm{OH}^{-}}=k_{\mathrm{OH}^{-}}^{\prime} \log _{10} \gamma_{\mathrm{h}} \tag{31}
\end{equation*}
$$

and (32) follow from equation (8) and the definition of

$$
\begin{equation*}
\log _{10} \gamma_{\mathrm{OM}_{\mathrm{e}^{-}}}=k_{\mathrm{OM}_{\mathrm{e}^{-}}^{\prime}} \log _{10} \gamma_{\mathrm{h}} \tag{32}
\end{equation*}
$$

$\gamma_{\mathrm{h}}$, equation (33). Substitution for $\gamma_{\mathrm{OH}^{-}}$and $\gamma_{\mathrm{OM}^{-}}$in

$$
\begin{equation*}
\frac{1}{3}\left(\Delta \mu_{\mathrm{Cl}^{-}}^{\circ}+\Delta \mu_{\mathrm{Br}^{-}}^{\circ}+\Delta \mu_{\mathrm{I}^{-}}^{\circ}\right)=R T \ln \gamma_{\mathrm{h}} \tag{33}
\end{equation*}
$$

equation (10) leads to equation (34) which was solved

$$
\begin{align*}
& =-k^{\prime}{ }_{\mathrm{OH}}{ }^{\mathrm{K}}-\log _{10} \gamma_{\mathrm{t}}+\log _{10} K^{\mathrm{W}} \mathrm{~Hz}_{\mathrm{z}} \mathrm{O} \tag{34}
\end{align*}
$$

as before [equation (23)] to give 0.902 and 0.989 for $k^{\prime}{ }_{\mathrm{OMe}}{ }^{-}$and $k^{\prime}{ }_{\mathrm{OH}}-$ respectively. The values of $\log _{10} \gamma_{\mathrm{H}^{+}}$
and $\log _{10} \gamma_{\mathrm{b}}$ used in the calculation are in Table 4. Hence estimates (Table 4) of $K_{\mathrm{w}}, K_{\mathrm{m}}$, and $K_{\mathrm{S}}$ were deduced via equations (1), (27), (28), (31), and (32).
The calculated $\mathrm{p} K_{\mathrm{S}}$ values in Table 4 show worse agreement ( $\Delta$, Table 4) with the experimental values than do those in Table 3. However the two treatments give figures of the same order of magnitude both for $K_{\mathrm{w}}$ and for $K_{\mathrm{m}}$. This suggests that the separation of $K_{\mathrm{s}}$ into $K_{\mathrm{w}}$ and $K_{\mathrm{m}}$ is based on a method which gives reasonable estimates of the variation of the ionic products of water and methanol with solvent composition. The values of $\mathrm{p} K_{\mathrm{w}}$ and $\mathrm{p} K_{\mathrm{m}}$ in Table 3 are probably the most reliable as they lead to close agreement between $\left(K_{\mathrm{w}}+\right.$ $K_{m}$ ) and the experimentally determined apparent ionic products of the solvent mixtures.
[1/886 Received, June 2nd, 1971]


[^0]:    ${ }^{1}$ J. Koskikallio, Suomen Kem., 1957, 30, B, 111.
    R. Gaboriaud, J. Lelièvre, and R. Schaal, Compt. rend., 1968, 266, C, 746.

[^1]:    ${ }^{3}$ M. Alfenaar and C. L. de Ligny, Rec. Trav. chim., 1967, 88,

