Crystal Structure of a Five-membered Cobalt-Germanium-Iron Heterocycle, $\left\{\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}(\mathrm{CO})\right\}_{2}\left(\mathrm{GeCl}_{2}\right)_{2} \mathrm{Fe}(\mathrm{CO})_{4}$

By M. Elder * and W. L. Hutcheon, Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada

The title compound has been shown by single-crystal X-ray analysis to contain a five-membered $\mathrm{Co}-\mathrm{Ge}-\mathrm{Fe}-\mathrm{Ge}-\mathrm{Co}$ ring, which is planar within error limits and exhibits the bond distances $\mathrm{Fe}-\mathrm{Ge} 2 \cdot 438(4), \mathrm{Ge}-\mathrm{Co} 2.341$ (9), and Co-Co $2 \cdot 439(5) \AA$. The crystals are orthorhombic, space-group $P 2_{1}{ }_{1}{ }_{1} 2_{1}$, with $a=39 \cdot 26(2), b=12 \cdot 16(1)$, and $c=9.82(1) \AA$, and $Z=8$. 3032 above-background reflections were collected by counter methods and refined to $7 \cdot 0 \%$. For least-squares refinement purposes the cyclopentadienyl rings were treated as rigid groups undergoing hindered rotation.

Crystal structure analysis of $\left\{\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}(\mathrm{CO})\right\}_{2}\left(\mathrm{GeCl}_{2}\right)_{2}-$ $\mathrm{Fe}(\mathrm{CO})_{4}$ was undertaken in order to establish its molecular structure. A preliminary report of this work has been published previously. ${ }^{1}$ The compound was isolated from the reaction products of $\mathrm{Fe}(\mathrm{CO})_{5}$ and $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{OC}) \mathrm{Co}\left(\mathrm{GeCl}_{3}\right)_{2}$, and the molecular formula was determined by mass spectrometry. ${ }^{1}$ By analogy with reaction (1), ${ }^{2}$ the reaction should have yielded a product of

$$
\begin{equation*}
\mathrm{Fe}(\mathrm{CO})_{5}+c i s-\left(\mathrm{GeX}_{3}\right)_{2} \mathrm{Fe}(\mathrm{CO})_{4} \longrightarrow \underset{\left[\mathrm{X}_{2} \mathrm{GeFe}(\mathrm{CO})_{4}\right]_{2}}{ } \tag{1}
\end{equation*}
$$

structure (I). Ring structures for organometallic com-

pounds such as this have been established for ${ }^{1}$ M. J. Bennett, W. Brooks, M. Elder, W. A. G. Graham, D. Hall, and R. Kummer, J. Amer. Chem. Soc., 1970, 92, 208.
${ }_{2}$ R. Kummer and W. A. G. Graham, Inovg. Chem., 1968, 7,
$\left[\mathrm{R}_{2} \mathrm{SnFe}(\mathrm{CO})_{4}\right]_{2}$ (four-membered ring) ${ }^{3}$ and $\mathrm{Ph}_{2} \mathrm{GeFe}_{2}-$ $(\mathrm{CO})_{8}$ (three-membered ring). ${ }^{4}$ The present structure is the first five-membered ring of this type whose structure has been confirmed.

experimental

Crystal Data.- $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{Cl}_{4} \mathrm{Co}_{2} \mathrm{FeGe}_{2} \mathrm{O}_{6}, M=758 \cdot 9$, Orthorhombic, $a=39 \cdot 26(2), b=12 \cdot 161(8), c=9 \cdot 82(1) \AA, U=$ $4688 \AA^{3}, \quad D_{\mathrm{m}}=2 \cdot 17$ (by flotation), $Z=8, \quad D_{\mathrm{c}}=2 \cdot 15$, $F(000)=2928$. Space-group $P 2_{1} 2_{1} 2_{1}$ from systematic extinctions. $\mathrm{Cu}-K_{\alpha}$ radiation, $\lambda=1.5418 \AA ; \mu\left(\mathrm{Cu}-K_{\alpha}\right)=$ $254 \mathrm{~cm}^{-1}$.
Small black crystals suitable for X-ray work were obtained according to the method of ref. 1, and were stable both in air and when exposed to X-rays. Unit-cell parameters were obtained with a crystal mounted about the c axis. The dimensions a and b were derived from leastsquares fits of measurements made with a PAILRED diffractometer by a previously described method. ${ }^{5}$ The third dimension was obtained from a precession photograph corrected for film shrinkage.
${ }^{3}$ R. B. King and F. G. A. Stone, J. Amer. Chem. Soc., 1960, 82, 3833.
${ }^{4}$ E. H. Brooks, M. Elder, W. A. G. Graham, and D. Hall, J. Amer. Chem. Soc., 1968, 90, 3587.
${ }^{5}$ M. Elder and D. Hall, Inorg. Chem., 1969, 8, 1273.

Intensity data were collected on a PAILRED fully automated diffractometer equipped with a scintillation counter, by use of $\mathrm{Cu}-K_{\alpha}$ radiation monochromatized by a graphite single crystal (002 reflection). A single crystal of regular dimensions $0.12 \times 0.14 \times 0.16 \mathrm{~mm}$ mounted on a glass fibre with the c axis coincident with the machine rotation axis was used for data collection. A movingcrystal stationary-counter (ω-scan) technique was employed. The scan range of $3 \cdot 0^{\circ}\left(\theta \leqslant 15^{\circ}\right)$ and $2 \cdot 0^{\circ}$ ($\theta>15^{\circ}$) used for $\mu 0^{\circ}$ was increased regularly to 4.4 and 2.8° respectively at $\mu 39^{\circ}$ to accommodate the increasing peakwidth at higher levels. The scan speed was $2.5^{\circ} \mathrm{min}^{-1}$. Each reflection was measured until the raw count at the end of a scan exceeded 4000 or until the reflection had been scanned three times. This method enhances the significance of reflections with intensity close to background and allows a faster scan speed than usual to be employed. Background was measured for 20 s at the end of each scan. A counter aperture of 1.5° was used with the pulse-height analyser centred on the K_{α} peak and set to accept 90% of the peak. Counter linearity for the peaks of highest intensity was confirmed by re-scanning on reduced voltages. Data within $\theta<50^{\circ}$ were collected from levels $h k 0-8$. Four well spaced zero-level reflections, measured as standards after each level, had a maximum variation of 4% from the mean. There was no systematic trend to indicate crystal instability.

The intensities were corrected for background and standard errors estimated according to $I=T-t B$ and $\sigma^{2}(I)=T+t^{2} B+(k I)^{2}$ where T is the raw count, B the total background, and t a scale factor to bring T and B to the same time scale. A value of 0.06 was used for k. A significance criterion $I>2 \cdot 5 \sigma(I)$ yielded 3042 above background reflections after combination of data for which k or l were zero. Data of the form $h k l$ and $\overline{h k l}$ were not combined in view of the large anomalous scattering of $\mathrm{Cu}-K_{\alpha}$ radiation by iron and cobalt atoms. Lorentz and polarization corrections were applied together with absorption corrections computed by integration over a 512 point grid.*

Structure Analysis.-The three-dimensional Patterson function sharpened to point atoms at rest was computed, and used to locate the metal atoms. Consideration of the Patterson maxima within $4.5 \AA$ of the origin indicated that the heavy atoms of the two independent molecules were approximately planar, and that the planes were perpendicular, respectively, to the x and y axes. A vector search method applied to these near-origin regions yielded trial orientations for two slightly distorted pentagons. Consideration of the Harker sections, together with the implication maps of the two models, produced trial orientations of the two molecules in the unit cell. The remaining non-hydrogen atoms were located from Fourier electron density maps. The structure was refined by full-matrix least-squares techniques, minimizing the function $\Sigma w\left(\left|F_{0}\right|-\left|F_{\mathrm{c}}\right|\right)^{2}$ where $w=1 / \sigma^{2}(F)$. Scattering factors for neutral atoms were taken from ref. 6 together with anomalous dispersion corrections for chlorine ($\Delta f^{\prime}=0.33$, $A f^{\prime \prime}=0.72$), iron $\quad\left(\Delta f^{\prime}=-1 \cdot 13, \quad \Delta f^{\prime \prime}=3 \cdot 45\right), \quad$ cobalt $\left(\Delta f^{\prime}=-2.51, \Delta f^{\prime \prime}=3.95\right)$, and germanium $\left(\Delta f^{\prime}=-1 \cdot 31\right.$,

[^0]$\left.\Delta f^{\prime \prime}=1 \cdot 04\right)^{7} \quad$ The alternate refinement of the parameters of each molecule, with all atoms given isotropic temperature factors yielded $R \quad 0.082$ and $R^{\prime} 0.085$ (where $\left.R^{\prime}=\left[\Sigma w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2} / \Sigma w\left|F_{\mathrm{o}}\right|^{2}\right]^{\frac{1}{2}}\right)$. On the evidence of an electron difference map the metal and chlorine atoms and the carbon atoms of the rings were given anisotropic temperature factors and refinement continued to $R 0.071$ and $R^{\prime} 0.074$. At this point the cyclopentadienyl rings were treated as rigid groups of $D_{5 h}$ symmetry undergoing hindered rotation, following the method of ref. 8. For each ring the usual six parameters define the centre of gravity (fractional co-ordinates $x_{\mathrm{c}}, y_{\mathrm{c}}$, and z_{c}) and the orientation (angles D, E, and $F) .{ }^{9}$ The remaining parameters are R, the ring radius, B, which allows for out-of-plane oscillations and motion of the centre of gravity of the ring, ${ }^{10}$ and $B d$ which measures the oscillation about the metal-ring axis. The mathematical method for handling the least-squares equations has been described in detail, ${ }^{12}$ but is summarized here. The calculation assumes the rigid group is undergoing oscillations in the plane of the ring. These oscillations are governed by a potential which is a sinusoidal function of the angle in the ring. The scattering from the group is given ${ }^{8,10}$ by (2) where h is the reciprocal lattice vector,
\[

$$
\begin{equation*}
F_{h}=f_{j} \exp \left[B_{j} \sin ^{2} \theta / \lambda^{2}\right] \exp \left[2 \pi i h . k_{j}\right] M_{n}{ }^{F}\left(a_{j}, B d_{j}\right) \tag{2}
\end{equation*}
$$

\]

k_{j} the vector from the origin to the centre of ring j, and $M_{n}{ }^{F}\left(a_{j}, B d_{j}\right)$ is a slightly modified form of the LipscombKing M function. ${ }^{8}$ The parameter a_{j} describes the orientation and size of the ring. All parameters were refined by full-matrix least-squares techniques. The reduction in variable parameters achieved by this method (9 parameters for a rigid rotor as against 45 for five anisotropic atoms) allowed all parameters to be varied simultaneously in the final refinement cycles. The hydrogen atoms were included in positions calculated by taking $\mathrm{C}-\mathrm{H}=1 \cdot 0 \AA$, with the same parameters as the carbon rings. These parameters were not refined but were adjusted after each cycle. The hydrogen scattering curve was taken from ref. 11. The final agreement ratios were $R \quad 0.070$ and $R^{\prime} 0.071$, which represents an appreciable decrease in view of the smaller number of variable parameters. This indicates that in the present case it is less physically reasonable to assign anisotropic thermal ellipsoids to the ring carbon atom than to allow motion of the atoms along the arc of a circle. An attempt to refine the atoms of the carbonyl groups anisotropically resulted in physically unreal values for some of these parameters, indicating that the data were not of sufficient accuracy to support such a refinement.

There was no evidence of the need for an extinction correction. The correctness of the arbitrary assignment of all-positive indices to one quadrant of data was indicated by comparison of the calculated structure factors for reflections where the forms $h k l$ and $h k l$ exhibited appreciable differences in observed structure factors. This was confirmed by an R factor ratio test ${ }^{13}$ on the agreement factors obtained by refinement with the signs of the h indices reversed. The final difference map showed no anomalous regions of electron density, with a maximum residual of
${ }^{10}$ R. A. Schunn, C. J. Fritchie, and C. T. Prewitt, Inorg. Chem., 1966, 5, 892.
${ }^{11}$ R. Mason and G. B. Robertson, Adv. Struct. Res. Diffraction Methods, 1966, 2, 57.
${ }^{12}$ W. L. Hutcheon, Ph.D. Thesis, University of Alberta, 1971. ${ }^{13}$ W. C. Hamilton, 'Statistics in Physical Science,' Ronald Press, New York, 1964, p. 157.

Table 1
Positional and thermal parameters, molecule (1)

Atom	x / a	y / b	z / c	B / \AA^{2}
$\mathrm{Fe}(1)$	$0 \cdot 1995(1)$	0.6158(3)	1.0225(4)	
$\mathrm{Co}(1)$	$0 \cdot 1791(1)$	$0 \cdot 8939(3)$	0.7816 (4)	
$\mathrm{Co}(2)$	$0 \cdot 1778(1)$	0.9560 (3)	1.0172(4)	
$\mathrm{Ge}(1)$	$0 \cdot 1930(1)$	0.7065 (3)	$0 \cdot 8025$ (3)	
$\mathrm{Ge}(2)$	$0 \cdot 1886(1)$	$0.7917(3)$	1-1323(3)	
$\mathrm{Cl}(1)$	$0 \cdot 1563(2)$	$0 \cdot 6082(8)$	0.6837 (9)	
$\mathrm{Cl}(2)$	$0 \cdot 2397$ (2)	$0 \cdot 6725(7)$	$0 \cdot 6803(8)$	
$\mathrm{Cl}^{(3)}$	$0 \cdot 1461(2)$	$0.7605(7)$	1-2774(7)	
$\mathrm{Cl}(4)$	$0 \cdot 2315$ (2)	$0.8168(6)$	1-2780(6)	
C(1)	0.1545 (7)	$0.593(2)$	1.013(3)	4.5(7)
$\mathrm{O}(1)$	$0.1255(4)$	$0.585(2)$	$1.009(2)$	4.9(4)
$\mathrm{C}(2)$	$0 \cdot 2439$ (6)	$0.652(2)$	$1.012(2)$	$2 \cdot 5(5)$
$\mathrm{O}(2)$	$0 \cdot 2716$ (4)	$0.677(2)$	$1.015(2)$	5.5(5)
$\mathrm{C}(3)$	$0 \cdot 2065$ (8)	$0 \cdot 489(3)$	$0.931(4)$	6.2(9)
$\mathrm{O}(3)$	$0.2108(6)$	$0 \cdot 411(2)$	0.875 (3)	$8 \cdot 4(7)$
C(4)	$0 \cdot 2045$ (8)	$0.559(3)$	1-192(4)	6.2(8)
$\mathrm{O}(4)$	0.2030 (6)	$0 \cdot 525(2)$	$1.301(3)$	8.2(7)
C(5)	$0 \cdot 1464$ (7)	$0 \cdot 876(2)$	0.915 (3)	4-1(7)
O(5)	$0 \cdot 1183(4)$	$0 \cdot 837(2)$	$0.926(2)$	4.0(4)
C(6)	$0.2152(6)$	$0.921(2)$	$0.907(2)$	$3 \cdot 0(6)$
$\mathrm{O}(6)$	$0 \cdot 2451$ (4)	0.918(1)	0.909(2)	3.5(4)
Atom	$\beta_{11}{ }^{*} \quad \beta_{22}$	β_{33}	$\beta_{12} \quad \beta_{13}$	$\begin{gathered} \beta_{23} \\ \left(\times 10^{4}\right) \end{gathered}$
Fe (1)	7-1(3) $46(3)$	$81(5)$	$-1(1) \quad-5(1)$	-4(4)
$\mathrm{Co}(1)$	4.7(3) $52(4)$	74(5)	2(1) -2(1)	-3(4)
$\mathrm{Co}(2)$	$5 \cdot 2(3) \quad 42(3)$	86 (5)	$0(1) \quad-1(1)$	-26(4)
$\mathrm{Ge}(1)$	6.0(2) 47(3)	67 (3)	$0(1) \quad-1(1)$	$-11(3)$
$\mathrm{Ge}(2)$	5•1(2) 61(3)	59(3)	$0(1) \quad-1(1)$	-3(3)
$\mathrm{Cl}(1)$	$15 \cdot 1(8) \quad 103(9)$	165(12)	$-18(2) \quad-19(3)$	2(9)
${ }_{C l}(2)$	$11.4(7) \quad 97(8)$	$165(11)$	$13(2) \quad 19(2)$	$21(9)$
${ }_{\mathrm{Cl}}(3)$	8.2(9) $\quad 117(8)$	$87(8)$	-7(2) $\quad 6(2)$	$-3(7)$
$\mathrm{Cl}(4)$	7-4(5) 84(7)	110(8)	$1(2) \quad-9(2)$	-34(9)
* The expression for the anisotropic thermal ellipsoid is $T=\exp \left[-\left(\beta_{11} h^{2}+\beta_{22} h^{2}+\beta_{33} 2^{2}+2 \beta_{12} h k+2 \beta_{13} h l+2 \beta_{23} h l\right)\right]$				

$1 \cdot 15 \mathrm{e} \AA^{-3}$ near the metal atoms. The validity of the experimental weights and the constant $k 0.06$ in the expression for $\sigma^{2}(I)$ was confirmed by the near constancy of $\Sigma v e\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2}$ for reflections grouped both by $\sin \theta / \lambda$ and by F_{o} values. The final structure factor listing may be
listed in Tables 1 and 2, together with their standard deviations obtained from the last cycle of refinement in

Table 2
Positional and thermal parameters, molecule (2)

Atom	x / a		y / b	$z_{4} C$	B / \AA^{2}
$\mathrm{Fe}(2)$	$0.0982(1)$		$0.3196(4)$	$0 \cdot 4524(4)$	
$\mathrm{Co}(3)$	-0.0065(1)		$0.3132(3)$	$0 \cdot 3762$ (3)	
$\mathrm{Co}(4)$	0.0006(1)		$0 \cdot 3030(4)$	$0 \cdot 6231$ (3)	
$\mathrm{Ge}(3)$	$0 \cdot 0499(1)$		$0 \cdot 3207(2)$	$0 \cdot 2996$ (2)	
$\mathrm{Ge}(4)$	$0.0598(1)$		0.3044 (3)	$0.6451(3)$	
${ }_{\mathrm{Cl}(5)}$	$0.0582(2)$		0.1906(6)	$0.1454(7)$	
${ }_{\mathrm{Cl}}^{\mathrm{Cl}}(7)$	$0.0572(2)$		$0.4615(6)$	${ }_{0}^{0.1657(8)}$	
$\mathrm{Cl}(7)$ $\mathrm{Cl}(8)$	$0.0756(2)$ $0.0757(2)$		$0.1562(6)$ $0.4311(6)$	$0.7631(7)$ $0.7927(9)$	
$\mathrm{C}(7)$	$0.0962(7)$		$0 \cdot 173(3)$	$0 \cdot 440$ (3)	5.5(7)
$\mathrm{O}(7)$	$0.0946(5)$		$0.080(2)$	$0 \cdot 428(2)$	$4 \cdot 8(5)$
$\mathrm{C}(8)$	0.0926 (8)		$0.473(3)$	$0 \cdot 463(4)$	$6.8(9)$
$\mathrm{O}(8)$	0.0888 (5)		$0.560(2)$	$0 \cdot 479(2)$	6.7(6)
$\mathrm{C}(9)$	$0 \cdot 1253$ (8)		$0 \cdot 339(3)$	$0 \cdot 297(4)$	7-3(9)
$\mathrm{O}(9)$	$0 \cdot 1429$ (5)		$0 \cdot 340$ (2)	$0 \cdot 207(2)$	$7 \cdot 5(6)$
$\mathrm{C}(10)$	$0 \cdot 1323(8)$		$0.318(3)$	$0.567(3)$	$6 \cdot 4(8)$
$\mathrm{O}(10)$	$0.1533(5)$		$0 \cdot 308(2)$	$0.653(2)$	6.6(5)
$\mathrm{C}(11)$	$0.0060(6)$		$0 \cdot 198(2)$	$0 \cdot 487(2)$	3-1(5)
$\bigcirc \mathrm{O}(11)$	$0.0141(4)$		$0 \cdot 100(2)$	$0.478(2)$	$3 \cdot 9(4)$
C (12)	$0.0044(7)$		$0 \cdot 424(2)$	$0.500(3)$	4-1(6)
$\mathrm{O}(12)$	$0 \cdot 0108(4)$		0.521(2)	$0.503(2)$	4-1(4)
Atom	$\beta_{11}{ }^{*}$	β_{22}	β_{33}	$\beta_{12} \quad \beta_{13}$	$\begin{gathered} \beta_{23}{ }^{\beta_{23}}\left(0^{4}\right) \end{gathered}$
$\mathrm{Fe}(2)$	5.6(3)	48(4)	106(5)	$0(1) \quad-1(1)$	$-11(4)$
$\mathrm{Co}(3)$	5.3(3)	$30(3)$	$55(4)$	$2(1) \quad 0$ (1)	0 (3)
$\mathrm{Co}(4)$	6.7(3)	32(3)	56(4)	$2(1) \quad 1(1)$	$1(4)$
$\mathrm{Ge}(3)$	5-3(2)	$30(2)$	$57(3)$	$1(1) \quad 3(1)$	-4(3)
Ge(4)	$6 \cdot 1(2)$	42(2)	$63(3)$	$3(1) \quad-2(1)$	$-10(3)$
$\mathrm{Cl}(5)$	$8 \cdot 6(6)$	59(6)	94(8)	7(2) 3(2)	3(8)
$\mathrm{Cl}(6)$	$10 \cdot 0(6)$	$52(6)$	141(11)	$-1(2) \quad 4(2)$	$35(7)$
$\mathrm{Cl}(7)$	$10 \cdot 3(6)$	78(7)	119(10)	$12(2) \quad 0(2)$	$37(7)$
$\mathrm{Cl}(8)$	14.0(8)	94(8)	138(11)	$0(2) \quad-11(3)$	-67(9)

* See footnote to Table 1.
which all parameters were refined and none changed by more than $0 \cdot 1 \sigma$. The parameters for groups undergoing hindered rotation are given in Table 3.

Table 3
Cyclopentadienyl parameters

Ring	$x_{\mathrm{c}}{ }^{*}$	y_{c}	z_{c}
(2)	$0.1732(4)$	$0.949(1)$	$0.622(1)$
(3)	$0.1706(4)$	$1.077(1)$	$1.103(2)$
(4)	$-0.0394(3)$	$0.321(1)$	$0.261(1)$
(5)	$-0.0256(3)$	$0.295(1)$	$0.764(1)$

Derived positional co-ordinates for ring carbon atoms

Atom	x / a	y / b	z / c	Atom	x / a	y / b	z / c
C(21)	$0 \cdot 1863$ (9)	1-035(2)	0.658(2)	C(41)	$-0.0554(4)$	0.254(2)	0.321(2)
$\mathrm{C}(22)$	0.2039(4)	0.941(3)	$0 \cdot 603(2)$	$\mathrm{C}(42)$	-0.0573(4)	$0 \cdot 368(2)$	$0 \cdot 340$ (1)
$\mathrm{C}(23)$	$0 \cdot 1790$ (9)	$0.858(2)$	$0 \cdot 574(2)$	C(43)	$-0.0345(5)$	$0 \cdot 418$ (1)	$0 \cdot 249$ (2)
$\mathrm{C}(24)$	$0 \cdot 1462(6)$	$0 \cdot 900(3)$	$0 \cdot 611(2)$	$\mathrm{C}(44)$	-0.0184(5)	$0 \cdot 335(2)$	$0 \cdot 174(1)$
$\mathrm{C}(25)$	$0 \cdot 1507(7)$	1-009(2)	$0 \cdot 663(2)$	$\mathrm{C}(45)$	$-0.0313(5)$	$0 \cdot 233(1)$	$0 \cdot 219$ (2)
$\mathrm{C}(31)$	$0 \cdot 1872(12)$	1.131(2)	$1.022(2)$	$\mathrm{C}(51)$	$-0.0486(4)$	$0 \cdot 255$ (2)	0.698(1)
$\mathrm{C}(32)$	$0 \cdot 1513(11)$	$1 \cdot 111(2)$	$1 \cdot 015(5)$	C(52)	-0.0430(5)	$0 \cdot 369$ (2)	$0 \cdot 722(2)$
C(33)	$0 \cdot 1421$ (7)	1.045(2)	$1 \cdot 130(3)$	$\mathrm{C}(53)$	$-0.0134(5)$	$0 \cdot 380(2)$	$0 \cdot 804(2)$
$\mathrm{C}(34)$	$0 \cdot 1723(14)$	1.024(2)	1-207(3)	$\mathrm{C}(54)$	-0.0006(3)	$0 \cdot 273(2)$	$0 \cdot 830$ (1)
C(35)	$0 \cdot 2001(6)$	1-077(3)	1-141(5)	C(55)	$-0.0223(6)$	0.196(1)	$0 \cdot 765(2)$

obtained as a supplementary publication, No. SUP 20251 (5 pp ., 1 microfiche).* The final atomic parameters are

* For details of Supplementary Publications see Notice to Authors No. 7 in J. Chem. Soc. (A), 1970, Issue No. 20 (items less than 10 pp . are supplied as full page copies).

All computing was carried out on an IBM360 67 computer. Programs used were: FORDAP, a Fourier summation program by A. Zalkin; SFLS5, full-matrix leastsquares, by C. T. Prewitt, modified for group refinement by M. J. Bennett and B. Foxman, and for hindered-rotor
refinement by W. L. Hutcheon; GNABS, absorption corrections, D. P. Shoemaker; ORTEP, plotter program. C. K. Johnson; and ORFFE2, the molecular geometry program by W. R. Busing and H. A. Levy, modified by R. J. Doedens, and by us to accommodate hindered rotor parameters.

RESULTS

The molecular structure of $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{CoCO}\right)_{2}\left(\mathrm{GeCl}_{2}\right)_{2} \mathrm{Fe}(\mathrm{CO})_{4}$ is shown in the Figure. The thermal ellipsoids of the anisotropic atoms are scaled to include 50% probability. The hydrogen atoms are not shown. The molecular geometry is tabulated in Tables 4 and 5. Cell parameter

Table 4
Intramolecular distances (\AA)

(a) Bonding			
$\mathrm{Fe}(1)-\mathrm{Ge}(\mathbf{1})$	2.439(5)	$\mathrm{Fe}(2)-\mathrm{Ge}(3)$	$2 \cdot 437$ (5)
$\mathrm{Fe}(1)-\mathrm{Ge}(2)$	$2 \cdot 433$ (5)	$\mathrm{Fe}(2)-\mathrm{Ge}(4)$	$2 \cdot 444$ (5)
$\mathrm{Ge}(1)-\mathrm{Co}(1)$	$2 \cdot 352(5)$	$\mathrm{Ge}(3)-\mathrm{Co}(3)$	$2 \cdot 344(4)$
$\mathrm{Ge}(2)-\mathrm{Co}(2)$	$2 \cdot 334(5)$	$\mathrm{Ge}(4)-\mathrm{Co}(4)$	$2 \cdot 334(5)$
$\mathrm{Co}(1)-\mathrm{Co}(2)$	$2 \cdot 434(6)$	$\mathrm{Co}(3)-\mathrm{Co}(4)$	$2 \cdot 444(5)$
$\mathrm{Ge}(1)-\mathrm{Cl}(1)$	2-206(8)	$\mathrm{Ge}(3)-\mathrm{Cl}(3)$	2-177(8)
$\mathrm{Ge}(1)-\mathrm{Cl}(2)$	$2 \cdot 230$ (7)	$\mathrm{Ge}(3)-\mathrm{Cl}(4)$	2.214 (8)
$\mathrm{Ge}(2)-\mathrm{Cl}(3)$	2.231(7)	$\mathrm{Ge}(4)-\mathrm{Cl}(5)$	$2 \cdot 231(8)$
$\mathrm{Ge}(2)-\mathrm{Cl}(4)$	2.227(7)	$\mathrm{Ge}(4)-\mathrm{Cl}(6)$	$2.206(8)$
$\mathrm{Co}(1)-\mathrm{C}(5)$	$1.85(3)$	$\mathrm{Co}(3)-\mathrm{C}(11)$	$1.84(3)$
$\mathrm{Co}(1)-\mathrm{C}(6)$	1.91(3)	$\mathrm{Co}(3)-\mathrm{C}(12)$	1.86(3)
$\mathrm{Co}(2)-\mathrm{C}(5)$	$1.86(3)$	$\mathrm{Co}(4)-\mathrm{C}(11)$	$1.86(3)$
$\mathrm{Co}(2)-\mathrm{C}(6)$	1.87 (3)	$\mathrm{Co}(4)-\mathrm{C}(12)$	1.91 (3)
$\mathrm{C}(5)-\mathrm{O}(5)$	1.21(3)	$\mathrm{C}(11)-\mathrm{O}(11)$	$1.24(3)$
$\mathrm{C}(6)-\mathrm{O}(6)$	1-17(3)	$\mathrm{C}(12)-\mathrm{O}(12)$	$1.21(3)$
$\mathrm{Fe}(1)-\mathrm{C}(1)$	1.79(4)	$\mathrm{Fe}(2)-\mathrm{C}(7)$	$1.79(4)$
$\mathrm{Fe}(1)-\mathrm{C}(2)$	1.80(2)	$\mathrm{Fe}(2)-\mathrm{C}(8)$	1.89(4)
$\mathrm{Fe}(1)-\mathrm{C}(3)$	1.80(4)	$\mathrm{Fe}(2)-\mathrm{C}(9)$	$1.85(4)$
$\mathrm{Fe}(1)-\mathrm{C}(4)$	1.81 (4)	$\mathrm{Fe}(2)-\mathrm{C}(10)$	$1.73(3)$
$\mathrm{C}(1)-\mathrm{O}(1)$	1-14(4)	$\mathrm{C}(7)-\mathrm{O}(7)$	1-14(3)
$\mathrm{C}(2)-\mathrm{O}(2)$	$1 \cdot 13(3)$	$\mathrm{C}(8)-\mathrm{O}(8)$	1.08(4)
$\mathrm{C}(3)-\mathrm{O}(3)$	1-11(3)	$\mathrm{C}(9)-\mathrm{O}(9)$	1-13(3)
$\mathrm{C}(4)-\mathrm{O}(4)$	$1 \cdot 15(3)$	$\mathrm{C}(10)-\mathrm{O}(10)$	1-19(3)
$\mathrm{Co}(1)-\mathrm{C}(21)$	2.12(4)	$\mathrm{Co}(3)-\mathrm{C}(41)$	2-12(4)
$\mathrm{Co}(1)-\mathrm{C}(22)$	2.08(4)	$\mathrm{Co}(3)-\mathrm{C}(42)$	2.13(3)
$\mathrm{Co}(1)-\mathrm{C}(23)$	2.08 (4)	$\mathrm{Co}(3)-\mathrm{C}(43)$	2.09(4)
$\mathrm{Co}(1)-\mathrm{C}(24)$	2.12(4)	$\mathrm{Co}(3)-\mathrm{C}(44)$	2.06 (4)
$\mathrm{Co}(1)-\mathrm{C}(25)$	2.14(4)	$\mathrm{Co}(3)-\mathrm{C}(45)$	2.07(4)
$\mathrm{C}(21)-\mathrm{C}(22)$	1/44(1)	$\mathrm{C}(41)-\mathrm{C}(42)$	1.41(1)
$\mathrm{Co}(2)-\mathrm{C}(31)$	2.16(4)	$\mathrm{Co}(4)-\mathrm{C}(51)$	2.14(4)
$\mathrm{Co}(2)-\mathrm{C}(32)$	2.15(4)	$\mathrm{Co}(4)-\mathrm{C}(52)$	$2 \cdot 12(4)$
$\mathrm{Co}(2)-\mathrm{C}(33)$	2.09(4)	$\mathrm{Co}(4)-\mathrm{C}(53)$	$2.08(4)$
$\mathrm{Co}(2)-\mathrm{C}(34)$	2.05(4)	$\mathrm{Co}(4)-\mathrm{C}(54)$	2.07 (4)
$\mathrm{Co}(2)-\mathrm{C}(35)$	$2 \cdot 10$ (5)	$\mathrm{Co}(4)-\mathrm{C}(55)$	$2 \cdot 11(5)$
$\mathrm{C}(31)-\mathrm{C}(32)$	$1 \cdot 43(1)$	$\mathrm{C}(51)-\mathrm{C}(52)$	1.42(1)
(b) Non-bonding			
$\mathrm{C}(1) \cdots \mathrm{C}(3)$	2.53(5)	$\mathrm{C}(7) \cdots \mathrm{C}(9)$	2.71(5)
$\mathrm{C}(1) \cdots \mathrm{C}(4)$	$2 \cdot 66$ (5)	$\mathrm{C}(7) \cdots \mathrm{C}(10)$	$2 \cdot 59(5)$
$\mathrm{C}(2) \cdots \mathrm{C}(3)$	2.59(5)	$\mathrm{C}(8) \cdots \mathrm{C}(9)$	2.64(5)
$\mathrm{C}(2) \cdots \mathrm{C}(4)$	$2 \cdot 61$ (5)	$\mathrm{C}(8) \cdots \mathrm{C}(10)$	2.66(5)
$\mathrm{C}(3) \cdots \mathrm{C}(4)$	$2 \cdot 70$ (5)	$\mathrm{C}(9) \cdots \mathrm{C}(10)$	$2 \cdot 68(5)$
$\mathrm{Cl}(1) \cdots \mathrm{Cl}(2)$	$3 \cdot 37(1)$	$\mathrm{Cl}(5) \cdots \mathrm{Cl}(6)$	3.30(1)
$\mathrm{Cl}(3) \cdots \mathrm{Cl}(4)$	3•42(1)	$\mathrm{Cl}(7) \cdots \mathrm{Cl}(8)$	3.36(1)

errors were taken into account in the calculation of the standard errors. The intermolecular distances are normal with no non-bonded contacts being appreciably shorter than the sum of the appropriate van der Waals radii.

DISCUSSION

The structure of $\left\{\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{CoCO}\right\}_{2}\left(\mathrm{GeCl}_{2}\right)_{2} \mathrm{Fe}(\mathrm{CO})_{4}$ is based upon a planar five-membered ring of metal atoms. The two independent molecules of the asymmetric unit exhibit no significant differences. In Table 6 the mean

Table 5
Bond angles (deg.)

$\mathrm{Ge}(1)-\mathrm{Fe}(1)-\mathrm{Ge}(2)$	$88.7(2)$	$\mathrm{Ge}(3)-\mathrm{Fe}(2)-\mathrm{Ge}(4)$	89-0(2)
$\mathrm{Co}(1)-\mathrm{Ge}(1)-\mathrm{Fe}(\mathbf{1})$	122.7(2)	$\mathrm{Co}(3)-\mathrm{Ge}(3)-\mathrm{Fe}(2)$	123.2(2)
$\mathrm{Co}(2)-\mathrm{Ge}(2)-\mathrm{Fe}(1)$	$124.7(2)$	$\mathrm{Co}(4)-\mathrm{Ge}(4)-\mathrm{Fe}(2)$	123.7(2)
$\mathrm{Co}(1)-\mathrm{Co}(2)-\mathrm{Ge}(2)$	101.0(2)	$\mathrm{Co}(3)-\mathrm{Co}(4)-\mathrm{Ge}(4)$	101.8(2)
$\mathrm{Co}(2)-\mathrm{Co}(1)-\mathrm{Ge}(1)$	102.9(2)	$\mathrm{Co}(4)-\mathrm{Co}(3)-\mathrm{Ge}(3)$	102.3(2)
$\mathrm{Co}(1)-\mathrm{C}(5)-\mathrm{Co}(2)$	82.0 (1)	$\mathrm{Co}(3)-\mathrm{C}(11)-\mathrm{Co}(4)$	$83 \cdot 0$ (1)
$\mathrm{Co}(1)-\mathrm{C}(6)-\mathrm{Co}(2)$	80.0 (1)	$\mathrm{Co}(3)-\mathrm{C}(12)-\mathrm{Co}(4)$	$82 \cdot 0$ (1)
$\mathrm{Cl}(1)-\mathrm{Ge}(1)-\mathrm{Cl}(2)$	98.7(4)	$\mathrm{Cl}(5)-\mathrm{Ge}(3)-\mathrm{Cl}(6)$	97.5(3)
$\mathrm{Cl}(3)-\mathrm{Ge}(2)-\mathrm{Cl}(4)$	100.3(3)	$\mathrm{Cl}(7)-\mathrm{Ge}(4)-\mathrm{Cl}(8)$	98.3(3)
$\mathrm{C}(5)-\mathrm{Co}(1)-\mathrm{C}(6)$	$94 \cdot 0$ (1)	$\mathrm{C}(11)-\mathrm{Co}(3)-\mathrm{C}(12)$	$96 \cdot 0$ (1)
$\mathrm{C}(5)-\mathrm{Co}(2)-\mathrm{C}(6)$	$95 \cdot 0$ (1)	$\mathrm{C}(11)-\mathrm{Co}(4)-\mathrm{C}(12)$	$94 \cdot 0$ (1)
$\mathrm{Ge}(1)-\mathrm{Co}(1)-\mathrm{C}(5)$	89-1(8)	$\mathrm{Ge}(3)-\mathrm{Co}(3)-\mathrm{C}(11)$	88.1 (7)
$\mathrm{Ge}(1)-\mathrm{Co}(1)-\mathrm{C}(6)$	86.6(7)	$\mathrm{Ge}(3)-\mathrm{Co}(3)-\mathrm{C}(12)$	87.9(8)
$\mathrm{Ge}(2)-\mathrm{Co}(2)-\mathrm{C}(5)$	86.2(8)	$\mathrm{Ge}(4)-\mathrm{Co}(4)-\mathrm{C}(11)$	87.6(7)
$\mathrm{Ge}(2)-\mathrm{Co}(2)-\mathrm{C}(6)$	$86.7(8)$	$\mathrm{Ge}(4)-\mathrm{Co}(4)-\mathrm{C}(12)$	88.6(8)
$\mathrm{Ge}(1)-\mathrm{Fe}(1)-\mathrm{C}(1)$	86.0(1)	$\mathrm{Ge}(3)-\mathrm{Fe}(2)-\mathrm{C}(7)$	85.0(1)
$\mathrm{Ge}(1)-\mathrm{Fe}(1)-\mathrm{C}(2)$	86.0 (1)	$\mathrm{Ge}(3)-\mathrm{Fe}(2)-\mathrm{C}(8)$	86.0(1)
$\mathrm{Ge}(1)-\mathrm{Fe}(1)-\mathrm{C}(3)$	88.0(1)	$\mathrm{Ge}(3)-\mathrm{Fe}(2)-\mathrm{C}(9)$	86.0 (1)
$\mathrm{Ge}(1)-\mathrm{Fe}(1)-\mathrm{C}(4)$	175.0(1)	$\mathrm{Ge}(3)-\mathrm{Fe}(2)-\mathrm{C}(10)$	177.0(1)
$\mathrm{Ge}(2)-\mathrm{Fe}(1)-\mathrm{C}(1)$	89.0(1)	$\mathrm{Ge}(4)-\mathrm{Fe}(2)-\mathrm{C}(7)$	86.0 (1)
$\mathrm{Ge}(2)-\mathrm{Fe}(1)-\mathrm{C}(2)$	89.0 (1)	$\mathrm{Ge}(4)-\mathrm{Fe}(2)-\mathrm{C}(8)$	88.0(1)
$\mathrm{Ge}(2)-\mathrm{Fe}(1)-\mathrm{C}(3)$	176.0(1)	$\mathrm{Ge}(4)-\mathrm{Fe}(2)-\mathrm{C}(9)$	174.0(1)
$\mathrm{Ge}(2)-\mathrm{Fe}(1)-\mathrm{C}(4)$	87.0(1)	$\mathrm{Ge}(4)-\mathrm{Fe}(2)-\mathrm{C}(10)$	87.0(1)
$\mathrm{C}(1)-\mathrm{Fe}(1)-\mathrm{C}(2)$	$172 \cdot 0$ (1)	$\mathrm{C}(7)-\mathrm{Fe}(2)-\mathrm{C}(8)$	169.0(1)
$\mathrm{C}(1)-\mathrm{Fe}(1)-\mathrm{C}(3)$	89.0 (2)	$\mathrm{C}(7)-\mathrm{Fe}(2)-\mathrm{C}(9)$	96.0 (2)
$\mathrm{C}(1)-\mathrm{Fe}(1)-\mathrm{C}(4)$	$95 \cdot 0$ (2)	$\mathrm{C}(7)-\mathrm{Fe}(2)-\mathrm{C}(10)$	94.0(2)
$\mathrm{C}(2)-\mathrm{Fe}(1)-\mathrm{C}(3)$	92.0 (2)	$\mathrm{C}(8)-\mathrm{Fe}(2)-\mathrm{C}(9)$	$90 \cdot 0(2)$
$\mathrm{C}(2)-\mathrm{Fe}(1)-\mathrm{C}(4)$	92.0 (2)	$\mathrm{C}(8)-\mathrm{Fe}(2)-\mathrm{C}(10)$	94.0(2)
$\mathrm{C}(3)-\mathrm{Fe}(1)-\mathrm{C}(4)$	97.0(2)	$\mathrm{C}(9)-\mathrm{Fe}(2)-\mathrm{C}(10)$	96.0(1)
$\mathrm{Fe}(1)-\mathrm{C}(1)-\mathrm{O}(1)$	175.0(4)	$\mathrm{Fe}(2)-\mathrm{C}(7)-\mathrm{O}(7)$	178.0(3)
$\mathrm{Fe}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	$175 \cdot 0(3)$	$\mathrm{Fe}(2)-\mathrm{C}(8)-\mathrm{O}(8)$	175.0 (4)
$\mathrm{Fe}(1)-\mathrm{C}(3)-\mathrm{O}(3)$	$180 \cdot 0(3)$	$\mathrm{Fe}(2)-\mathrm{C}(9)-\mathrm{O}(9)$	$172.0(3)$
$\mathrm{Fe}(1)-\mathrm{C}(4)-\mathrm{O}(4)$	171.0(3)	$\mathrm{Fe}(2)-\mathrm{C}(10)-\mathrm{O}(10)$	173.0 (3)
$\mathrm{Co}(1)-\mathrm{C}(5)-\mathrm{O}(5)$	$138.0(2)$	$\mathrm{Co}(3)-\mathrm{C}(11)-\mathrm{O}(11)$	$139.0(2)$
$\mathrm{Co}(2)-\mathrm{C}(5)-\mathrm{O}(5)$	$140 \cdot 0(2)$	$\mathrm{Co}(4)-\mathrm{C}(11)-\mathrm{O}(11)$	$141.0(3)$
$\mathrm{Co}(1)-\mathrm{C}(6)-\mathrm{O}(6)$	138.0 (3)	$\mathrm{Co}(3)-\mathrm{C}(12)-\mathrm{O}(12)$	138.0(2)
$\mathrm{Co}(2)-\mathrm{C}(6)-\mathrm{O}(6)$	141.0(2)	$\mathrm{Co}(4)-\mathrm{C}(12)-\mathrm{O}(12)$	$138.0(3)$

The molecular structure of $\left.\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}(\mathrm{CO})\right\}_{2}\left(\mathrm{GeCl}_{2}\right)_{2} \mathrm{Fe}(\mathrm{CO})_{4}$
Table 6
Mean bond distances (\AA) and angles (deg.)
(a) Bonds

$\mathrm{Fe}-\mathrm{Ge}$	$2 \cdot 438(4)^{*}$	$\mathrm{Co}-\mathrm{C}(\mathrm{CO})$	$1 \cdot 87(3)$
$\mathrm{Ge}-\mathrm{Co}$	$2 \cdot 341(9)$	$\mathrm{Co}-\mathrm{C}\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)$	$2 \cdot 10(3)$
$\mathrm{Co}-\mathrm{Co}$	$2 \cdot 439(5)$	$\mathrm{C}-\mathrm{C}$	$1 \cdot 42(1)$
$\mathrm{Fe}-\mathrm{C}$	$1 \cdot 81(4)$	$\mathrm{O}-\mathrm{C}($ term. $)$	$1 \cdot 13(3)$
$\mathrm{Ge}-\mathrm{Cl}$	$2 \cdot 22(2)$	$\mathrm{O}-\mathrm{C}($ br. $)$	$1 \cdot 21(3)$
(b) Angles			
$\mathrm{Ge}-\mathrm{Fe}-\mathrm{Ge}$			
$\mathrm{Fe}-\mathrm{Ge}-\mathrm{Co}$	$\mathbf{8 8 \cdot 2 (2)}$	$123 \cdot 6(8)$	$\mathrm{Ge}-\mathrm{Fe}-\mathrm{C}$
$\mathrm{Ge}-\mathrm{Co}-\mathrm{Co}$	$102 \cdot 0(8)$	$\mathrm{Ge}-\mathrm{Ge}-\mathrm{Cl}$	$87(1)$
$\mathrm{C}-\mathrm{Fe}-\mathrm{C}$	$93(3)$	$\mathrm{Co}-\mathrm{C}-\mathrm{Co}$	$98 \cdot 7(12)$

* The errors quoted are computed according to $\left[\sum_{n}(x-\bar{x})^{2}\right]$ $(n-1)]$.
bond lengths and angles are grouped for convenience. Averaging has been carried out over all equivalent values in both molecules and the errors quoted are standard deviations from the mean. The molecule exhibits approximate non-crystallographic $C_{2 v}-m m$ symmetry if the individual atoms of the cyclopentadienyl rings are ignored: one mirror plane passes through the five metal atoms whilst the second contains the iron atom, two terminal carbonyl groups, and the bridging carbonyl groups. The deviations from these planes, listed in Table 7, indicate how closely the symmetry is maintained.

Table 7

Equations of best least-squares planes in the form $A x+$ $B y+C z+D=0$ where x, y, and z are co-ordinates in \AA, with deviations (\AA) of atoms from the plane given in square brackets

deviation.
It is evident from a consideration of the molecular geometry that ring closure has been achieved with very little strain. The bond angles about the metal atoms closely parallel those in similar structures where there are no constraints imposed by the requirements of bridging. The $\mathrm{Ge}-\mathrm{Fe}-\mathrm{Ge}$ angle is $88.8(2)^{\circ}$, slightly less than octahedral, as are the $\mathrm{C}-\mathrm{Fe}-\mathrm{Ge}$ angles, mean $87(1)^{\circ}$. The $\mathrm{C}-\mathrm{Fe}-\mathrm{C}$ angles are correspondingly slightly larger at $93(3)^{\circ}$. The $\mathrm{Fe}-\mathrm{Ge}$ distance is $2 \cdot 438(5) \AA$, somewhat longer than the distances $2 \cdot 357(4)$ in $\left(\mathrm{Cl}_{2} \mathrm{Ge}\right)$ -$\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2}\right]_{2}$ (ref. 14) and $2 \cdot 28(1) \AA$ in $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)-$ $\left(\pi-\mathrm{C}_{4} \mathrm{H}_{6}\right) \mathrm{Fe}\left(\mathrm{GeCl}_{2} \mathrm{Me}\right) .{ }^{\mathbf{1 5}}$ It is postulated that in the latter compound, which contains the shortest $\mathrm{Fe}-\mathrm{Ge}$ distance yet observed, strong $d_{\pi}(\mathrm{Fe}) \rightarrow d_{\pi}(\mathrm{Ge})$ back-
${ }^{14}$ M. A. Bush and P. Woodward, J. Chem. Soc. (A), 1967, 1833.
${ }_{15}$ V. G. Adrianov, V. P. Martynov, K. N. Anisimov, N. E. Kolobova, and V. V.'Skripkin, Chem. Comm., 1970, 1253.
${ }^{16}$ M. Elder and D. Hall, Inorg. Chem., 1969, 8, 1424.
17 M. Elder, Inorg. Chem., 1969, 8, 2703.
18 J. C. Limmer and M. Huber, Compt. rend., 1968, 267, C,
donation is enhanced by the weak π-acceptor properties of the ligands $\pi-\mathrm{C}_{5} \mathrm{H}_{5}$ and $\pi-\mathrm{C}_{4} \mathrm{H}_{6}$ attached to the iron atom. It is certainly reasonable that the three molecules, with respectively four, two, and zero carbonyl groups, which are relatively strong π-acceptors, should exhibit a progressively decreasing $\mathrm{Fe}-\mathrm{Ge}$ distance. Two other $\mathrm{Fe}-\mathrm{Ge}$ distances where there are only carbonyl groups on the iron atom, $2 \cdot 398(4)$ in $\left(\mathrm{Me}_{2} \mathrm{Ge}\right)_{3} \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ (ref. 16) and $2 \cdot 422(3) \AA$ in $\left(\mathrm{GePh}_{2}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{7}$ (ref. 17) are also at the long end of this range, although they must also be affected by the germanium atoms bridging short $\mathrm{Fe}-\mathrm{Fe}$ distances. An even longer distance, $2 \cdot 492 \AA$, occurs in the four-membered ring $\left[\mathrm{Fe}(\mathrm{CO})_{4}\left(\mathrm{GeEt}_{2}\right)\right]_{2},{ }^{18}$ where, although the $\mathrm{Fe}-\mathrm{Ge}-\mathrm{Fe}$ angle is acute, there is no $\mathrm{Fe}-\mathrm{Fe}$ bond, and electron-acceptor ability of the GeEt_{2} entity is less than that of a GeCl_{2} group.

The co-ordination around the germanium atoms is very similar to that in $\left(\mathrm{Cl}_{2} \mathrm{Ge}\right)\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2}\right]_{2}$ (ref. 14) where the two $\mathrm{Fe}-\mathrm{Ge}$ bonds are free to adopt any orientation. The $\mathrm{Fe}-\mathrm{Ge}-\mathrm{Fe}$ and $\mathrm{Cl}-\mathrm{Ge}-\mathrm{Cl}$ angles are respectively $128 \cdot 4(2)$ and $96 \cdot 1(2)$ in the latter compound and $123 \cdot 6(9)$ (for $\mathrm{Fe}-\mathrm{Ge}-\mathrm{Co}$) and $98.7(13)^{\circ}$ in the present molecule. The mean $\mathrm{Ge}-\mathrm{Cl}$ distance is an unexceptional 2•22(2) Å.

The geometry of the $\mathrm{Co}_{2}(\mathrm{CO})_{2}\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ portion of the molecule is based upon the $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ structure. ${ }^{19}$ The cyclopentadienyl groups can be regarded as replacing the terminal carbonyl ligands trans to the bridging groups, whilst the two remaining terminal carbonyl groups are replaced by germanium atoms. Thus the π-cyclopentadienyl groups are dichoric in King's terminology, ${ }^{20}$ replacing two carbonyl groups whilst providing the five electrons needed to satisfy the inert-gas rule for the cobalt atoms. The Ge-Co distances average $2 \cdot 341(9) \AA$, shorter than the values $2 \cdot 383(3) \AA$ for $G e$ bridging a $\mathrm{Co}_{2}(\mathrm{CO})_{7}$ entity and $2 \cdot 456(3) \AA$ for $\mathrm{Ge}-\mathrm{Co}(\mathrm{CO})_{4}$ observed in $(\mathrm{PhGe}) \mathrm{Co}_{3}(\mathrm{CO})_{11}{ }^{21}$ The argument of Adrianov et. al. ${ }^{15}$ applied to these $\mathrm{Ge}-\mathrm{Co}$ bonds would indeed predict a shorter $\mathrm{Ge}-\mathrm{Co}$ length when carbonyl groups are replaced by a π-cyclopentadienyl ligand. The same reasoning may apply to the $\mathrm{Co}-\mathrm{Co}$ distance which is $2 \cdot 439(5) \AA$, appreciably shorter than the $2 \cdot 52 \AA$ in $\mathrm{Co}_{2}(\mathrm{CO})_{8},{ }^{16}$ although the $\mathrm{Co}-\mathrm{C}$ distances and the $\mathrm{Co}-\mathrm{C}-\mathrm{O}$ angles are the same in both structures. Sutton and Dahl ${ }^{22}$ list a range of $\mathrm{Co}-\mathrm{Co}$ distances of $2 \cdot 43-2.64$ which makes the $2 \cdot 44 \AA$ in this molecule one of the shortest yet observed. It does not seem possible that the shortening is due to ring closure constraints since a longer distance could be accommodated by either twisting the cobalt atoms out of the plane of the remaining three metal atoms or by increasing the $\mathrm{Fe}-\mathrm{Ge}-\mathrm{Co}$ angle toward the comparable value in the unconstrained $\left(\mathrm{Cl}_{2} \mathrm{Ge}\right)\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2}\right]_{2}$.

[^1]The mean $\mathrm{Co}-\mathrm{C}$ distance for the cyclopentadienyl rings is $2 \cdot 10(3) \AA$, and the mean C-C(ring) distance is $1 \cdot 42(1) \AA$. Both these values agree with those given in Wheatley's review, ${ }^{23} 2.069$ and $1 \cdot 42(2) \AA$. The hindered-rotor model moves the atoms along the arc of a circle and so no ' ridin§' correction is necessary. Thus the bond lengths obtained from the hindered-rotor refinement should be compared with the thermally corrected values given by Wheatley.

The value of parameter $B d$ is an indication of the amount of rotation the group undergoes. A value of infinity would give no rotation while one of zero would result in free rotation. Intermediate values are directly related to the root mean square angular displacement of the group. Root-mean-square angular displacement
${ }_{23}$ P. J. Wheatley, Perspectives in Structural Chem., 1967, 1, 9.
values for the four cyclopentadienyl rings are given in Table 8.

Table 8
Root-mean-square angular displacements for ring carbon atoms

Ring	$B d$	Displacement (deg.)	$B_{\text {ifo }} *$
(2)	$0.8(2)$	$15(1)$	6.3
(3)	$0.5(1)$	$17(1)$	6.9
(4)	$2 \cdot 0(4)$	$10(1)$	$4 \cdot 1$
(5)	$1 \cdot 4(2)$	$12(1)$	4.9

* B_{iso} is an equivalent isotropic temperature factor calculated according to $B_{\text {iso }}=B+8 / 3 \pi^{2} R^{2} \bar{u}^{2}$.
We thank Dr. R. Kummer for the crystals, Drs. D. A. Hall, W. A. G. Graham, and M. J. Bennett for helpful discussions, and the National Research Council of Canada for financial support of this work.
[1/1362 Received, April 23rd, 1971]

[^0]: * See W. R. Busing and H. A. Levy, Acta Cryst., 1957, 10, 180.
 - D. T. Cromer, Acta Cryst., 1968, A, 24, 321.

 7 D. T. Cromer, Acta Cryst., 1965, 18, 20.
 ${ }^{8}$ M. V. King and W. N. Lipscomb, Acta Cryst., 1950, 3, 155.

 - A. L. Beauchamp, M. J. Bennett, and F. A. Cotton, J. Amer. Chem. Soc., 1968, 90, 6675.

[^1]: 19 G. G. Sumner, H. P. Klug, and L. E. Alexander, Acta Cryst., 1964, 17, 732.
 ${ }_{20}$ R. B. King, Inorg. Chem., 1966, 5, 2227.
 ${ }^{21}$ R. Ball, M. J. Bennett, E. H. Brooks, W. A. Graham, J. Hoyano, and S. M. Illingworth, Chem. Comm., 1970, 592.
 ${ }_{22}$ P. W. Sutton and L. F. Dahl, J. Amer. Chem. Soc., 1967, 89, 261.

