Vibrational Spectrum of *π*-Allylmanganese Tetracarbonyl

By G. Davidson • and D. C. Andrews, Department of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD

The i.r. and Raman spectra of $(\pi$ -C₃H₅)Mn(CO)₄ as a solid and in solution are reported and an assignment suggested. The vibrations of the allyl group are in good agreement with those in analogous molecules, and the vibrations of $Mn(CO)_4$ must be discussed in terms of C_4 , not C_{4v} symmetry.

MORE or less complete vibrational spectra have now been reported and assigned for a number of π -complexes of the type (hydrocarbon) $M(CO)_n$. Most of these have been cyclopentadienyl or arene complexes, e.g., $(C_5H_5)Mn(CO)_3$,¹ $(C_5H_5)V(CO)_4$,² (arene)M(CO)₃ (where arene = benzene, toluene, mesitylene, etc.; M = Cr, Mo, W),³⁻⁵ although a few non-cyclic hydrocarbon ligands have also been studied, e.g., (butadiene)Fe(CO)3.6

The π -bonded allyl group, which occurs in the relatively stable $(\pi$ -C₃H₅)Mn(CO)₄ and $(\pi$ -C₃H₅)Co(CO)₃ complexes,^{7,8} has not been studied in such detail. Indeed, the allyl group π -bonded to a transition metal

¹ I. J. Hyams, R. T. Bailey, and E. R. Lippincott, Spectrochim. Acta, 1967, 23, A, 273.

² J. R. Durig, A. L. Marston, R. B. King, and L. W. Houk, J. Organometallic Chem., 1969, 16, 425. ³ G. Davidson and E. M. Riley, J. Organometallic Chem.,

1969, **19**, 101.

⁴ D. M. Adams and A. Squire, J. Chem. Soc. (A), 1970, 814. ⁵ G. Davidson and E. M. Riley, Spectrochim. Acta, in the press.

has been strangely neglected by vibrational spectroscopists, despite its importance in modern organometallic chemistry. The only π -allyl complexes for which any detailed vibrational data are available are the dimeric species $[Pd(\pi-C_3H_5)X]_2$ and $[Pd(\pi-2-methylallyl)X]_2$ (where $X = Cl, Br).^{9,10}$

In order to obtain further information on the vibrations of the π -allyl group, and on the mutual interactions of the π -allyl group and the carbonyl ligands, we have studied the i.r. and Raman spectra of $(\pi - C_3H_5)Mn(CO)_4$.

Selection Rules .- There have been no reports of X-ray

⁶ G. Davidson, Inorg. Chim. Acta, 1969, 3, 596.

⁷ H. D. Kaesz, R. B. King, and F. G. A. Stone, Z. Naturforsch., 1960, 155, 682.
 ⁸ W. R. McClellan, H. H. Hoehn, H. N. Cripps, E. L. Muetterties, and B. W. Howk, J. Amer. Chem. Soc., 1961, 83,

1601.
⁹ K. Shobatake and K. Nakamoto, J. Amer. Chem. Soc., 1970, 92, 3339.

¹⁰ D. M. Adams and A. Squire, J. Chem. Soc. (A), 1970, 1808.

diffraction or other studies on the molecular structure of π -allylmanganese tetracarbonyl. We will consider the most symmetrical possibility, shown in Figure 1,

FIGURE 1 The molecular structure assumed for $(\pi - C_3 H_5) Mn(CO)_4$

with the $Mn(CO)_{4}$ fragment having a square pyramidal structure, and the plane defined by the C₃ skeleton of the allyl group parallel to the plane containing the four carbonyl carbon atoms.

Very many investigations of the vibrational spectra of $(hydrocarbon)-M(CO)_n$ complexes have used the concept of 'local symmetry' in the assignment and interpretation of spectra.¹¹ In the present example, the local symmetry of the allyl group would be C_s , and that of the $Mn(CO)_4$ portion would be C_{4v} . In a number of cases, however, the local symmetry approximation has been shown to be inadequate,^{5,6} and one must consider the symmetry of the molecule as a whole. The overall symmetry of $(\pi - C_3 H_5) Mn(CO)_4$ is C_s , and, as shown in Figure 2, the plane of symmetry may be derived from a σ_v plane of C_{4v} (a) or from a σ_d plane of C_{4v} (b).

FIGURE 2 Two possible conformations of the (*m*-C₃H₅)Mn(CO)₄ molecule, symmetry plane derived from (a) σ_v of C_{4v} , (b) σ_d of C_{4v}

Table 1 lists the numbers and symmetry types of the normal modes of the allyl group and the Mn-(allyl) group in terms of C_s symmetry. Table 2 gives the corresponding information for the Mn(CO)₄ fragment, assuming C_{4v} symmetry and C_s symmetry (derived from $\sigma_v \text{ or } \sigma_d \text{ of } C_{4v}$). It will be seen that it should be possible to determine whether C_{4v} or C_s symmetry is necessary to explain the vibrations of $Mn(CO)_4$ from the number of i.r. and Raman bands observed, and also to distinguish between the different possibilities of C_s symmetry (from

TABLE 1

Numbers and symmetries of normal modes for the allyl group and the Mn-(allyl) portion of $(\pi$ -C₃H₅)Mn(CO)₄ $(C_s \text{ symmetry})$

ν (C-H)	A'
$\nu(CH_2)$	2A' + 2A'
$\delta(CH_2)$	A' + A''
$\pi(C-H)$	A'
$\delta(C-H)$	A''
$\nu(C-C-C)$	A' + A'
$\rho_t(CH_2)$	A' + A''
$\rho_w(CH_2)$	A' + A''
$\rho_r(CH_2)$	A' + A'
$\delta(C-C-C)$	
ν [Mn–(allyl)]	2A' + A'
τ[mn-(allyl)]	$A^{\prime\prime}$

All vibrations are i.r. and Raman active; A' vibrations will give polarised Raman scattering ($\nu = \text{stretch}$; $\delta = \text{in-plane}$ deformation; $\pi = \text{out-of-plane}$ deformation; $\rho_t = \text{twist}$; $\rho_w = wag; \ \rho_r = rock; \ \tau = torsion).$

TABLE 2

Numbers and symmetries of Mn(CO)₄ vibrational modes

All vibrations would be Raman-active $(A', A_1 \text{ polarised})$, and all would also be i.r.-active except the B_1 and B_2 vibrations of C_{4v} symmetry.

RESULTS AND DISCUSSION

Table 3.

Assignment of Spectra.—This discussion can be subdivided conveniently into two parts: (a) internal vibrations of the allyl group and those involving Mn-(allyl), and (b) vibrations of $Mn(CO)_4$. We will deal with them in that order, as the former do not depend upon the problem of 'local' versus 'overall' symmetry (both are C_s). Data from solution spectra will be used wherever possible.

Vibrations of the Allyl Group and of Mn-(allyl).-Table 1 shows that an allyl group with an effective symmetry of C_s should give rise to 18 vibrational modes (10A' + 8A''), all allowed in both the i.r. and Raman, with 10 polarised Raman bands. The vibrational spectrum of the free $C_3H_5^-$ ion (C_{2v}) has not been investigated thoroughly, although some i.r. data are available for $Na^+C_3H_5^{-,12}$ Consequently the assignment must be based largely upon the published assignments for $[(\pi-C_3H_5)PdX]_2^{9,10}$ it being borne in mind that the carbonyl ligands present in $(\pi$ -C₃H₅)Mn(CO)₄ are very different electronically from the halogens in these molecules.

C-H Stretching vibrations. In the region 2900— 3100 cm⁻¹, the Raman spectrum (in CCl_4 or CS_2 solution) shows 6 bands, the i.r. 5. The highest-frequency band, ¹¹ F. A. Cotton, A. D. Liehr, and G. Wilkinson, J. Inorg. Nuclear Chem., 1955, 1, 175. ¹² E. J. Lanpher, J. Amer. Chem. Soc., 1957, 79, 5578.

TABLE 3

Observed vibrational frequencies (cm^-1) of $(\pi\text{-}\mathrm{C_3H_5})\mathrm{Mn(CO)_4}$

	Raman			I.r.		Approximate assignment
Solid	CS.	CCl	Solid	CS,	CCl ₄	
	2	4		-	3980w	
				3920vw	3928m	
				002010	3902w	
3082	3078w dn	3078w dp	3078w	3073m	3079m	$A^{\prime\prime} \nu(CH_{o})$
3037w	3020w pol	3025w pol	00101	3018m	3022m	$A' \nu(CH)$
30371	2073w pol	2073w pol		2972w	001411	$A' \gamma$ (CH ₂)
	2062	2013W,por		2062m	2062m	$A^{\prime\prime}$ w(CH)
	2903VW	2904VW		290211	2902111	$A' = V(CH_2)$
	2949w,poi	2946w,p01		2940W		$2 \times 4' $ (CH)
	2903wm,pot	2901wiii,poi		0000	9000	$2 \times A O(CII_2)_{sym}$.
				2000VW	2000VW	
				2850VVW	2800VVW	
			0700	0500	2740VW	
			2720W	2706W	2710w	
				2626w	0	
				2556w	2555W	
				2500w	2502w	
				2480w	2478w	
				2443w	2440w	
				2406w	2405w	
				2389w	2390w	
					2380w	
					2330w	
					2181 m	
2077s	2070m,pol	2071m,pol	2070s	2068s	2064s	$A' \nu$ (C-O)
				2046w	2046w	
				2022 vw	2014vw	
1994s	1991m,pol	1993m,pol	1991vs	1989vs	1981vs	$A' \nu$ (C-O)
1967s	1970w,?dp	1974w,?dp	1970vs	1974 vs	1971vs	$A^{\prime\prime} \nu$ (C-O)
1953s	1955m,pol	1957m,pol	1952vs	1958s	1955s	$A' \nu$ (C-O)
	-	-		1940w		
				1919w		
				1847w	1846w	
				1810w	1808w	
				1774w	1770w	
1505m	1503w.dp	1503w.dp	1500m		1499s	$A^{\prime\prime} \delta(\mathrm{CH}_2)_{\mathrm{asym.}}$
1469w	1469w.pol	1462w.pol			1464s	$A' \delta(CH_2)_{sym.}$
1403m	1397w.dp	1 3 97w.dp		1397m	1394m	$A^{\prime\prime} \nu (C - C - C)_{asym.}$
	, 1	<i>,</i> 1	1305w		1305w	· · · ·
			1258w	1257m	1255m	
1221m	1218w.pol	1214w.pol	1212m	1215s	1211s	$A' \pi$ (C-H)
	, r	,1	1155m.br	1150w	1143w	$A^{\prime\prime} \delta(C-H)$
				1120w		
				1097m	1095m	
			1059w	1058m	1057m	
1013m	1019w.pol	1017w.pol	1020m	1020m	1016m	$A' \nu (C-C-C)_{sym}$
970w	1008w pol	1007w.pol		1009m	1005s	$A' \rho_t (CH_2)_{avm}$
	10001,por	1001,Po1	985vw	980w	977w	$A^{\prime\prime} o_t (CH_2)_{asym}$
0101				960w		
921m	923w pol	920w.pol	929m	922m	919w	$A' \rho_{\rm w}({\rm CH}_2)_{\rm sym}$
521m	ozon,por	02 01, por	02011	907w	903vw	· - (· · · · · 2/69111.
			880w	886m	883m	$A^{\prime\prime} \circ_{\pi} (CH_s)_{samm}$
			788w	785m		A" pr(CHa)asym
775.000		774w pol	770w	773w		$A' \rho_r (CH_a)_{arm}$
11000		669yyw pol	6705	662vs	669vs	$A' \delta(Mn-C-O)$
		640yw pol	6385	637vs	638vs	$A' + ?A'' \delta(Mn-C-O)$
		oroww,por	572m	575w	00010	$A' + A'' \delta(Mn - C - O)$
565w	560m pol	561m pol	562m	5615	560s	$A' + ?A'' \delta(Mn-C-O)$
000 W	591w pol	oom,por	523w	523w	520w	$A' \delta(C-C-C)$
479m	478m nol		4865	482s	480s	$A' \nu$ (Mn-CO)
	±, out, por		460m	456m	454m	$A' + A'' \nu$ (Mn-CO)
	430m pol		436m	433m	430m	$A' \nu (Mn-CO)$
417m	411m dn	419m dp	414w	100111	100111	$A'' \nu (Mn-allvl)_{am-1}$
380m	385c pol	387s pol	370117			$A' \nu (Mn-allvl)$
991a	2005, poi	3615, por	330m			$A' \nu (Mn-allyl)_{n-m}$
0018 150	5218,poi	150m dr	000111			$A'' \perp 2A' \delta(C-Mn-C)$
100VW		reau'tab				

at 3078 cm⁻¹, is definitely depolarised, and can be assigned to the A'' CH₂ stretch. Most of the other assignments follow those of Adams and Squire ¹⁰ quite closely, thus: 3020 cm⁻¹ (pol.), A' CH stretch; 2973 cm⁻¹ (pol.), $A' \operatorname{CH}_2$ stretch; 2949 cm⁻¹ (pol.), $A' \operatorname{CH}_2$ stretch. It should be noticed that all of these occur at a lower frequency than in the Pd complexes. The remaining fundamental expected in this region (an A'' CH₂ stretch), not detected by previous workers corresponds to a very weak Raman band, of uncertain polarisation, at 2963 cm^{-1} (with an i.r. counterpart of medium intensity). The last feature in this part of the spectrum is a weak- to medium-intensity Raman band (polarised) at 2903 cm⁻¹. This is rather low in frequency to be a C-H stretching fundamental and, following Adams and Squire,¹⁰ we assign it as $2 \times \delta(CH_2)$ sym. (= 2928 cm⁻¹) in this case lowered in frequency by a Fermi resonance interaction with the A' CH₂ stretching fundamental found at 2949 cm⁻¹.

Deformation and skeletal stretching vibrations. All of these vibrations are expected to occur in the region $500-1600 \text{ cm}^{-1}$, and here the assignment is much less clear-cut than for the C-H stretches. The chief reason for this is that there are a number of vibrations of the same symmetry species within a fairly restricted frequency range, resulting in an extensive coupling of modes. Thus a description such as 'in-plane CH₂ deformation' for a particular frequency will be an approximation.

An instructive example of the results of such a mixing of modes occurs in the vibrational spectrum of Zeise's salt, K[PtCl₃(C₂H₄)],H₂O. Earlier workers assigned the v(C=C) vibration to a band at *ca*. 1515 cm⁻¹, but Hiraishi¹³ preferred an assignment of 1243 cm⁻¹, suggesting that the strength of the $Pt-(C_2H_4)$ band supported this. Sheppard, however, has shown by a study of Zeise's salt and its tetramethyl analogue 14 that the confusion has arisen because of the strong coupling between the ν (C=C) and δ (CH₂)_{sym.} (in-plane, 'scissors ', deformation). This gives two bands, ca. 1515 cm⁻¹ and ca. 1240 cm⁻¹, each of which is intermediate in character between the $\nu(\text{C=C})$ and the $\delta(\text{CH}_2)_{sym.}$ vibrational modes. In all of the subsequent discussions, the approximate nature of the descriptions of modes must always be kept in mind.

The only previous attempted assignments for $(\pi$ - $C_{3}H_{5}$)Mn(CO)₄ were made by McClellan *et al.*⁸ who suggested tentatively that a strong (i.r.) band at 1500 cm⁻¹ corresponded to the ν (C-C-C)_{asym.} vibration. That vibration in $C_{3}H_{5}^{-}$, however, is believed to occur at 1535 cm⁻¹ (ref. 12), and so this assignment implies only a weak perturbation of the bonding in the allyl group by the attachment of the $Mn(CO)_4$ unit. The Mn-(allyl) band appears to be quite strong, however (see below), and so this is not very plausible. In addition, this assignment would leave no reasonable frequencies to be assigned to the $\delta(CH_2)_{asym.}$ vibration. It is therefore suggested that the band found at 1503 cm⁻¹ (depol., Raman) and 1499 cm⁻¹ (i.r.) should be assigned to $\delta(CH_2)_{asym.}$, with $\nu(C-C-C)_{asym.}$ assigned to the depolarised Raman band of next-highest frequency, at 1397 cm^{-1} (with a coincident i.r. band).

By comparing the spectra of $[Pd(\pi-CH_2-CH-CH_2)X]_2$ and of [Pd(π -CH₂-CMe-CH₂)X]₂, Adams and Squire ¹⁰ were able to assign the two CH deformation modes as follows: π (CH) (out-of-plane, A'), 1225 cm⁻¹; δ (CH) (in-plane, A"), 1197 cm⁻¹. A weak, polarised Raman and strong i.r. band at 1215 cm⁻¹ in $(\pi$ -C₃H₅)Mn(CO)₄ can be assigned to the A' out-of-plane deformation, but the $\delta(CH)$, A", must be considerably shifted. The next likely candidate is a weak i.r. band at 1150 cm⁻¹, with no observable Raman counterpart.

The antisymmetric skeletal stretch was assigned, above, to a band at 1397 cm⁻¹. A polarised Raman band at 1019 $\rm cm^{-1}$ (with a corresponding i.r. band) can be assigned to $v(C-C-C)_{sym.}$. This is in agreement with previous assignments.9,10

The remaining deformations of the CH₂ group are those (out-of-plane) which involve twisting (ρ_t) and wagging (ρ_w) of the group, together with the (in-plane) CH_2 rocking vibration (ρ_r). The first two types should give rise to bands in the 900-1100 cm⁻¹ region, the last to bands between 700 and 800 cm⁻¹.15 There are 6 vibrations of these types (A' + A'') for each of the three subdivisions), and they can be assigned as follows: $\rho_t(CH_2)_{sym.}$ (A'), 1008 (pol.); $\rho_t(CH_2)_{asym.}$ (A''), 980 (i.r. only); $\rho_w(CH_2)_{sym.}$ (A'), 923 (pol.); $\rho_w(CH_2)_{asym.}$ (A''), 886 (i.r. only); $\rho_r(CH_2)_{asym.}$ (A''), 785 (i.r. only); $\rho_r(CH_2)_{sym.}$ (A'), 774 (pol.) (all figures in cm⁻¹).

This leaves just one vibrational mode, the skeletal deformation, $\delta(C-C-C)$ (A'), which is assigned to a band which is weak in both the i.r. (523 cm⁻¹) and Raman (521 cm⁻¹, pol.). This assignment is made by elimination after assigning the Mn-CO stretches, and Mn-C-O deformations which are also found in that region.

The vibrations of the Mn-(allyl) portion. Table 1 indicates perhaps the most realistic way of describing the 4 modes which are associated with this: three Mn-(allyl) stretches [2A' + A'']; these could alternatively be described as the Mn-(allyl) stretch, A', and two non-degenerate allyl tilting vibrations, A' + A''] and one torsional motion of the allyl group. Such torsional vibrations usually give very weak i.r. and Raman bands, and no feature which can be so assigned was seen.

In the $(hydrocarbon)M(CO)_n$ systems hitherto investigated, the M-(hydrocarbon) stretches were found between 300 and 400 $\text{cm}^{-1,1-6,10,13}$ In this region in $(\pi$ -C₃H₅)Mn(CO)₄ three bands are seen, both in the i.r. and the Raman. Two, at 327 and 385 cm⁻¹, give strong, polarised Raman bands; these are assigned as the A'symmetric (327) and antisymmetric (385) Mn-(allyl) stretches. The third band, at 411 cm⁻¹, is depolarised, and it is assigned to the A'' antisymmetric Mn-(allyl) stretch.

 ¹³ J. Hiraishi, Spectrochim. Acta, 1969, 25, A, 749.
 ¹⁴ N. Sheppard, unpublished observations, reported at the 2nd International Conference on Raman Spectroscopy, Oxford, England, Sept. 1970. ¹⁵ N. Sheppard and D. M. Simpson, *Quart. Rev.*, 1953, 7, 19.

The only remaining vibrations which involve the allyl group are the (allyl)- $Mn-(CO)_4$ deformations, which will be discussed together with the $Mn-(CO)_4$ vibrations.

Vibrations of the $Mn(CO)_4$ Group.—The assignment of observed bands to the different types of vibration listed in Table 2 can be carried out quite simply by analogy with known carbonyl systems. The main point of interest is whether the effective symmetry for $Mn(CO)_4$ is C_{4v} (local symmetry) or C_s (overall symmetry) and, if the latter appears to be more likely, whether the symmetry plane is derived from a σ_v or a σ_d plane or C_{4v} .

Considering first the C-O stretches, C_{4v} predicts a total of 3 bands $(A_1 + B_1 + E)$, only 2 of which are i.r. active $(A_1 + E)$, and only one of which (A_1) should give a polarised Raman band. C_s on the other hand predicts four bands, all i.r. and Raman active, but the two possible C_s structures [Figures 2(a) and (b)] would give different numbers of polarised bands. If the symmetry plane is a σ_v plane of C_{4v} [Figure 2(a)] there should be 3A' + A'', *i.e.*, three polarised Raman bands, but if the plane is a σ_d plane of C_{4v} [Figure 2(b)] there should be 2A' + A'', *i.e.*, two polarised Raman bands. Both the i.r. and Raman solution spectra of $(\pi-C_3H_5)Mn(CO)_4$ show four bands in the C-O stretching region, and therefore effective C_s symmetry must be assumed. Further, three of them are polarised in the Raman spectrum (2070, 1991, and 1955 cm⁻¹), and only one is depolarised (1974 cm⁻¹); it therefore seems that the selection rules for the structure in Figure 2(a) are being obeved.

It is unlikely that we will get such unequivocal information from the remaining vibrations, since the C-O stretches are the strongest and sharpest features in the $Mn(CO)_4$ spectrum. The Mn-(CO) stretches, however, do give three i.r. bands, at 433, 456, and 482 cm^{-1} , and two polarised Raman bands (430, 478 cm⁻¹). These observations are not consistent with C_{4v} symmetry, although they do not permit a distinction to be made between the C_s possibilities. The best assignment that can be made therefore, in agreement with the C-O stretching assignments, is as follows: 478 cm⁻¹, A' (A_1 for C_{4v} ; 456 cm⁻¹, A' + A'' (E for C_{4v}); 430 cm⁻¹, A' (B_1 for C_{4v}). The last two assignments follow (a) by analogy with $(\pi$ -C₅H₅)V(CO)₄, where the V–(CO) stretch of E symmetry is not observed in the Raman spectrum ² (the 456 cm⁻¹ band is seen only in the i.r.), and (b) from the C-O stretching assignments, since the B_1 modes of C_{4v} will correlate with A' of C_s , and the Raman band at 430 cm⁻¹ is definitely polarised.

Only four Mn–C–O deformation frequencies are observed (only 3 in the Raman spectrum), and so no distinction between C_{4v} and C_s symmetry can be made on the basis of these (6 predicted for C_{4v} , 8 for C_s). As expected,¹⁶ they lie in the region 550–700 cm⁻¹ and they are much stronger in the i.r. than in the Raman region. Their assignment is by no means definite, but the following fits all of the known facts: 669 cm^{-1} (R., pol., i.r.), A'; 640 cm^{-1} (R., ?pol., i.r.), A' + ?A''; 575 cm^{-1} (i.r. only), A' + A''; 560 cm^{-1} (R., pol., i.r.), A' + ?A''.

The remaining vibrations constitute the least satisfactory part of the whole analysis. It proved to be very difficult to obtain good crystalline solid samples of $(\pi$ -C₃H₅)Mn(CO)₄ to study the Raman spectrum below 150 cm⁻¹ (solution spectra below *ca*. 150 cm⁻¹ are very difficult to obtain). The only band seen which could be assigned as a C-Mn-C deformation was found at 159 cm⁻¹ (medium intensity, depolarised) in the Raman spectrum of a CCl₄ solution. The remaining C-Mn-C deformations and also the deformations of the whole (allyl)-Mn-(CO)₄ unit (expected to lie below 100 cm⁻¹) must, therefore, be left unassigned.

Conclusions.—A full assignment has been obtained for the vibrations of the allyl group in $(\pi$ -C₃H₅)Mn(CO)₄, in accord with previous work on analogous systems. The assignment of the Mn(CO)₄ group was incomplete in that the low-frequency deformation modes were not properly characterised, but it was possible to show that C_{4v} symmetry is inadequate to explain the observed spectra and to make a tentative suggestion as to the equilibrium conformation of the molecule.

EXPERIMENTAL

 π -Allylmanganese tetracarbonyl was prepared by the method of Kaesz *et al.*⁷ The product was purified by sublimation at 25 °C/15 mmHg (Found: C, 40.4; H, 2.7. Calc. for C₇H₅MnO₄: C, 40.4; H, 2.4%).

The Raman spectra of solid samples of $(\pi$ -C₃H₅)Mn(CO)₄, and also of solutions in CS₂ and CCl₄ (contained in capillary cells, *ca.* 1.5 mm i.d.) were obtained with a Cary Model 81 Raman spectrophotometer (the solutions were stable for at least one week). The excitation source was a Spectra-Physics Model 125 He-Ne laser, having an output of *ca.* 60 mW at 632.8 nm. Spectra were calibrated with known indene peaks, and depolarisation ratios (for solutions) were determined by observing the spectrum with the plane of the polarised incident light parallel and perpendicular, respectively, to the axis of the polaroid analyser. Such a technique, with capillary cells, does not give exact values of depolarisation ratio, ρ , but the sample cell was calibrated with accurately known standards.

The i.r. spectra $(4000-250 \text{ cm}^{-1})$ were run on a Perkin-Elmer 521 spectrometer, with the $(\pi$ -C₃H₅)Mn(CO)₄ present as a mull in Nujol or halogenocarbon oil, or as a solution in CS₂ or CCl₄. Spectra were calibrated with known absorptions of water vapour, NH₃, and CO.

All of the frequencies quoted, with the exception of a few very weak and/or broad features, are accurate to $\pm 2 \text{ cm}^{-1}$ for both the i.r. and Raman spectra.

We thank the S.R.C. for a Research Studentship (to D. C. A.).

[1/1152 Received, July 5th, 1971]

¹⁶ D. M. Adams, J. Chem. Soc., 1964, 1771.