Crystal and Molecular Structure of Chloro\{methyldi-[(6-methyl-2-pyridyl)methyl]amine\}palladium(II) Chloride

By Michael G. B. Drew,* Michael J. RiedI, and James Rodgers, Department of Chemistry, The University, Reading, Berkshire RG6 2AD

Abstract

Crystals of the title compound are orthorhombic, space-group $\mathrm{CmC2}_{1}, Z=4$, in a unit cell of dimensions $a=$ $13.648(9), b=13.156(11), c=8 \cdot 772(8) A$. The intensities of 1115 independent reflections above background collected by counter methods were refined to $R 0.042$. The palladium atom is in a distorted square planar environment, the chlorine atom being $0.93 \AA$ out of the plane containing the palladium and three nitrogen atoms. The $\mathrm{Pd}-\mathrm{Cl}$ bond distance is $2.331(3) \AA$. The $\mathrm{Pd}-\mathrm{N}$ (tertiary) bond distance [2.018(8) \AA] is significantly shorter than the Pd-N(pyridine) distances $[2.068(6) A]$. The preparation of the analogous bromo-complex is also given together with i.r. and n.m.r. spectral data for the two complexes.

It is well known that relatively small structural modifications in a multidentate ligand can produce significant changes in the geometry of its transition-metal complexes, sometimes resulting in a change in co-ordination number. Such an example is to be found in the series of ligands derived from di-[(2-pyridyl)methyl]amine (dpma). With $\mathrm{Fe}^{\mathrm{II}}$ and $\mathrm{Ni}^{\mathrm{II}}$, this gives ${ }^{1}$ octahedral complex ions of the form $\left[\mathrm{M}(\mathrm{dpma})_{2}\right]^{2+}$. However, either by extending the aliphatic chain between donor nitrogen atoms, as in di-[(2-pyridyl)ethyl]amine (dpea), or by introducing methyl substituents in the pyridine rings, as in di-[(6-methyl-2-pyridyl)methyl]amine ($\mathrm{Me}_{2}-$ dpma), high-spin five-co-ordinate complexes are formed with co-ordinated halide ions. ${ }^{2,3}$ An X-ray structural investigation of one of these, $\mathrm{NiBr}_{2}\left(\mathrm{Me}_{2} \mathrm{dpma}\right)$ (I), has shown ${ }^{4}$ that the distorted trigonal bipyramidal geometry adopted can be satisfactorily explained by steric arguments. An additional interesting observation was that the approach of a fourth co-ordinating group in the (Me_{2} dpma) molecular plane appeared to be effectively blocked by the two methyl groups; thus it appeared

[^0]that regular square planar and octahedral complexes would be sterically unlikely. Accordingly we attempted to prepare compounds with these two symmetries using

 Cl (II)
palladium(II) and titanium(III) as the metal atoms. We chose the former because, although its complexes are predominately four-co-ordinate square planar, five-coordinate complexes can be prepared in particular
${ }^{4}$ J. Rodgers and R. A. Jacobson, J. Chem. Soc. (A), 1969, 2036.
circumstances. The structures of several five-co-ordinate complexes of both palladium(II) and platinum(II) have been established through X-ray diffraction, and the metal atom found to be in an environment which is either trigonal bipyramidal [as in $\mathrm{Pt}\left(\mathrm{SnCl}_{3}\right)_{5}$ (ref. 5)] or square pyramidal (as in the $[\mathrm{Pd}(\text { tpas }) \mathrm{Cl}]^{+}$cation where tpas is o-phenylenebis $\{[(0$-dimethylarsino $)$ phenyl $]$ methylarsine $\left.\}^{6}\right)$. We used the ligand methyldi-[(6-methyl-2pyridyl)methyl]amine ($\mathrm{Me}_{3} \mathrm{dmpa}$) to prepare $\mathrm{PdCl}_{2}-$ ($\mathrm{Me}_{3} \mathrm{dpma}$) and here report its crystal structure which contains a very distorted square planar $\left[\mathrm{PdCl}\left(\mathrm{Me}_{3} \mathrm{dpma}\right)\right]^{+}$ cation, as in (II), rather than a five-co-ordinate species analogous to the $\mathrm{NiX}_{2}\left(\mathrm{Me}_{2} \mathrm{dpma}\right)$ series. The crystal structure of $\mathrm{TiCl}_{3}\left(\mathrm{Me}_{3} \mathrm{dpma}\right)$, in which the titanium atom has a distorted octahedral environment, will be reported subsequently. ${ }^{7}$

EXPERIMENTAL

Preparation and Characterisation of the Complexes.-The preparation of the ligand has been described previously. ${ }^{3}$ (II) was prepared by shaking $\mathrm{PdCl}_{2}(2.0 \mathrm{~g}, 11.3 \mathrm{mmol})$ with an aqueous solution of $\mathrm{Me}_{3} \mathrm{dpma}(2.8 \mathrm{~g}, 11.6 \mathrm{mmol}$ in 30 ml$)$ for 3 days. The filtered solution was evaporated to dryness (70%), and orange crystals were obtained by a slow recrystallisation from ethanol (Found: C, 42.9; H, 4.6; N, $10 \cdot 0 ; \mathrm{Pd}, 25 \cdot 3 . \quad \mathrm{C}_{15} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{Pd}$ requires $\mathrm{C}, 43 \cdot 0 ; \mathrm{H}, 4 \cdot 6$; $\mathrm{N}, 10 \cdot 0 ; \mathrm{Pd}, 25 \cdot 4 \%$).

The bromo-complex, $\mathrm{PdBr}_{2}\left(\mathrm{Me}_{3} \mathrm{dpma}\right)$, was prepared similarly (Found: C, $35 \cdot 8$; H, 3.9 ; N, 8.3 ; Pd, $21 \cdot 0$. $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{Br}_{2} \mathrm{~N}_{3} \mathrm{Pd}$ requires $\mathrm{C}, 35 \cdot 4 ; \mathrm{H}, 3.7 ; \mathrm{N}, 8.3 ; \mathrm{Pd}$, $21 \cdot 0 \%)$. X-Ray powder diffraction patterns show the chloro- and bromo-complexes to be isomorphous.

The molar conductivities of the chloro- and bromocomplexes $\left(10^{-3} \mathrm{~m}\right)$ in nitromethane were measured by use of a Pye conductance bridge 11700 and found to be $81 \cdot 6$, $84.5 \mathrm{mhos} \mathrm{cm}^{2}$ respectively. These values are typical for a 1:1 electrolyte in nitromethane. ${ }^{8}$

The i.r. spectra (as Nujol or hexachlorobutadiene mulls; Perkin-Elmer 457 spectrometer) of both compounds show two strong bands at 1592 and $1628 \mathrm{~cm}^{-1}$ and no absorption in the region $2760-2820 \mathrm{~cm}^{-1}$. Two strong bands in the region $1560-1650 \mathrm{~cm}^{-1}$ are found for complexes in which the two pyridyl groups are co-ordinated. When one of the pyridyl groups is not co-ordinated, three strong bands appear in this region. ${ }^{3}$ The absence of absorption in the $2760-2820 \mathrm{~cm}^{-1}$ region suggest that the central nitrogen atom is bonded, since a non-bonded $>$ NMe grouping would show a number of strong peaks in this region. ${ }^{9,10}$

Further evidence of the terdentate nature of the ligand comes from ${ }^{1} \mathrm{H}$ n.m.r. shifts of the ligand and of (II) (Table 1). In the complex the aromatic protons and pyridylmethyl protons have shifted downfield by $c a . \tau 0 \cdot 25$, and 0.42 respectively, confirming that the pyridyl groups are co-ordinated. That the central nitrogen atom is also coordinated is shown by the downfield shift of ca. $\tau 0 \cdot 44$ of

[^1]the methyl protons. N.m.r. spectra were run on a PerkinElmer R 10 spectrometer.
Crystal Data. $-\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{Pd}, M=418 \cdot 6$, Orthorhombic, $a=13 \cdot 648(9), \quad b=13 \cdot 156(11), \quad c=8 \cdot 772(8) \AA, \quad U=$ $1575 \cdot 0 \AA^{3}, D_{\mathrm{c}}=1 \cdot 76, Z=4, D_{\mathrm{m}}$ (by flotation) $=1 \cdot 74$, $F(000)=840$. Space-group $C m c 2_{1}$ from systematic absences: $h k l$ for $h+k=2 n+1$, and $h 0 l, l=2 n+1$. Mo- K_{α} radiation, $\lambda=0.7107 \AA ; \mu\left(\mathrm{Mo}-K_{\alpha}\right)=14.9 \mathrm{~cm}^{-1}$.

Table 1
${ }^{1} \mathrm{H}$ N.m.r. chemical shifts ${ }^{a}$
Compound

Free ligand	(II)	Assignment
2.00-6.75	1.75-2.55	Aromatic multiplet
6.32	b	$-\mathrm{CH}_{2}-$
$7 \cdot 48$	7.06	2-pyridylmethyl
7.67	7.23	NMe

${ }_{a} \tau$ Values; $\mathrm{D}_{2} \mathrm{O}$ solution with the sodium salt of 3 -(trimethylsilyl)propanesulphonic acid as internal reference. ${ }^{\circ}$ Peaks obscured by $\mathrm{H}_{2} \mathrm{O}$ peak.

A crystal with dimensions $0.20 \times 0.15 \times 0.10 \mathrm{~mm}$ was mounted with the c axis parallel to the instrument axis of a General Electric XRD 5 apparatus which was used to measure diffraction intensities and cell dimensions. It was equipped with a manual goniostat, scintillation counter, and pulse-height analyser. A molybdenum tube was used with a zirconium filter at the receiving slit. The stationary-crystal-stationary-counter method was used with a 4° take-off angle and a counting time of 10 s . Individual backgrounds were taken from plots of background as a function of 2θ. Several standard reflections were measured repeatedly during the course of the experiment, but no significant change in intensity was detected. 1272 independent reflections were measured with $20<60^{\circ}$. No absorption or extinction corrections were applied. The standard deviation $\sigma(I)$ of the reflections was taken to be $\left[I+2 E+\left(0.03 I^{2}\right)\right]^{\frac{1}{2}}$, where I is the intensity and E the estimated background of the reflection. 1115 reflections with $I>3 \sigma(I)$ were used in the subsequent calculations.

Structure Determination.-The position of the palladium atom was determined from a Patterson function and Fourier syntheses were then used to determine the positions of the remaining atoms. The structure was refined by fullmatrix least squares. The weighting scheme, chosen to give average values of $w \Delta^{2}$ for groups of reflections independent of the value of F_{0} and $\sin \theta / \lambda$ was $\sqrt{ } w=1$ for $F_{0}<30$ and $\sqrt{ } w=30 / F_{0}$ for $F_{0}>30$. Calculations were made on an ATLAS computer at S.R.C. Chilton, Berkshire, with the programs described in ref. 11 and on an Elliott 4130 with some of our own programs. Atomic scattering factors for palladium were taken from ref. 12 and chlorine, nitrogen, carbon, and hydrogen from ref. 13, together with corrections for the real and imaginary part of the anomalous dispersion for the palladium and chlorine atoms. The anisotropic temperature factor is defined as $\exp \left(-0.25 \sum_{i} \sum_{j} h_{i} h_{j} b_{i} b_{j} B_{i j}\right)$ where $i, j=1,2,3$, and b_{i} is the i th reciprocal cell dimension: the isotropic temperature
${ }_{10}$ J. R. Braunholz, E. A. V. Ebsworth, F. G. Mann, and N. Sheppard, J. Chem. Soc., 1958, 2780.
${ }^{11} X$-Ray ' 63 system of programs, compiled by J. M. Stewart and D. High, University of Maryland Technical Report, TR 646 , modified for the ATLAS machine by J. Baldwin.
${ }_{13}$ D. T. Cromer, Acta Cryst., 1965, 18, 17.
${ }^{13}$ ' International Tables for X-Ray Crystallography,' vol. III, Kynoch Press, Birmingham, 1960.
factor is $\exp \left(-B \sin ^{2} \theta / \lambda^{2}\right)$. The palladium and chlorine atoms were refined anisotropically and the carbon and nitrogen atoms isotropically. The approximate positions of the 10 independent hydrogen atoms were found from the

Table 2

Atomic parameters and thermal parameters of (II), with estimated standard deviations in parentheses

Atom	\boldsymbol{x}	y	z	B / \AA^{2}
Pd	$0{ }^{\text {a }}$	$0 \cdot 1562(1)$	$0^{\text {a }}$	b
$\mathrm{Cl}(1)$	$0{ }^{\text {a }}$	0.0796(2)	-0.2428(4)	b
$\mathrm{Cl}(2)$	$0{ }^{\text {a }}$	$0 \cdot 4692$ (2)	$-0.1620(4)$	b
N(1)	0.1498(4)	$0 \cdot 1585(4)$	$0.0338(6)$	2.29(8)
$\mathrm{N}(2)$	$0{ }^{\text {a }}$	$0 \cdot 2559$ (6)	$0 \cdot 1686(9)$	2.09(9)
$\mathrm{C}(1)$	0.2193(5)	$0 \cdot 0878$ (5)	$0 \cdot 0112(12)$	$2 \cdot 68(9)$
$\mathrm{C}(2)$	$0.3147(6)$	$0 \cdot 1038(6)$	$0 \cdot 0635(11)$	3-18(12)
$\mathrm{C}(3)$	$0 \cdot 3394$ (7)	$0 \cdot 1935$ (7)	$0 \cdot 1397(11)$	$3 \cdot 51$ (13)
$\mathrm{C}(4)$	$0 \cdot 2662$ (6)	$0 \cdot 2626$ (6)	$0 \cdot 1670$ (9)	3.02(12)
C(5)	$0 \cdot 1724(5)$	$0 \cdot 2453$ (5)	$0 \cdot 1125(8)$	2.31(9)
C(6)	0.0900 (5)	$0 \cdot 3169$ (6)	$0 \cdot 1373(9)$	$2 \cdot 50$ (9)
$\mathrm{C}(7)$	0.1942(6)	-0.0092(7)	$-0.0637(11)$	3.54(14)
$\mathrm{C}(8)$	$0^{\circ}{ }^{\text {a }}$	$0 \cdot 2180$ (8)	$0 \cdot 3266(14)$	$2 \cdot 95(15)$
$\mathrm{H}(2)$	$0 \cdot 3697$	$0 \cdot 0466$	0.0451	(15)
$\mathrm{H}(3)$	$0 \cdot 4133$	$0 \cdot 2079$	$0 \cdot 1759$	c
H(4)	0.2817	$0 \cdot 3304$	$0 \cdot 2310$	c
$\mathrm{H}(6-1)$	$0 \cdot 1058$	$0 \cdot 3653$	$0 \cdot 2330$	c
$\mathrm{H}(6-2)$	0.0793	$0 \cdot 3627$	0.0372	c
$\mathrm{H}(7-1)$	0.2536	-0.0547	-0.1064	c
$\mathrm{H}(7-2)$	0.1547	-0.0540	0.0182	c
$\mathrm{H}(7-3)$	$0 \cdot 1470$	0.0085	-0.1582	c
$\mathrm{H}(8-1)$	0	$0 \cdot 2736$	$0 \cdot 4164$	c
$\mathrm{H}(8-2)$	$0 \cdot 0643$	$0 \cdot 1718$	$0 \cdot 3408$	c

${ }^{a}$ Parameter not refined. ${ }^{b}$ Anisotropic thermal parameters, $B_{11}, B_{22}, B_{33}, B_{23}$ are: for Pd, $2 \cdot 00(3), 1 \cdot 69(2), 2 \cdot 63(2),-0.35(3)$; for $\mathrm{Cl}(1), 3.63(7), 3.93(7), 3.25(6),-1 \cdot 16(6)$; and for $\mathrm{Cl}(2)$, $3.41(6), 2 \cdot 88(6), 3 \cdot 42(7)$, and $0.21(7)$. \cdot Hydrogen atoms were given temperature factors equivalent to those of the atoms to which they were bonded, but their parameters were not refined.

Table 3

Bond distances (\AA) and angles (deg.), with estimated standard deviations in parentheses for (II)
(a) Distances

$\mathrm{Pd}-\mathrm{N}(1)$	$2 \cdot 068(6)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1 \cdot 385(10)$
$\mathrm{Pd}-\mathrm{N}(2)$	$2 \cdot 018(8)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1 \cdot 483(10)$
$\mathrm{Pd}-\mathrm{Cl}(1)$	$2 \cdot 331(3)$	$\mathrm{C}(6)-\mathrm{N}(2)$	$1 \cdot 493(9)$
$\mathrm{N}(1)-\mathrm{C}(1)$	$1 \cdot 343(8)$	$\mathrm{N}(2)-\mathrm{C}(8)$	$1 \cdot 474(15)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1 \cdot 397(11)$	$\mathrm{C}(1)-\mathrm{C}(7)$	$1 \cdot 474(12)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1 \cdot 398(12)$	$\mathrm{N}(1)-\mathrm{C}(5)$	$1 \cdot 371(8)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1 \cdot 371(12)$		
(b) Angles			
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(2)$	$108 \cdot 3(6)$	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(5)$	$119 \cdot 3(6)$
$\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{C}(8)$	$110 \cdot 7(6)$	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$120 \cdot 4(7)$
$\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{C}\left(6^{\mathrm{I}}\right)$	$110 \cdot 8(7)$	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(7)$	$119 \cdot 4(7)$
$\mathrm{Cl}(1)-\mathrm{Pd}-\mathrm{N}(1)$	$98 \cdot 5(2)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)$	$120 \cdot 2(7)$
$\mathrm{Cl}(1)-\mathrm{Pd}-\mathrm{N}(2)$	$161 \cdot 0(2)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$120 \cdot 1(8)$
$\mathrm{N}(2)-\mathrm{Pd}-\mathrm{N}(1)$	$82 \cdot 3(3)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$118 \cdot 7(9)$
$\left.\mathrm{N}(1)-\mathrm{Pd}-\mathrm{N}(1)^{\mathrm{I}}\right) *$	$162 \cdot 8(4)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$119 \cdot 7(8)$
$\mathrm{Pd}-\mathrm{N}(1)-\mathrm{C}(1)$	$130 \cdot 2(4)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}(1)$	$121 \cdot 7(7)$
$\mathrm{Pd}-\mathrm{N}(1)-\mathrm{C}(5)$	$109 \cdot 6(4)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$123 \cdot 2(7)$
$\mathrm{Pd}-\mathrm{N}(2)-\mathrm{C}(6)$	$103 \cdot 5(4)$	$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(6)$	$115 \cdot 1(6)$
$\mathrm{Pd}-\mathrm{N}(2)-\mathrm{C}(8)$	$117 \cdot 3(7)$		

* Atoms $\mathrm{N}\left(1^{1}\right)$ and $\mathrm{C}\left(6^{1}\right)$ are in equivalent positions $-x, y, z$ relative to the reference set at x, y, z.
difference Fourier map; these positions were idealised at $1.075 \AA$ from the carbon atoms to which they were attached

[^2]in trigonal or tetrahedral positions. These hydrogen atoms were included in the refinement, but their parameters were not refined. In the structure, the z direction is indeterminate. We therefore refined two models, in which the effect of the imaginary part of the anomalous dispersion is reversed (i.e. with opposing signs for the z co-ordinates). There were no significant differences in dimensions between the two models. The model with the lowest R value (0.042) was assumed to be correct. The atomic parameters and thermal parameters for this model are given in Table 2. The bond distances and angles are given in Table 3. The final observed and calculated structure factors are listed in Supplementary Publication No. SUP 20257 (7 pp., 1 microfiche).*

DISCUSSION

The configuration of the $\left[\mathrm{PdCl}\left(\mathrm{Me}_{\mathbf{3}} \mathrm{dpma}\right)\right]$ cation of (II) is shown in Figure 1, together with the atomic

Figure 1 A view of the $\left[\mathrm{PdCl}\left(\mathrm{Me}_{3} \mathrm{dpma}\right)\right]$ cation
numbering scheme and the bond distances. Atoms Pd, $\mathrm{Cl}(1), \mathrm{N}(2)$, and $\mathrm{C}(8)$, of the cation and the chloride ion $\mathrm{Cl}(2)$ lie on a crystallographic mirror plane. In (II) the $\mathrm{Pd}-\mathrm{N}(1)$ bonds $[2 \cdot 068(6) \AA]$ are significantly longer than the corresponding $\mathrm{Pd}-\mathrm{N}(2)$ bond $[2 \cdot 018(8) \AA]$. $\quad \mathrm{Pd}^{\mathrm{II}-N}$ distances found in square planar palladium(II) complexes, in which the $\mathrm{Pd}^{-} \mathrm{N}$ bond is neither sterically hindered nor trans to a very strong metal-ligand bond are in the range $1.99-2.04 \AA .^{14}$ The $\mathrm{Pd}-\mathrm{N}(2)$ bond length falls in this range while the $\mathrm{Pd}^{-} \mathrm{N}(1)$ bond is slightly longer. A similar disparity between the $\mathrm{Ni}-\mathrm{N}(\mathrm{l})$ and $\mathrm{Ni}-\mathrm{N}(2)$ bond lengths has been noted ${ }^{4}$ in the five-co-ordinate nickel complex (I) and the elongation of the $\mathrm{M}-\mathrm{N}(1)$ bonds in both structures can therefore be ascribed to steric effects.
$\mathrm{Pd}^{\mathrm{II}-} \mathrm{Cl}$ and $\mathrm{Pt}^{\mathrm{II}-}-\mathrm{Cl}$ distances ${ }^{15,16}$ have been found in the range $2 \cdot 294-2 \cdot 422 \AA$, the lengths being dependent upon the steric nature of the ligands and the type of trans-bond. The range $2 \cdot 29-2 \cdot 33 \AA$ is found in nonsterically hindered structures with no particularly strong trans-group such as dichloro(tetrahydrogen ethylene-diaminetetra-acetato)palladium(II) pentahydrate, ${ }^{17}$ $2 \cdot 30(1) \AA$, and norbornadienepalladium(II) chloride, ${ }^{18}$
${ }^{16}$ R. Mason, G. B. Robertson, and P. D. Whimp, J. Chem. Soc. (A), 1970, 535.
17 D. J. Robinson and C. H. L. Kennard, J. Chem. Soc. (A), 1970, 1008.
${ }^{18}$ ' N. C. Baenzige, G. F. Richards, and J. R. Doyle, Acta Cryst., 1965, 18, 924.
$2 \cdot 323$ and $2 \cdot 310 \AA$. The $\mathrm{Pd}^{\mathrm{II}}-\mathrm{Cl}$ bond distance in (II) of $2 \cdot 331(3) \AA$ is therefore at the top of the range of such distances in similar compounds. In (II), the major influences on the stereochemistry of the cation are the short contacts between the $\mathrm{Cl}(\mathbf{1})$ atom [trans to $\mathrm{N}(2)]$ and the methyl groups $\mathrm{C}(7)$ and $\mathrm{C}\left(7^{\mathrm{I}}\right)$. The $\mathrm{Cl}(1) \cdots \mathrm{C}(7)$ contact distances have been increased to acceptable values by distortions from ideal square planar symmetry around the palladium atom and by variations in the ligand conformation. The slight increase in $\operatorname{Pd}-\mathrm{N}(1)$ and $\mathrm{Pd}-\mathrm{Cl}(1)$ bond lengths, from values to be expected in an unstrained molecule, will have only a minor effect on such contacts.

It is pertinent to compare the configuration of (II) with that of (I) ${ }^{4}$ in which there is no atom trans to $\mathrm{N}(2)$.* Thus, the $\mathrm{Br} \cdots \mathrm{C}(7)$ contacts ($\geqslant 3.78 \AA$) are considerably less important in fixing the geometry of (I) than are the $\mathrm{Cl}(1) \cdots \mathrm{C}(7)$ contacts $(3 \cdot 29 \AA)$ in (II) \dagger In (II), the chlorine atom $\mathrm{Cl}(1)$ is bent to one side of the $\mathrm{Pd}, \mathrm{N}(1), \mathrm{N}\left(\mathrm{l}^{1}\right), \mathrm{N}(2)$ plane [plane (2), Table 4] by $0.93 \AA$, the $\mathrm{Cl}(1)-\mathrm{Pd}-\mathrm{N}(2)$ angle being $161 \cdot 0(2)^{\circ}$.

Table 4

Equations of least-squares planes for (II) in the form $A x+B y+C z=D$ where x, y, z are the crystallographic fractional co-ordinates of the atoms. Distances (\AA) of the relevant atoms from the planes are given in square brackets

Plane (1):	A	B	C	D
$\mathrm{~N}(1), \mathrm{C}(1)-(5)$		$-3 \cdot 18$	-5.88	7.58
$[\mathrm{~N}(1), \mathrm{C}(1)-(5)$	$0.00, \mathrm{C}(6) *$	$0.03, \mathrm{C}(7) * 0.09, \mathrm{~N}(2) *$	$0.91]$	
Plane (2):				

* Atoms given zero weight in the calculation of the plane. Angle between the two pyridine rings is 27.0°; angle between planes (1) and (2) is $22 \cdot 0^{\circ}$.

We have described the conformation of the ligand by the least-squares planes listed in Table 4. In both structures the pyridine rings are planar within experimental error and the dimensions of the ligands are comparable. In (II), the pyridine rings are twisted out of plane by 22.0° leaving C(7) $1.00 \AA$ from plane (2) on the opposite side to $\mathrm{Cl}(1)$. This distance is increased slightly by C(7) being $0.09 \AA$ out of the pyridine ring plane. In addition, the $\mathrm{Pd}-\mathrm{N}(1)-\mathrm{C}(5)$ angle $\left(\mathbf{1 3 0} \cdot \mathbf{2}^{\circ}\right)$ is greater than the $\operatorname{Pd}-\mathrm{N}(\mathbf{1})-\mathrm{C}(\mathbf{1})$ angle ($\mathbf{1 0 9 . 6} \mathbf{6}^{\circ}$); this feature also increases the $\mathrm{Cl} \cdots \mathrm{C}(7)$ distances.
In (I), the ligand is, as expected, considerably less distorted than in (II) as there is no atom in a position

[^3]trans to $\mathrm{N}(2)$. The two pyridine rings are twisted out of plane (2) by 12.5°, while $\mathrm{C}(7)$ is only -0.30 and $-0.42 \AA$ from that plane. $C(7)$ is coplanar with the pyridine ring and the difference between the $\operatorname{Pd}-\mathrm{N}(1)-\mathrm{C}(5)$ and $\mathrm{Pd}-\mathrm{N}(1)-\mathrm{C}(1)$ angles (mean $127 \cdot 0$ and $113 \cdot 6^{\circ}$) is less than in (II).

In (II), there are few significant intermolecular contacts: among them being $\mathrm{C}(3) \cdots \mathrm{Cl}\left(2^{\text {II }}\right) \ddagger 3 \cdot 52$, $\mathrm{C}(2) \cdots \mathrm{Cl}\left(2^{\mathrm{II}}\right) 3 \cdot 62, \mathrm{C}(2) \cdots \mathrm{Cl}\left(2^{\mathrm{III}}\right) 3 \cdot 67, \mathrm{C}(6) \cdots \mathrm{Cl}\left(2^{\mathrm{IV}}\right)$ $3.54, \mathrm{Pd} \cdots \mathrm{Cl}\left(1^{\nabla}\right) 3.79 \AA$. A packing diagram of the unit cell is given in Figure 2.

From a comparison of the configurations of (I) and (II), it is clear that (II) is under more steric strain than

Figure 2 The unit cell of (II) in the c projection
would be found in the comparable five-co-ordinate trigonal bipyramidal $\mathrm{PdCl}_{2}\left(\mathrm{Me}_{3} \mathrm{dpma}\right)$ molecule. However, structural data on $\mathrm{Pd}^{\text {II }}$ and $\mathrm{Pt}^{\text {II }}$ five-co-ordinate complexes has been interpretated ${ }^{6}$ as showing that, in the absence of steric requirements of the ligands or of very strong metal-ligand bonds, the preferred symmetry is square pyramidal. This is illustrated by the square pyramidal $[\mathrm{Pd}(\mathrm{tpas}) \mathrm{Cl}]^{+}$cation, in which the relative configuration of the four donor arsenic atoms is sufficiently flexible to participate in either geometry. The preferred symmetry of nickel(II) high-spin five-coordinate complexes is also square pyramidal ${ }^{20}$ and the distorted trigonal bipyramidal structure found in (I) is presumably a consequence of the steric requirements of the $\mathrm{Me}_{2} \mathrm{dpma}$ ligand. It follows that a five-co-ordinate $\mathrm{PdCl}_{2}\left(\mathrm{Me}_{3} \mathrm{dpma}\right)$ would be forced into the less favoured of the two ideal symmetries, trigonal bipyramidal. It is not surprising, therefore, that in the present case the four-co-ordinate distorted square planar structure (II) is found.

We thank Prof. G. W. A. Fowles for his interest in this work, A. W. Johans for recording the data, and Mrs J. M. Thomas for assistance with the X-Ray ' 63 system of programs on the ATLAS computer at S.R.C., Chilton, Berkshire.
[1/941 Received, May 21st, 1971]

[^4]
[^0]: ${ }^{1}$ S. M. Nelson and J. Rodgers, J. Chem. Soc. (A), 1968, 272.
 ${ }^{2}$ S. M. Nelson and J. Rodgers, Inorg. Chem., 1967, 6, 1390.
 ${ }^{3}$ M. M. Da Mota, J. Rodgers, and S. M. Nelson, J. Chem. Soc. (A), 1969, 2036.

[^1]: ${ }^{5}$ R. D. Cramer, R. V. Lindlay, jun., C. T. Prewitt, and V. G. Stolberg, J. Amer. Chem. Soc., 1965, 87, 658.
 ${ }_{60}$ T. L. Blundell and H. M. Powell, J. Chem. Soc. (A), 1967, 1650.
 ${ }_{7}$ R. K. Collins, M. G. B. Drew, and J. Rodgers, J.C.S. Dalton, in the press.
 ${ }^{8}$ S. Gill and R. Nyholm, J. Chem. Soc., 1959, 3997.
 ${ }^{9}$ F. G. Mann and H. R. Watson, J. Chem. Soc., 1958, 2772.

[^2]: * For details of Supplementary Publications see Notice to Authors No. 7 in J. Chem. Soc. (A), 1970, Issue No. 20 (items less than 10 pp . will be supplied as full page copies).
 ${ }_{14}^{14}$ G. R. Clark and G. J. Palenik, Inorg. Chem., 1970, 9, 2754.
 1_{5} D. L. Weaver, Inorg. Chem., 1970, 9, 2250.

[^3]: * The environment of the nickel atom in $\mathrm{NiBr}_{2}\left(\mathrm{Me}_{2} \mathrm{dpma}\right)$ (I) can best be described as distorted trigonal bipyramidal, with $\mathrm{N}(1), \mathrm{N}\left(1^{\mathrm{I}}\right)$ in axial positions and $\mathrm{N}(2), \operatorname{Br}(1)$, and $\operatorname{Br}(2)$ in equatorial positions.
 \dagger Van der Waals radii ${ }^{19}$ are: $\mathrm{CH}_{3} 2 \cdot 00, \mathrm{Cl1} 1 \cdot 80$, and $\mathrm{Br} 1.95 \AA$.
 \ddagger Roman numerals in superscripts refer to atoms in the following equivalent positions relative to the reference set at x, y, z :

 I (see Table 3) $-x, y, z$; II, $\frac{1}{2}-x, \frac{1}{2}-y, \frac{1}{2}+z$; III, $\frac{1}{2}+x$,
 $-\frac{1}{2}+y, z$; IV, $x, 1-y, \frac{1}{2}+z$; and $\mathrm{V}, x,-y, \frac{1}{2}+z$.

[^4]: ${ }^{19}$ L. Pauling, 'The Nature of the Chemical Bond,' 3rd edn., 1960, Cornell U'niversity Press, Ithaca, New York.
 ${ }_{20}$ M. Di Vaira, P. L. Orioli, and L. Sacconi, Inorg. Chem., 1971, 10, 553.

