Crystal Structures of Bis(acetylacetonato- μ-allyl-platinum), $\left[\operatorname{Pt}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)\right.$ $\left.\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)\right]_{2}$, and Bis-[di- μ-allyl-(di- μ-chloro-diplatinum)], $\left[\mathrm{Pt}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Cl}\right]_{4}$

By G. Raper and W. S. McDonald,* Department of Inorganic and Structural Chemistry, The University, Leeds LS2 9JT

Abstract

The X-ray crystal structures of the title compounds have been determined from photographic data. The acetyl-acetonato-complex (I) is dimeric, with approximate C_{2} symmetry, and crystallises in the monoclinic space-group $P 2_{1} / c$ with $Z=4$ in a unit cell of dimensions: $a=10.01 \pm 0.01, b=10.00 \pm 0.01, c=17.29 \pm 0.03 \AA, \beta=$ $100 \cdot 2^{\circ} \pm 0 \cdot 2^{\circ}$. The chloro-complex (II) exists as a tetramer of approximate D_{2} symmetry, and crystallises in the triclinic space-group $P \overline{1}$, with $Z=4$ in a unit cell of dimensions: $a=13.34 \pm 0.03, b=16 \cdot 16 \pm 0.03, c=$ $8.33 \pm 0.01 \AA, \alpha=90.2^{2} \pm 0.2, \beta=100.2 \pm 0 \cdot 2, \gamma=93 \cdot 2^{\circ} \pm 0 \cdot 2^{\circ}$. Both structures were solved by conventional Patterson and Fourier methods and refined by least-squares techniques to $R 11.3 \%$ [(I) ; 1948 independent reflections] and $12 \cdot 0 \%$ [(II) ; 2975 independent reflections].

In (I) each allyl group of the Pt \cdots Pt bridge is σ-bonded to one platinum and π-bonded to the other. Similarly diallyl bridges occur in (II) where non-planar dichloro-bridges alternate with the diallyl bridges in the ring. The $\mathrm{Pt}-\mathrm{O}$ bond lengths in (I) and $\mathrm{Pt}-\mathrm{Cl}$ bond lengths in (II) reflect the differing trans-influences of the σ - and π bonded allyl group.

Reaction of diallylplatinum with dry hydrogen chloride gives ${ }^{1}$ chloro(allyl)platinum, $\left[\mathrm{Pt}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Cl}\right]_{x}$, which with thallium(I) acetylacetonate gives ${ }^{2}$ the dimeric acetylacetonato(allyl)platinum, $\left[\mathrm{Pt}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)\right]_{2}$. The dimeric formula of $\left[\mathrm{Pt}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)\right]_{2}$ suggested the presence of bridging allyl groups, whilst the very low solubility of $\left[\mathrm{Pt}^{\left.\left(\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Cl}\right]_{x} \text { suggested a polymer which }}\right.$ might have both chloro- and allyl-bridges. The only previous structure determination of a compound with bridging allyl groups is that of the hexamethyl Dewar benzene derivative, $\left[\mathrm{Pt}\left(\mathrm{C}_{12} \mathrm{H}_{17}\right) \mathrm{Cl}_{2} .^{3}\right.$ In this compound, however, the highly substituted and constrained allyl group cannot be considered typical, and it was of interest to determine the structure of a compound containing unsubstituted allyl bridges.

The insolubility of the chloro-complex (II) at first prevented the preparation of suitable crystals and we initially carried out a structure analysis on the acetyl-acetonato-complex (I), but satisfactory crystals of (II) were later obtained, and a structure determination on this also completed. Preliminary accounts of this work have been published. ${ }^{2,4}$

EXPERIMENTAL

Acetylacetonato-complex (I)
Crystal Data.- $\left[\mathrm{Pt}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)\right]_{2}, \quad \mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{Pt}_{2}, \quad M=$ 670, Monoclinic, $a=10.01 \pm 0.01, b=10.00 \pm 0.01, c=$ ${ }^{1}$ G. Wilke, B. Bogdanovic, P. Hardt, P. Heimbach, W. Keim, M. Kroner, W. Oberkirch, K. Tanaka, E. Steinrucke, D. Walter, and H. Zimmermann, Angew. Chem. Internat. Edn., 1966, 5, 151.
$17.29 \pm 0.03 \AA, \quad \beta=100 \cdot 2^{\circ} \pm 0.2^{\circ}, \quad U=1704 \AA^{3}, \quad D_{\mathrm{m}}=$ $2.59, Z=4, \quad D_{\mathrm{c}}=2.61, \quad \bar{F}(000)=1232$. Space-group $P 2_{1} / c . \quad \mathrm{Cu}-K_{\alpha}$ radiation, $\lambda=1.5418 \AA ; \mu\left(\mathrm{Cu}-K_{\alpha}\right)=315$ cm^{-1}.

The cell dimensions were determined from zero-level precession photographs taken with Mo- K_{α} radiation ($\lambda=$ $0.7107 \AA$). Intensities were recorded on equi-inclination Weissenberg photographs of layers $0-7 k l$, taken with $\mathrm{Cu}-K_{\alpha}$ radiation, and visual estimation gave 1948 independent reflections. The crystal was a needle of radius $c a$. 0.003 cm , and no absorption corrections were applied.

The two independent platinum atoms were located from the Patterson synthesis, giving $R 28 \%$, and the oxygen and carbon positions were determined from two successive difference Fourier syntheses. Using the program of Smith and Cruickshank for the KDF 9, block-diagonal leastsquares refinement of co-ordinates, isotropic temperature factors, and eight layer scales reduced R to $14 \cdot 6 \%$, and allowance for anisotropic vibrations for the platinum atoms gave a final R of $11 \cdot 3 \%$. The weighting scheme used in the final cycles was $w=1 /\left(25+F_{\mathrm{o}}+0.0045 F_{\mathrm{o}}{ }^{2}+0.00005\right.$ $F_{0}{ }^{3}$). The atomic scattering factors for platinum were taken from ref. 5 (with inclusion of the real part of anomalous scattering) and for carbon and oxygen from ref. 6.
The final co-ordinates and vibration parameters, with
${ }^{2}$ W. S. McDonald, B. E. Mann, G. Raper, B. L. Shaw, and G. Shaw, Chem. Comm., 1969, 1254.
${ }_{3}$ R. Mason, G. B. Robertson, and P. O. Whimp, J. Chem. Soc. $(A), 1970,535$.
${ }^{4}$ G. Raper and W. S. McDonald, Chem. Comm., 1970, 655.
5 D. T. Cromer and J. T. Waber, Acta Cryst., 1965, 18, 104.
6 'International Tables for X-Ray Crystallography,' vol. III, Kynoch Press, Birmingham, 1962.
their estimated standard deviations are given in Table 1. The observed and calculated structure factors for both compounds (I) and (II) are listed in Supplementary Publication No. SUP 20267 (18 pp., 1 microfiche).*

Table 1

Acetylacetonato-complex (I): atomic co-ordinates and isotropic temperature factors $\left(\AA^{2}\right)$, with estimated standard deviations in parentheses

Atom	x	y	z	$U_{\text {iso }}$
$\mathrm{Pt}(\mathbf{1})$	0.3837(2)	0.2186(1)	0.1478(1)	*
$\mathrm{Pt}(2)$	$0 \cdot 2322(2)$	$-0.0974(1)$	$0 \cdot 1341$ (1)	*
$\mathrm{O}(1)$	$0 \cdot 261$ (3)	$0 \cdot 347(2)$	$0 \cdot 187(1)$	0.043 (6)
$\mathrm{O}(2)$	$0 \cdot 380$ (3)	0.332(3)	$0 \cdot 047(1)$	$0 \cdot 046$ (6)
$\mathrm{O}(3)$	$0 \cdot 030$ (2)	$-0 \cdot 110(2)$	$0 \cdot 144(1)$	$0 \cdot 035(5)$
$\mathrm{O}(4)$	$0 \cdot 182(3)$	-0.146(3)	$0 \cdot 021$ (1)	$0 \cdot 049$ (6)
C(I)	$0 \cdot 388$ (4)	0.115(4)	$0 \cdot 245(2)$	$0 \cdot 044(8)$
C(2)	$0 \cdot 273$ (4)	$0.023(3)$	$0 \cdot 239(2)$	0.038(7)
C(3)	$0 \cdot 290$ (5)	-0.114(4)	$0 \cdot 258(2)$	$0.053(10)$
C(4)	$0 \cdot 430$ (4)	-0.079(3)	$0 \cdot 123(2)$	0.041 (7)
C(5)	$0 \cdot 454$ (4)	0.053(3)	$0 \cdot 089$ (2)	$0 \cdot 037(7)$
C(6)	$0 \cdot 561$ (5)	$0 \cdot 132(5)$	$0 \cdot 122(3)$	0.071 (13)
C(7)	$0 \cdot 111(6)$	$0 \cdot 540$ (5)	$0 \cdot 191(3)$	$0 \cdot 074(13)$
C(8)	$0 \cdot 212(4)$	$0 \cdot 457(4)$	$0 \cdot 154(2)$	$0 \cdot 045$ (8)
$\mathrm{C}(9)$	$0 \cdot 229$ (5)	$0 \cdot 502(4)$	$0 \cdot 083(2)$	$0.057(10)$
C(10)	$0 \cdot 314$ (4)	$0 \cdot 436(3)$	$0.035(2)$	0.039(8)
C(11)	$0 \cdot 318(5)$	$0 \cdot 504(5)$	-0.048(3)	0.067 (12)
C(12)	$-0.202(6)$	$-0.157(6)$	0.116(3)	$0 \cdot 082(14)$
C(13)	-0.058(4)	-0.142(4)	0.096(2)	$0 \cdot 041$ (8)
C(14)	-0.055(4)	$-0 \cdot 180(3)$	$0 \cdot 014(2)$	$0 \cdot 040$ (8)
C(15)	0.066(4)	-0.170(4)	-0.015(2)	$0 \cdot 052(9)$
C(16)	0.061 (5)	-0.213(4)	-0.099(2)	$0 \cdot 059(10)$

[^0]
Chloro-complex (II)

Crystal Data.- $\left[\mathrm{Pt}_{\left.\left(\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Cl}\right]_{4}, \mathrm{C}_{12} \mathrm{H}_{20} \mathrm{Cl}_{4} \mathrm{Pt}_{4}, \quad M=1086 \text {, } \text {, } \quad M=8 .}\right.$ Triclinic, $a=13.34 \pm 0.03, b=16 \cdot 16 \pm 0.03, c=8.33 \pm$ $0.01 \AA, \alpha=90.2^{\circ} \pm 0.2^{\circ}, \beta=100.2^{\circ} \pm 0.2^{\circ}, \gamma=93.2^{\circ} \pm$ $0 \cdot 2^{\circ}, U=1765 \AA^{3}, D_{\mathrm{m}} c a .4, Z=4, D_{\mathrm{c}}=4 \cdot 10, F(000)=$ 1888. Space-group $P \overline{1}, \mu\left(\mathrm{Cu}-K_{\alpha}\right)=650$.

The cell dimensions were determined from zero-level precession and Weissenberg photographs (Mo- K_{α} radiation). Visual estimation of $\mathrm{Cu}-K_{\alpha}$ Weissenberg photographs of reciprocal lattice levels $h k 0-7$ gave 2975 independent reflections. The irregularly shaped crystal had a maximum linear dimension of $c a .0 .006 \mathrm{~cm}$, and no absorption corrections were applied.

The three-dimensional Patterson synthesis showed all the major peaks close to the sections $x=0$ and $x=\frac{1}{2}$. If the space-group is $P \overline{1}$ the asymmetric unit contains eight platinum atoms. The Patterson synthesis was interpreted in terms of two sets of four platinum atoms, the atoms in each set lying at the corners of a square of edge $3 \cdot 2 \AA$, and all eight having x co-ordinates close to $\frac{1}{4}$, with the crystallographic centre of symmetry relating these to two more groups of four at $x=\frac{3}{4}$. The presence of all 64 symmetryindependent $\mathrm{Pt} \cdots \mathrm{Pt}$ vectors in the Patterson map was verified.

A structure-factor calculation based on the eight platinum

* For details of Supplementary Publications see Notice to Authors No. 7 in J. Chem. Soc. (A), 1970, Issue No. 20.
atoms gave $R 38 \%$, reduced to 21% by least-squares refinement of platinum positions and isotropic temperature factors. The eight chlorine atoms were then located on a difference Fourier synthesis, and further least-squares refinement reduced R to 13.8%. A further difference synthesis revealed the 24 carbon atom positions. Finally blockdiagonal least-squares refinement of the co-ordinates and isotropic temperature factors of all non-hydrogen atoms, together with 8 layer scale-factors, gave a final R value at convergence of 12.0%. Scattering factors were as for the previous determination. ${ }^{5,6}$ The weighting scheme in the final cycles was $w=1 /\left(40+F_{0}+0.002 F_{0}{ }^{2}\right)$.
The final co-ordinates and vibration parameters, with their estimated standard deviations are given in Table 2.

Table 2
Chloro-complex (II): atomic co-ordinates and isotropic temperature factors (\AA^{2}), with estimated standard deviations in parentheses

Molecule (1)

Atom	x	y	z	U
$\mathrm{Pt}(1)$	0.2167(2)	0-1643(2)	0•1408(4)	0.029(1)
$\mathrm{Pt}(2)$	$0 \cdot 2484(2)$	0.0487(2)	$0 \cdot 4659(4)$	$0.031(1)$
$\mathrm{Pt}(3)$	$0 \cdot 2415(3)$	0.2096(2)	$0 \cdot 6926$ (4)	0.036(1)
$\mathrm{Pt}(4)$	$0 \cdot 2587(2)$	$0 \cdot 3274(2)$	$0 \cdot 3771$ (4)	$0 \cdot 029(1)$
$\mathrm{Cl}(1)$	$0 \cdot 3550$ (15)	$0 \cdot 2637(11)$	$0 \cdot 1881(25)$	$0 \cdot 040$ (4)
$\mathrm{Cl}(2)$	$0 \cdot 1190$ (15)	$0 \cdot 0875(11)$	$0 \cdot 6061(25)$	$0 \cdot 040$ (4)
$\mathrm{Cl}(3)$	$0 \cdot 3692$ (15)	0.1142(12)	$0 \cdot 6977(26)$	$0 \cdot 043$ (5)
$\mathrm{Cl}(4)$	$0 \cdot 1125(14)$	$0 \cdot 2836(11)$	$0 \cdot 1816(23)$	$0 \cdot 035(4)$
C(1)	$0 \cdot 299$ (4)	$0 \cdot 069$ (3)	$0 \cdot 136(7)$	0.010 (11)
C(2)	$0 \cdot 359$ (6)	$0 \cdot 055$ (4)	$0 \cdot 292(9)$	$0.037(17)$
C(3)	$0 \cdot 355$ (6)	$-0.020(5)$	$0 \cdot 382$ (10)	0.046(20)
C(4)	$0 \cdot 122(9)$	0.009 (7)	$0 \cdot 255$ (15)	$0.088(35)$
C(5)	0.097 (6)	$0 \cdot 077(5)$	$0 \cdot 189(10)$	$0 \cdot 042$ (19)
C(6)	$0.092(6)$	0.091 (4)	$0.018(9)$	$0.035(17)$
C(7)	$0 \cdot 313(6)$	$0 \cdot 316(4)$	$0 \cdot 719$ (9)	$0.035(17)$
$\mathrm{C}(8)$	$0 \cdot 382$ (8)	$0 \cdot 321$ (7)	$0.585(14)$	$0.074(29)$
C(9)	$0 \cdot 387$ (7)	$0 \cdot 398$ (6)	$0.519(12)$	$0 \cdot 059(24)$
C(10)	$0 \cdot 169$ (6)	$0 \cdot 367$ (4)	0.506(10)	$0.037(17)$
C(11)	$0 \cdot 132(6)$	$0 \cdot 302(5)$	$0 \cdot 610(10)$	$0 \cdot 040$ (18)
$\mathrm{C}(12)$	$0 \cdot 125(6)$	0.287(4)	$0 \cdot 760(10)$	$0 \cdot 037(17)$

	Molecule (2)			
Atom	x	y	z	$U_{\text {iso }}$
$\mathrm{Pt}(5)$	0.2790(2)	0.8285(2)	0.9926(4)	0.029(1)
$\mathrm{Pt}(6)$	0.2610(3)	$0 \cdot 7144(2)$	$0 \cdot 6639(4)$	$0.035(1)$
$\mathrm{Pt}(7)$	0.2599(2)	$0.5515(2)$	$0 \cdot 8876(4)$	$0 \cdot 032(1)$
Pt (8)	$0 \cdot 2310(2)$	$0 \cdot 6658(2)$	1-1978(4)	$0.031(1)$
$\mathrm{Cl}(5)$	$0 \cdot 1318(13)$	$0 \cdot 7861$ (10)	1-1002(22)	$0.031(4)$
$\mathrm{Cl}(6)$	$0 \cdot 3862(16)$	$0 \cdot 6159(12)$	$0 \cdot 7315(26)$	$0 \cdot 044(5)$
$\mathrm{Cl}(7)$	$0 \cdot 1352(15)$	$0.5942(12)$	$0 \cdot 6665(25)$	$0 \cdot 041$ (4)
$\mathrm{Cl}(8)$	$0 \cdot 3725(15)$	$0 \cdot 7605(11)$	1-2365(25)	0.039(4)
$\mathrm{C}(13)$	$0 \cdot 189$ (5)	0.870(4)	$0 \cdot 780$ (8)	$0.028(15)$
C(14)	$0 \cdot 144$ (5)	0.802(4)	$0 \cdot 688(9)$	$0.030(15)$
C(15)	0.151 (6)	0.786(5)	$0.530(10)$	$0 \cdot 040(18)$
C(16)	$0 \cdot 366$ (5)	$0 \cdot 815$ (4)	$0 \cdot 693(9)$	$0.033(16)$
C(17)	$0 \cdot 402$ (6)	0.823(4)	$0 \cdot 881$ (9)	$0.036(17)$
$\mathrm{C}(18)$	$0 \cdot 407(6)$	$0 \cdot 907(4)$	$0 \cdot 945(9)$	$0.034(17)$
C(19)	$0 \cdot 136(9)$	0.509(7)	0.997(15)	$0.086(34)$
$\mathrm{C}(20)$	$0 \cdot 114(7)$	$0 \cdot 582(6)$	1.093(12)	$0.055(23)$
C(21)	0.108(8)	0.593 (6)	$1.255(13)$	$0.065(26)$
C(22)	$0 \cdot 324(6)$	0.565(5)	$1 \cdot 256(10)$	$0.039(18)$
C(23)	$0 \cdot 379$ (6)	$0 \cdot 553$ (5)	1-114(11)	$0.048(21)$
C(24)	$0 \cdot 374(7)$	$0 \cdot 474(5)$	1.029(11)	$0.051(21)$

DISCUSSION

The molecular structures of (I) and (II) are shown in Figures 1 and 2, which show the atom numbering; Figures 3 and 4 show their respective arrangements of molecules in the unit cells. The dimeric molecule of (I) has no crystallographic symmetry but closely approximates two-fold $\left(C_{2}\right)$ symmetry. Neither of the two

Figure 1 Acetylacetonato-complex (I): projection down the non-crystallographic two-fold axis

Figure 2 Chloro-complex (II): projection of molecule (1) down a non-crystallographic two-fold axis. The atom numbering of molecule (2) follows the same sequence

Figure 3 (I): Projection down the c axis
independent tetrameric molecules of (II) has crystallographic symmetry, but both approximate $222\left(D_{2}\right)$ symmetry, and do not differ significantly in their dimensions. In the crystal of (II) molecules pack in layers at $x=\frac{1}{4}$ and $x=\frac{3}{4}$, each layer having approximate $p g g$ symmetry, resulting in the angle α being very close to 90°, but the mutual orientation of different layers is such that the plane symmetry is not preserved in the threedimensional structure.

Figure 4 (II): Projection down the a axis

The bond lengths and angles for the two compounds are listed in Tables 3 and 4 . For (II) the means of chemically equivalent dimensions are also given in Table 4. The equations of some mean planes and dihedral angles are in Table 5.

Table 3

Acetylacetonato-complex (I): bond lengths (\AA) and bond angles (${ }^{\circ}$) with estimated standard deviations in parentheses. Pairs of dimensions equivalent under the non-crystallographic two-fold symmetry are given on the same line

$\mathrm{Pt}(1)-\mathrm{O}(1)$	1.98(2)	$\mathrm{Pt}(2)-\mathrm{O}(4)$	1-99(2)
$\mathrm{Pt}(1)-\mathrm{O}(2)$	2.07(2)	$\mathrm{Pt}(2)-\mathrm{O}(3)$	2.07(2)
$\mathrm{Pt}(1)-\mathrm{C}(1)$	1.97(3)	$\mathrm{Pt}(2)-\mathrm{C}(4)$	$2 \cdot 02(4)$
$\mathrm{Pt}(1)-\mathrm{C}(5)$	2-13(3)	$\mathrm{Pt}(2)-\mathrm{C}(2)$	$2 \cdot 15$ (3)
$\mathrm{Pt}(1)-\mathrm{C}(6)$	$2 \cdot 09(5)$	$\mathrm{Pt}(2)-\mathrm{C}(3)$	2-12(4)
$\mathrm{O}(1)-\mathrm{C}(8)$	$1 \cdot 30(4)$	$\mathrm{O}(4)-\mathrm{C}(15)$	$1.24(5)$
$\mathrm{O}(2)-\mathrm{C}(10)$	$1 \cdot 23$ (4)	$\mathrm{O}(3)-\mathrm{C}(13)$	$1 \cdot 14(4)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1 \cdot 54(6)$	$\mathrm{C}(15)-\mathrm{C}(16)$	1.51 (6)
$\mathrm{C}(8)-\mathrm{C}(9)$	$1 \cdot 34(5)$	$\mathrm{C}(14)-\mathrm{C}(15)$	$1 \cdot 39(6)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1 \cdot 45(6)$	$\mathrm{C}(13)-\mathrm{C}(14)$	$1 \cdot 49(5)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.59(6)$	$\mathrm{C}(12)-\mathrm{C}(13)$	1-54(7)
$\mathrm{C}(1)-\mathrm{C}(2)$	$1 \cdot 46$ (5)	$\mathrm{C}(4)-\mathrm{C}(5)$	1.49 (5)
$\mathrm{C}(2)-\mathrm{C}(3)$	$1 \cdot 41$ (5)	$\mathrm{C}(5)-\mathrm{C}(6)$	$1 \cdot 37(6)$
	Pt(1) .	$3 \cdot 495(2)$	
$\mathrm{O}(1)-\mathrm{Pt}(1)-\mathrm{O}(2)$	91(1)	$\mathrm{O}(3)-\mathrm{Pt}(2)-\mathrm{O}(4)$	89(1)
$\mathrm{O}(1)-\mathrm{Pt}(1)-\mathrm{C}(1)$	88(1)	$\mathrm{O}(4)-\mathrm{Pt}(2)-\mathrm{C}(4)$	91(1)
$\mathrm{O}(2)-\mathrm{Pt}(1)-\mathrm{C}(1)$	179(1)	$\mathrm{O}(3)-\mathrm{Pt}(2)-\mathrm{C}(4)$	178(1)
$\mathrm{Pt}(1)-\mathrm{O}(1)-\mathrm{C}(8)$	127(2)	$\mathrm{Pt}(2)-\mathrm{O}(4)-\mathrm{C}(15)$	126(2)
$\mathrm{Pt}(1)-\mathrm{O}(2)-\mathrm{C}(10)$	122(2)	$\mathrm{Pt}(2)-\mathrm{O}(3)-\mathrm{C}(13)$	127(2)
$\mathrm{Pt}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	112(2)	$\mathrm{Pt}(2)-\mathrm{C}(4)-\mathrm{C}(5)$	$111(2)$
$\mathrm{Pt}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	73 (3)	$\mathrm{Pt}(2)-\mathrm{C}(3)-\mathrm{C}(2)$	72(2)
$\mathrm{Pt}(1)-\mathrm{C}(5)-\mathrm{C}(6)$	$70(2)$	$\mathrm{Pt}(2)-\mathrm{C}(2)-\mathrm{C}(3)$	$69(2)$
$\mathrm{O}(1)-\mathrm{C}(8)-\mathrm{C}(7)$	120 (3)	$\mathrm{O}(4)-\mathrm{C}(15)-\mathrm{C}(16)$	114(4)
$\mathrm{O}(1)-\mathrm{C}(8)-\mathrm{C}(9)$	126(4)	$\mathrm{O}(4)-\mathrm{C}(15)-\mathrm{C}(14)$	129(4)
$\mathrm{O}(2)-\mathrm{C}(10)-\mathrm{C}(11)$	114(3)	$\mathrm{O}(3)-\mathrm{C}(13)-\mathrm{C}(12)$	$120(3)$
$\mathrm{O}(2)-\mathrm{C}(10)-\mathrm{C}(9)$	130(3)	$\mathrm{O}(3)-\mathrm{C}(13)-\mathrm{C}(14)$	129(4)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	123 (3)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$121(3)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	114(4)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	116(4)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	124(4)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	119(3)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	116(3)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	112(3)

Table 4
Chloro-complex: distances (\AA) and angles $\left({ }^{\circ}\right)$ with estimated standard deviations in parentheses Molecule (1)

Molecule (2)

ecule (1)		Molecule (2)	
$\mathrm{Pt}(1) \cdots \mathrm{Pt}(2)$	3.273(4)	$\mathrm{Pt}(5) \cdots \mathrm{Pt}(6)$	3.262(4)
$\mathrm{Pt}(3) \cdots \mathrm{Pt}(4)$	3.283(4)	$\mathrm{Pt}(7) \cdots \mathrm{Pt}(8)$	3-262(4)
Mean $\mathrm{Pt} \cdots \mathrm{Pt}\left(\mathrm{di}-\mu-\mathrm{C}_{3} \mathrm{H}_{5}\right) \quad 3 \cdot 270(2)$			
$\mathrm{Pt}(2) \cdots \mathrm{Pt}(3)$	3-225(4)	$\mathrm{Pt}(6) \cdots \mathrm{Pt}(7)$	3-230(4)
$\mathrm{Pt}(4) \cdots \mathrm{Pt}(1)$	3-248(4)	$\mathrm{Pt}(8) \cdots \mathrm{Pt}(5)$	3-236(4)
Mean Pt $\cdot \mathrm{Pr}(\mathrm{di}-\mu-\mathrm{Cl}) \quad 3 \cdot 235(2)$			
$\mathrm{Pt}(\mathrm{l})-\mathrm{Cl}(1)$	2.36(2)	$\mathrm{Pt}(5)-\mathrm{Cl}(5)$	2.37(2)
$\mathrm{Pt}(2)-\mathrm{Cl}(2)$	2-36(2)	$\mathrm{Pt}(6)-\mathrm{Cl}(6)$	2-37(2)
$\mathrm{Pt}(3)-\mathrm{Cl}(3)$	$2 \cdot 36(2)$	$\mathrm{Pt}(7)-\mathrm{Cl}(7)$	2.38(2)
$\mathrm{Pt}(4)-\mathrm{Cl}(4)$	2-38(2)	$\mathrm{Pt}(8)-\mathrm{Cl}(8)$	$2 \cdot 34(2)$
Mean $\mathrm{Pt}-\mathrm{Cl}\left(\right.$ trans to $\left.\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right) \quad 2 \cdot 37(1)$			
$\mathrm{Pt}(1)-\mathrm{Cl}(4)$	$2 \cdot 50(2)$	$\mathrm{Pt}(5)-\mathrm{Cl}(8)$	2-48(2)
$\stackrel{\mathrm{Pt}}{(2)}-\mathrm{Cl}(3)$	$2 \cdot 48$ (2)	$\mathrm{Pt}(6)-\mathrm{Cl}(7)$	2.50(2)
$\mathrm{Pt}(3)-\mathrm{Cl}(2)$	$2.51(2)$	$\mathrm{Pt}(7)-\mathrm{Cl}(6)$	$2 \cdot 49$ (2)
$\mathrm{Pt}(4)-\mathrm{Cl}(1)$	2.46(2)	$\mathrm{Pt}(8)-\mathrm{Cl}(5)$	2.47(2)
Mean $\mathrm{Pt}-\mathrm{Cl}\left(\right.$ trans to $\left.\sigma-\mathrm{C}_{3} \mathrm{H}_{5}\right) \quad 2 \cdot 49(1)$			
$\mathrm{Pt}(1)-\mathrm{C}(1)$	$1 \cdot 95(5)$	$\mathrm{Pt}(5)-\mathrm{C}(13)$	2.09(7)
$\mathrm{Pt}(2)-\mathrm{C}(4)$	2-27(12)	$\mathrm{Pt}(6)-\mathrm{C}(16)$	2.07 (7)
$\mathrm{Pt}(3)-\mathrm{C}(7)$	1.91 (7)	$\mathrm{Pt}(7)-\mathrm{C}(19)$	$2 \cdot 10$ (12)
$\mathrm{Pt}(4)-\mathrm{C}(10)$	1-87(8)	$\mathrm{Pt}(8)-\mathrm{C}(22)$	2-11(7)
	Mean Pt -	2.05(3)	

Table 4 (Continued)

Molecule (1)		Molecule (2)	
$\mathrm{Pt}(1)-\mathrm{C}(5)$	2.17(8)	$\mathrm{Pt}(5)-\mathrm{C}(17)$	2.03(8)
$\mathrm{Pt}(2)-\mathrm{C}(2)$	2.24(7)	$\mathrm{Pt}(6)-\mathrm{C}(14)$	$2 \cdot 20$ (7)
$\mathrm{Pt}(3)-\mathrm{C}(11)$	2.17(7)	$\mathrm{Pt}(7)-\mathrm{C}(23)$	2.24(8)
Pt(4)-C(8)	2-17(11)	$\mathrm{Pt}(8)-\mathrm{C}(20)$	2.08(9)
Mean $\mathrm{Pt}-\mathrm{C}(\pi$, central C) $2 \cdot 16(3)$			
$\mathrm{Pt}(1)-\mathrm{C}(6)$	2.09(7)	$\mathrm{Pt}(5)-\mathrm{C}(18)$	2.16(7)
$\mathrm{Pt}(2)-\mathrm{C}(3)$	2.07(8)	$\mathrm{Pt}(6)-\mathrm{C}(15)$	2.09(7)
$\mathrm{Pt}(3)-\mathrm{C}(12) \quad 2$	2-19(7)	Pt (7)--C(24)	2.20(9)
$\mathrm{Pt}(4)-\mathrm{C}(9) \quad 2$	2.16(9)	$\mathrm{Pt}(8)-\mathrm{C}(21)$	2.09(10)
Mean Pt-C(π, terminal C) $2 \cdot 13(3)$			
$\mathrm{Cl}(1)-\mathrm{Pt}(1)-\mathrm{Cl}(4)$	84-4(6)	$\mathrm{Cl}(5)-\mathrm{Pt}(5)-\mathrm{Cl}(8)$	84.5(6)
$\mathrm{Cl}(2)-\mathrm{Pt}(2)-\mathrm{Cl}(3)$	85.7(7)	$\mathrm{Cl}(6)-\mathrm{Pt}(6)-\mathrm{Cl}(7)$	85.2(7)
$\mathrm{Cl}(3)-\mathrm{Pt}(3)-\mathrm{Cl}(2) \quad 8$	$85 \cdot 1$ (7)	$\mathrm{Cl}(7)-\mathrm{Pt}(7)-\mathrm{Cl}(6)$	85.0(7)
$\mathrm{Cl}(4)-\mathrm{Pt}(4)-\mathrm{Cl}(1)$	84.7(6)	$\mathrm{Cl}(8)-\mathrm{Pt}(8)-\mathrm{Cl}(5)$	85.3(6)
Mean $\mathrm{Cl}-\mathrm{Pt}-\mathrm{Cl} \quad 85 \cdot 0(2)$			
$\mathrm{Pt}(1)-\mathrm{Cl}(1)-\mathrm{Pt}(4) \quad 8$	84.9(6)	$\mathrm{Pt}(5)-\mathrm{Cl}(5)-\mathrm{Pt}(8)$	83.9(6)
$\mathrm{Pt}(2)-\mathrm{Cl}(2)-\mathrm{Pt}(3)$	82.9 (6)	$\mathrm{Pt}(6)-\mathrm{Cl}(6)-\mathrm{Pt}(7)$	83.3(7)
$\mathrm{Pt}(3)-\mathrm{Cl}(3)-\mathrm{Pt}(2)$	$83.7(6)$	$\mathrm{Pt}(7)-\mathrm{Cl}(7)-\mathrm{Pt}(6)$	82.8(6)
$\mathrm{Pt}(4)-\mathrm{Cl}(4)-\mathrm{Pt}(1)$	83.5(6)	$\mathrm{Pt}(8)-\mathrm{Cl}(8)-\mathrm{Pt}(5)$	84.3(6)
Mean $\mathrm{Pt}-\mathrm{Cl}-\mathrm{Pt}$ 83.7(2)			
$\mathrm{Pt}(1)-\mathrm{C}(1)-\mathrm{C}(2) \quad 1$	111(4)	$\mathrm{Pt}(5)-\mathrm{C}(13)-\mathrm{C}(14)$	109(5)
$\mathrm{Pt}(2)-\mathrm{C}(4)-\mathrm{C}(5) \quad 1$	103(8)	$\mathrm{Pt}(6)-\mathrm{C}(16)-\mathrm{C}(17)$	104(4)
$\mathrm{Pt}(3)-\mathrm{C}(7)-\mathrm{C}(8) \quad 1$	106(5)	$\mathrm{Pt}(7)-\mathrm{C}(19)-\mathrm{C}(20)$	105(7)
$\mathrm{Pt}(4)-\mathrm{C}(10)-\mathrm{C}(11) \quad \mathrm{I}$	113(5)	$\mathrm{Pt}(8)-\mathrm{C}(22)-\mathrm{C}(23)$	107(5)
Mean Pt-C-C 107(2)			
$\mathrm{C}-\mathrm{C}\left(\right.$ ' single bond ' $\left.^{\prime}\right)$ $\mathrm{I} \cdot 26(14)-1 \cdot 57(13)$, mean $1 \cdot 46(4)$ $\mathrm{C}-\mathrm{C}$ (‘double bond') $\mathrm{I} \cdot 29(11)-1 \cdot 46(10)$, mean $1 \cdot 40(4)$ $\mathrm{C}-\mathrm{C}-\mathrm{C}$ $113(8)-142(7)^{\circ}$, mean $125(3)^{\circ}$	$\begin{aligned} & \quad \begin{array}{l} 1.26(14)-1.57(13), \text { mean } 1 \cdot 46(4) \\ \end{array} \quad \begin{array}{l} 1.29(11)-1.46(10), \text { mean } 1.40(4) \\ \\ 113(8)-142(7)^{\circ}, \text { mean } 125(3)^{\circ} \end{array} \end{aligned}$		

Table 5
Equations of mean planes and dihedral angles in the form $A X+B Y+C Z=D$
(a) Acetylacetonato-complex (I): planes referred to unit (\AA) axes parallel to $\boldsymbol{a}^{*}, \boldsymbol{b}$, and \boldsymbol{c}.

	A	B	C	D
Plane (1): $\mathrm{Pt}(1), \mathrm{O}(1), \mathrm{O}(2)$, $\mathrm{C}(7)-(11)$	0.787	0.531	0.314	4.742
Plane (2): $\mathrm{Pt}(2), \mathrm{O}(3), \mathrm{O}(4)$, $\mathrm{C}(12)-(16)$	-0.161	0.960	-0.230	-1.700

(b) Chloro-complex (II): planes referred to unit (\AA) axes parallel to $\boldsymbol{a}^{*}\left(\boldsymbol{a}^{*} \times \boldsymbol{c}\right)$ and \boldsymbol{c}.

Plane (3) :				
$\mathrm{Pt}(1)$-(4)	0.997	-0.042	-0.065	$2 \cdot 844$
Plane (4) :				
$\mathrm{Pt}(1), \mathrm{Cl}(1), \mathrm{Cl}(4)$	$0 \cdot 128$	$-0 \cdot 194$	0.972	$0 \cdot 512$
$\begin{aligned} & \text { Plane (5): } \\ & \quad \mathrm{Pt}(2), \mathrm{Cl}(2), \mathrm{Cl}(3) \end{aligned}$	0.040	-0.877	$0 \cdot 478$	$1 \cdot 179$
$\begin{aligned} & \text { Plane }(6): \\ & \mathrm{Pt}(3), \mathrm{Cl}(2), \mathrm{Cl}(3) \end{aligned}$	0.037	$0 \cdot 190$	-0.981	$-4 \cdot 364$
$\begin{aligned} & \text { Plane (7): } \\ & \quad \mathrm{Pt}(4), \mathrm{Cl}(1), \mathrm{Cl}(4) \end{aligned}$	0.058	$0 \cdot 869$	-0.492	3-386
$\begin{aligned} & \text { Plane (8): } \\ & \operatorname{Pt}(5)-(8) \end{aligned}$	0.995	-0.070	0.075	3-132
$\begin{aligned} & \text { Plane (9): } \\ & \quad \mathrm{Pt}(5), \mathrm{Cl}(5), \mathrm{Cl}(8) \end{aligned}$	0.072	0.860	$0 \cdot 506$	15.418
$\begin{aligned} & \text { Plane }(10) \\ & \quad \mathrm{Pt}(6), \mathrm{Cl}(6), \mathrm{Cl}(7) \end{aligned}$	0.008	$+0.167$	$0 \cdot 986$	6.728
$\begin{aligned} & \text { Plane (11): } \\ & \quad \mathrm{Pt}(7), \mathrm{Cl}(6), \mathrm{Cl}(7) \end{aligned}$	0.035	-0.876	-0.481	$-10 \cdot 762$
$\begin{aligned} & \text { Plane 12): } \\ & \operatorname{Pt}(8), \mathrm{C}(5), \mathrm{Cl}(8) \end{aligned}$	0•138	$-0 \cdot 192$	-0.972	-10.742
(c) Dihedral (deg.).				
(1)-(2) 71.9	(6)-(7)	$49 \cdot 5$	(10)-(11)	129.8
(4)-(5) $\quad 50 \cdot 1$	(7)-(4)	$129 \cdot 8$	(11)-(12)	$50 \cdot 2$
(5)-(6) $\quad 129 \cdot 4$	(9)-(10)	$50 \cdot 0$	(12)-(9)	$130 \cdot 3$

The diallyl bridge between platinum atoms is common to both compounds. Each allyl group is σ-bonded to one platinum and π-bonded to the other, and each platinum forms one σ - and one π-bond to allyl groups. Although the $\mathrm{Pt}-\mathrm{C}$ and $\mathrm{C}-\mathrm{C}$ bond lengths show no significant differences between the two compounds, the non-bonded $\mathrm{Pt} \cdots \mathrm{Pt}$ distances differ considerably; in the acetylacetonato-complex $\mathrm{Pt} \cdots \mathrm{Pt}$ is $3 \cdot 495(2) \AA$ and in the chloro-complex it is $3 \cdot 270(2) \AA$. The lower value for the latter probably results from a folding across the bridge in order to achieve the cyclic structure. The differing $\mathrm{Pt} \cdots \mathrm{Pt}$ distances are reflected in the dihedral angles defined by the co-ordination planes of the metal atoms (Table 5). In the acetylacetonato-complex the angle between the planes of the two $[\mathrm{Pt}(\mathrm{acac})]$ rings is 72° while in the chloride the angle at the diallyl bridge, as defined by the two ($\mathrm{Cl}_{2} \mathrm{Pt}$) planes is 50°. The only other structure determination revealing ${ }^{3}$ a diallyl bridge is that of $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{17}\right)_{2}\right]$ where the $\mathrm{C}_{12} \mathrm{H}_{17}$ ligand contains both an allyl group which bridges, as in our compounds, and an olefin group which also co-ordinates to the metal. In this compound the $\mathrm{Pt} \cdots \mathrm{Pt}$ distance is $3 \cdot 262(2) \AA$ and the dihedral angle 57°.

The differing trans influences of σ - and π-bonded allyl may be seen in both compounds. In the acetylaceton-ato-complex the $\mathrm{Pt}-\mathrm{O}$ distances trans to σ-bonded allyl are each $2 \cdot 07(2) \AA$ while those trans to π-bonded allyl

[^1]are $1.98(2)$ and $1.99(2) \AA$. Similarly in the chlorocomplex the mean $\mathrm{Pt}-\mathrm{Cl}$ distance trans to σ-bonded allyl is $2 \cdot 49(1) \AA$ and that trans to π-bonded allyl is $2 \cdot 37(1) \AA$.

As is normally the case, each π-bonded olefin group is approximately perpendicular to the co-ordination plane of its attached platinum atom. Thus in the acetyl-acetonato-complex the angle between the $\mathrm{C}(5)-\mathrm{C}(6)$ bond and the normal to the $\mathrm{O}(1), \mathrm{Pt}, \mathrm{O}(2)$ plane is $3 \cdot 6^{\circ}, \sigma c a .2^{\circ}$ and for the $\mathrm{C}(2)-\mathrm{C}(3)$ bond the angle is $1 \cdot 4^{\circ}$. The corresponding angles in the chloro-complex range between 1 and $10^{\circ}, \sigma c a .4^{\circ}$.

In addition to the previously mentioned folding of the diallyl bridge, the cyclic structure of (II) also requires that the dichloro-bridges shall depart greatly from planarity. The dihedral angles at the bridging chlorines (Table 5) are all close to 130° (i.e. 50° departure from planarity) whilst in most other di- μ-chloro-palladium and -platinum compounds the bridge is planar. Large departures from planarity have been found in some di- μ-chloro-rhodium compounds, notably the dihedral angle of 116° in $\left[\mathrm{Rh}_{2} \mathrm{Cl}_{2}(\mathrm{CO})\left(\mathrm{C}_{6} \mathrm{H}_{10}\right)_{2}\right]_{2}$ which resembles (II) in having a tetranuclear cyclic structure.?

The mean Pt - C distances to σ-bonded carbon, central carbon, and terminal π-bonded carbon are: 1.99(3), $2 \cdot 14(2)$, and $2 \cdot 10(3) \AA$ for the acetylacetonato- and $2 \cdot 05(3), 2 \cdot 16(3)$, and $2 \cdot 13(3) \AA$ for the chloro-complex.

We thank Drs. B. L. Shaw and G. Shaw for crystals of the complexes.
[1/1319 Received, July 29th, 1971]

[^0]: * Anisotropic temperature factors $\left(\AA^{2}\right)$:
 $\begin{array}{lllllll}\text { Atom } & U_{11} & U_{22} & U_{33} & 2 U_{23} & 2 U_{31} & 2 U_{12}\end{array}$ $\mathrm{Pt}(1) \quad 0.038(1) \quad 0.024(1) 0.049(1)-0.003(1) 0.020(1)-0.001(1)$
 $\mathrm{Pt}(2) \quad 0.037(1) \quad 0.021(1) \quad 0.049(1) \quad 0.004(1) \quad 0.020(1)-0.002(1)$
 The temperature factors take the form: $\exp \left[-8 \pi^{2} U(\sin \theta /\right.$入) $\left.)^{2}\right]$ for the isotropic case, and $\exp \left[-2 \pi^{2}\left(U_{11} h^{2} a^{* 2}+U_{22} k^{2} b^{* 2}\right.\right.$ $\left.\left.+U_{33} l^{2} c^{* 2}+2 U_{23} k l b^{*} c^{*}+2 U_{31} l h c^{*} a^{*}+2 U_{12} h k a^{*} b^{*}\right)\right]$ for the anisotropic case.

[^1]: ${ }^{7}$ L. R. Bateman, P. M. Maitlis, and L. F. Dahl, J. Amer. Chem. Soc., 1969, 91, 7292.

