Crystal Structure of cis-Dichlorobis-(2,2'-bipyridyl)gallium(iII) Tetrachlorogallate(III)

By R. Restivo and Gus J. Palenik,* \dagger Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada

Abstract

The compound of empirical formula GaCl_{3} (bipy) (bipy $=2,2^{\prime}$-bipyridyl) has been shown by X-ray single-crystal study to be cis $-\left[\mathrm{Cl}_{2} \mathrm{Ga}\right.$ (bipy) $\left.{ }_{2}\right]+\left[\mathrm{GaCl}_{4}\right]^{-}$. The crystals are orthorhombic with cell dimensions $a=14 \cdot 900 \pm 0 \cdot 002$, $b=12.469 \pm 0.002$, and $c=13.561 \pm 0.002 \AA$, space group Pccn, $Z=8$. Diffractometer data were refined by least-squares methods to a final R of 0.052 for 1907 observed reflections. The cation and anion are required to have symmetry C_{2}. The cation has a cis-configuration with $\mathrm{Ga}-\mathrm{Cl} 2.265 \pm 0.001$ and $\mathrm{Ga}-\mathrm{N} 2.095 \pm 0.004$ and $2 \cdot 111 \pm 0.004 \AA$. The $N-\mathrm{Ga}-\mathrm{N}$ angle of $77.2 \pm 0 \cdot 1^{\circ}$ is a consequence of the rigid nature of the bipyridyl ligand. The remaining angles are much closer to the idealized values. The $\mathrm{Ga}-\mathrm{Cl}$ distances in the tetrahedral $\mathrm{GaCl}_{4}{ }^{+}$ion are 2.171 and $2.162 \AA$ (both $\pm 0.002 \AA$) with the $\mathrm{Cl}-\mathrm{Ga}-\mathrm{Cl}$ angles varying from $107.0-110 \cdot 9 \pm 0 \cdot 1^{\circ}$. The distances in the two ions are compared with each other and also with those of other gallium compounds.

Structural studies of complexes of gallium and indium with co-ordination numbers greater than four are relatively rare. Three examples are known for indium(III) ${ }^{1}$ but only one for gallium(III). ${ }^{2}$ However, many adducts of gallium trihalides, $\mathrm{GaX}_{3}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, or I$)$, have been reported which apparently are five- or six-co-ordinate. We have therefore undertaken X-ray studies of gallium and indium complexes with higher coordination numbers to establish the existence of these species and to elucidate the bonding of non-transition elements with high co-ordination numbers.

The reaction of GaX_{3} with $2,2^{\prime}$-bipyridyl(bipy) gives a series of GaX_{3} (bipy) complexes. ${ }^{3}$ A survey of the i.r. data of GaX_{3} adducts ${ }^{4}$ suggested an ionic formulation, trans- $\left[\mathrm{GaCl}_{2} \text { (bipy) } \mathbf{2}_{2}\right]^{+}\left[\mathrm{GaCl}_{4}\right]^{-}$, for the compound of empirical formula GaCl_{3} (bipy), although a study of $\left[\mathrm{Me}_{3} \mathrm{~N}\right]_{2} \mathrm{GaCl}_{3}$ was interpreted in terms of a trigonal bipyramidal geometry. ${ }^{5}$ A single-crystal study revealed that the ionic formulation was correct for GaCl_{3} (bipy) but that the cation has a cis-configuration. ${ }^{6}$

EXPERIMENTAL

Colourless, needle-shaped crystals of $\left[\mathrm{GaCl}_{2}(\mathrm{bipy})_{2}\right]^{+}-$ $\left[\mathrm{GaCl}_{4}\right]^{-}$were grown by slowly cooling an acetone solution of the compound. Preliminary unit-cell and space-group data were determined from Weissenberg and precession photographs.

Crystal Data.- $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{Cl}_{3} \mathrm{GaN}_{2}, M=332 \cdot 2$, Orthorhombic,
\dagger Present address: Department of Chemistry, University of Florida, Gainesville, Florida.
${ }^{1}$ P. Coggon, J. D. Lebedda, A. T. McPhail, and R. A. Palmer, Chem. Comm., 1970, 78; D. S. Brown, F. W. B. Einstein, and D. G. Tuck, Inorg. Chem., 1969, 8, 14; M. Veidis and G. J. Palenik, Chem. Comm., 1969, 586.
$a=14.900 \pm 0.002, \quad b=12.469 \pm 0.002, \quad c=13.561 \pm$ $0.002 \AA, U=2519.4 \AA^{3}, D_{\mathrm{m}}$ (by flotation) $=1.75 \pm 0.01$, $Z=8, D_{\text {c }}=1.752 \pm 0.001, F(000)=1312 . \quad \mathrm{Cu}-K_{\alpha}$ radiation, $\lambda\left(\alpha_{1}\right)=1.54051, \lambda(\beta)=1 \cdot 39217 \AA, \mu\left(\mathrm{Cu}-K_{\alpha}\right)=85 \cdot 4$ cm^{-1}. Systematic absences, $0 k l$ if $l=2 n+1, h 0 l$ if $l=2 n+1$, and $h k 0$ if $h+k=2 n+1$ indicate space-group $\operatorname{Pccn}\left(D_{2 h^{10}}\right)$.

The crystal used for intensity measurements had dimensions $0.11 \times 0.11 \times 0.12 \mathrm{~mm}$ (parallel to \tilde{a}, \tilde{b}, and \tilde{c}). The intensity data were measured by use of the stationary-crystal-stationary-counter technique with $\mathrm{Cu}-K_{\alpha}$, radiation and three nickel foils (0.35 mils) at the counter window. All the unique reflections with $2 \theta \leq 135^{\circ}$ were measured first and then one-half of the hemisphere was remeasured, giving up to three measurements for most reflections. A small correction (maximum $3 \cdot 2 \%$) was applied for the variation of the four standard reflections which were measured after every 100 reflections. From the 7810 measurements, a total of 2275 independent reflections was obtained after averaging equivalent reflections. The 1907 reflections $\geqslant 1 \cdot 2$ times the respective background count were considered as observed. The remaining 368 unobserved reflections were entered as $0 \cdot 1$ times the appropriate background count and were flagged with a minus sign. These data were corrected for $\alpha_{1}-\alpha_{2}$ splitting at high 2θ values and then converted to a set of structure amplitudes by standard means.

Structure Analysis.-A sharpened three-dimensional Patterson function with the origin peak removed was calculated. The $\mathrm{Ga} \cdots$.. Ga vectors could not be located with all eight

[^0]gallium atoms in general positions. However, when they were in two sets of four-fold positions, two possible values for the z parameters could be deduced: the first did not lead to a reasonable solution but the second easily led to a trial structure. After a Fourier synthesis based on phases computed from all the atoms, R was $0 \cdot 185$. After 6 cycles of full-matrix least-squares refinement with individual isotropic thermal parameters, R was 0.122 and after 4 cycles with anisotropic thermal parameters, 0.062 .

A difference Fourier synthesis indicated positions for all eight hydrogen atoms. The hydrogen-atom contributions were included in the structure-factor calculation with isotropic thermal parameters but their parameters were not refined. Four additional least-squares cycles reduced R to
factors are listed in Supplementary Publication No. SUP 20253 (4 pp., 1 microfiche).*

DISCUSSION

The crystal consists of dichlorobis-(2, 2^{\prime}-bipyridyl)gallium(III) cations and tetrachlorogallate(III) anions separated by normal van der Waals forces. Both ions lie on two-fold axes and the molecular packing and atomic numbering are illustrated in Figure 1. An ORTEP drawing of the individual ions showing the atomic numbering and the vibration ellipsoids is given in Figure 2.

The cation cis- $\left[\mathrm{GaCl}_{2}(\text { bipy })_{2}\right]^{+}$has C_{2} symmetry as

Table 1
Final positional and thermal parameters $\left(\times 10^{+4}\right) *$ with estimated standard deviations in parentheses for $\left[\mathrm{GaCl}_{2}(\text { bipy })_{2}\right]^{+}\left[\mathrm{GaCl}_{4}\right]^{-}$

Atom	x	y	z	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
$\mathrm{Ga}(1)$	$\frac{1}{4} \dagger$	${ }^{3} \dagger$	2360(1)	30(1)	44(1)	50(1)	8(1)	$0 \dagger$	$0 \dagger$
$\mathrm{Ga}(2)$	矛 \dagger	4	4064(1)	48(1)	75 (1)	65(1)	38(1)	$0 \dagger$	$0 \dagger$
$\mathrm{Cl}(1)$	6563(1)	1721(1)	1256(2)	48(1)	63(1)	63(1)	5(1)	$-34(1)$	-11(1)
$\mathrm{Cl}(2)$	6930(1)	6246(2)	4982(2)	75(1)	137(2)	109(1)	65(2)	57(2)	119(3)
$\mathrm{Cl}(3)$	8523(1)	6759(1)	3161(1)	58(1)	75(1)	81(1)	39(1)	27(1)	$-5(2)$
$\mathrm{N}(1)$	8302(2)	1134(3)	2538(3)	35(2)	49(3)	58(2)	$19(3)$	6(3)	12(4)
$\mathrm{N}(2)$	8383(2)	2955 (2)	3503(3)	32(2)	58(3)	$51(2)$	$-2(3)$	0 (3)	$-2(4)$
$\mathrm{C}(12)$	9019(3)	1255(4)	3128(4)	28(2)	$67(3)$	$64(3)$	12(4)	12(4)	40(5)
$\mathrm{C}(13)$	9652(4)	442 (5)	$3211(5)$	39(2)	88(4)	$89(4)$	34(5)	8(5)	41(7)
C(14)	9525(5)	-497(5)	2696(5)	$67(4)$	76(4)	102(5)	$65(7)$	39(7)	45(8)
$\mathrm{C}(15)$	8775(4)	-622(4)	2118(5)	67 (3)	66(4)	78(4)	44 (6)	38(6)	14(6)
C(16)	8176(4)	219(4)	2044(4)	$54(3)$	$51(3)$	64(3)	26(5)	10(5)	$-2(5)$
C(22)	9070 (3)	2272(4)	3675(4)	32(2)	74 (4)	$52(3)$	$-12(4)$	2(4)	33(5)
C(23)	9740(4)	2507(5)	4354(5)	$38(2)$	97(5)	81(4)	$-36(5)$	$-26(5)$	48(7)
C(24)	9672(4)	3470(6)	4866(5)	64(4)	123(6)	$69(4)$	-93(8)	$-46(6)$	$52(8)$
C(25)	8987(4)	4154(5)	4702(4)	$65(3)$	89 (5)	$60(3)$	$-63(7)$	$-12(5)$	6(6)
$\mathrm{C}(26)$	8358(4)	3880(4)	4009(4)	46(2)	$68(4)$	$69(3)$	-21(5)	4(5)	$-18(6)$

* The temperature factor for an atom is of the form $\exp \left[-\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} l^{2}+\beta_{12} h k+\beta_{13} h l+\beta_{23} h l\right)\right]$. \dagger Value required by space group symmetry.
0.052 and since the shifts were small (largest $<\sigma / 50$), the refinement was considered complete.

The quantity $\Sigma w\left(F_{0}-F_{\mathrm{c}}\right)^{2}$ was minimized in the leastsquares calculations. The weighting scheme used was $\sqrt{ } w=F_{0} / 8.5$ if $F_{0}<8.5, \sqrt{ } w=1$ if $8.5 \leq F_{0} \leq 25.7$, and $\sqrt{ } w=25 \cdot 7 / F_{\mathrm{o}}$ if $F_{\mathrm{o}}>\mathbf{2 5} \cdot 7$. The scattering factors were taken from ref. 7, with the gallium atom being corrected for the real part of the anomalous dispersion. ${ }^{8}$ The final

Table 2
Probable hydrogen-atom positions. The hydrogen atom is given followed by the atom to which it is bonded, the position parameters $\times 10^{\mathbf{3}}$, the isotropic thermal parameter used in the calculation, and the corresponding $\mathrm{C}-\mathrm{H}$ distance

Atom	x	y	z	B	$\mathrm{C}-\mathrm{H}(\AA)$
$\mathrm{H}(13)-\mathrm{C}(13)$	1028	54	358	$5 \cdot 43$	$1 \cdot 06$
$\mathrm{H}(14)-\mathrm{C}(14)$	989	-116	289	$6 \cdot 23$	$1 \cdot 02$
$\mathrm{H}(15)-\mathrm{C}(15)$	854	-136	177	$5 \cdot 58$	$1 \cdot 10$
$\mathrm{H}(16)-\mathrm{C}(16)$	756	18	166	$4 \cdot 54$	$1 \cdot 06$
$\mathrm{H}(23)-\mathrm{C}(23)$	1026	207	457	$5 \cdot 20$	0.99
$\mathrm{H}(24)-\mathrm{C}(24)$	1022	360	530	$5 \cdot 98$	$1 \cdot 02$
$\mathrm{H}(25)-\mathrm{C}(25)$	895	503	509	$5 \cdot 85$	$1 \cdot 22$
$\mathrm{H}(26)-\mathrm{C}(26)$	786	444	385	$4 \cdot 76$	$1 \cdot 05$

positional and thermal parameters for the non-hydrogen atoms are given in Table 1, and the hydrogen-atom parameters in Table 2. Observed and calculated structure

* For details of Supplementary Publications, see Notice to Authors No. 7 in J. Chem. Soc. (A), 1970, Issue No. 20 (items less than 10 pp . will be supplied as full size copies).
required by the space-group. The cis-configuration was unexpected since the i.r. spectra had been interpreted ${ }^{3,4}$ in terms of a trans-configuration. The trans-configuration was assigned because only one $\mathrm{Ga}-\mathrm{Cl}$ frequency was observed in the far-i.r., illustrating the danger of determining structures on the basis of missing frequencies. Subsequently, the existence of trans-bipyridyl or o-phenanthroline configurations has been challenged ${ }^{9}$ on the basis of steric hindrance. Unfortunately insufficient structural data are available at present to support or refute these arguments.

The distances and angles in the bipyridyl group (Table 3) are in agreement with those found in other bipy complexes ${ }^{10}$ and in bipy itself. ${ }^{11}$ The two rings are planar (Table 4) but twisted by $5^{\circ} 52^{\prime}$ about the $\mathrm{C}(12)-\mathrm{C}(22)$ bond between the two rings. A similar twist has been observed in other bipy complexes. In bipy the molecule is planar but the nitrogen atoms are

[^1]

Figure 1 A projection of the structure on 010 illustrating the molecular packing and atomic numbering

Table 3
Intramolecular distances (\AA) and angles (${ }^{\circ}$) with estimated standard deviations in parentheses for $\left[\mathrm{GaCl}_{2^{-}}-\right.$ (bipy) $\left.)_{2}\right]^{+}\left[\mathrm{GaCl}_{4}\right]^{-}$
(a) In $\left[\mathrm{GaCl}_{2} \text { (bipy) }{ }_{2}\right]^{+}$
(i) Distances

$\mathrm{N}(1)-\mathrm{C}(12)$	$1 \cdot 343(6)$	$\mathrm{N}(2)-\mathrm{C}(22)$	$1 \cdot 351(6)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1 \cdot 389(7)$	$\mathrm{C}(22)-\mathrm{C}(23)$	$1 \cdot 390(7)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$1 \cdot 376(9)$	$\mathrm{C}(23)-\mathrm{C}(24)$	$1 \cdot 390(10)$
$\mathrm{C}(14)-\mathrm{C}(15)$	$1 \cdot 373(9)$	$\mathrm{C}(24)-\mathrm{C}(25)$	$1 \cdot 349(9)$
$\mathrm{C}(15)-\mathrm{C}(16)$	$1 \cdot 380(8)$	$\mathrm{C}(25)-\mathrm{C}(26)$	$1 \cdot 371(8)$
$\mathrm{C}(166-\mathrm{N}(1)$	$1 \cdot 35(6)$	$\mathrm{C}(266)-\mathrm{N}(2)$	$1 \cdot 342(7)$
$\mathrm{Ga}(1)-\mathrm{N}(1)$	$2 \cdot 095(4)$	$\mathrm{Ga}(1)-\mathrm{N}(2)$	$2 \cdot 111(4)$
$\mathrm{Ga}(1)-\mathrm{Cl}(1)$	$2 \cdot 265(1)$	$\mathrm{C}(12)-\mathrm{C}(22)$	$1 \cdot 471(7)$

(ii) Angles
$\mathrm{Ga}(1)-\mathrm{N}(1)-\mathrm{C}(12)$
$\mathrm{Ga}(1)-\mathrm{N}(1)-\mathrm{C}(16)$
$\mathrm{C}(12)-\mathrm{N}(1)-\mathrm{C}(16)$
$\mathrm{N}(1)-\mathrm{C}(12)-\mathrm{C}(13)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{N}(1)$
$\mathrm{Cl}(1)-\mathrm{Ga}(1)-\mathrm{N}(1)$
$\mathrm{Cl}(1)-\mathrm{Ga}(1)-\mathrm{N}(2)$
$\mathrm{Cl}(1)-\mathrm{Ga}(1)-\mathrm{Cl}\left(1^{\prime}\right)$
$\mathrm{Cl}(1)-\mathrm{Ga}(1)-\mathrm{N}\left(1^{\prime}\right)$
$\mathrm{Cl}(1)-\mathrm{Ga}(1)-\mathrm{N}\left(\mathbf{2}^{\prime}\right)$
115.5(3)
123.8(3)
120.5(4)
120.4(4)
$119 \cdot 1(5)$
119•8(6)
118.7(6)
$121 \cdot 4(5)$
94.5(1)
169.9(1)
97.3(1)
94.2(1)
$89 \cdot 2(1)$
$\mathrm{N}(1)-\mathrm{Ga}(1)-\mathrm{N}(2)$
77.2(1)

C(14)-C(13)-H(13)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14)$
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14)$
117
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15)$
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16)$
$\mathrm{N}(1)-\mathrm{C}(16)-\mathrm{H}(16)$
(b) In $\left[\mathrm{GaCl}_{4}\right]-$
(i) Distances
$\mathrm{Ga}(2)-\mathrm{Cl}(2)$
(ii) Angles
$\mathrm{Cl}(2)-\mathrm{Ga}(2)-\mathrm{Cl}(3) \quad 107.0(1)$
$\mathrm{Cl}(2)-\mathrm{Ga}(2)-\mathrm{Cl}\left(2^{\prime}\right) \quad 110 \cdot 0(1)$

$\mathrm{Ga}(2)-\mathrm{Cl}(3) \quad 2 \cdot 162(2)$
$\mathrm{Cl}(2)-\mathrm{Ga}(2)-\mathrm{Cl}\left(3^{\prime}\right) \quad 110.9(1)$
$\mathrm{Cl}(3)-\mathrm{Ga}(2)-\mathrm{Cl}\left(3^{\prime}\right) \quad 111 \cdot 0(1)$
trans rather than cis, as required by complex formation. The hydrogen atom $\mathrm{H}(13)$ is bent out of the plane of the ring $[\mathrm{N}(1)-\mathrm{C}(16)]$ away from $\mathrm{H}(23)$ which lies approximately in the plane of the second ring $[\mathrm{N}(2)-\mathrm{C}(26)]$.

Table 4
Least-squares planes. The deviations from the plane (\AA) are given for the specified atom
(a) Deviation from plane

Atom	(I)	(II)	(III)
$\mathrm{N}(1)$	0.029 *	0.008 *	-0.157
$\mathrm{C}(12)$	0.054 *	-0.011 *	-0.088
C(13)	0.047 *	$0 \cdot 003$ *	-0.119
$\mathrm{C}(14)$	-0.014*	0.009 *	-0.250
$\mathrm{C}(15)$	-0.079*	-0.012*	-0.360
$\mathrm{C}(16)$	-0.041*	0.003 *	-0.295
N (2)	0.052 *	-0.093	-0.003*
$\mathrm{C}(22)$	0.063 *	-0.072	-0.004*
C(23)	0.021 *	-0.166	0.007 *
C(24)	-0.055^{*}	-0.306	-0.002*
C(25)	-0.072 *	-0.333	-0.005*
$\mathrm{C}(26)$	-0.004*	-0.212	0.008 *
$\mathrm{H}(13)$	0.218	$0 \cdot 141$	0.085
$\mathrm{H}(14)$	-0.264	-0.226	-0.517
$\mathrm{H}(15)$	-0.294	-0.173	-0.630
$\mathrm{H}(16)$	-0.150	-0.075	-0.433
$\mathrm{H}(23)$	-0.013	-0.200	-0.030
$\mathrm{H}(24)$	0.003	-0.283	0.092
H(25)	-0.045	-0.362	0.080
$\mathrm{H}(26)$	0.057	-0.159	0.080
b) Parameters for plane \dagger			(III)
A	0.5241	0.5094	0.5363
B	$0 \cdot 4120$	$0 \cdot 3748$	$0 \cdot 4509$
C	-0.7454	-0.7746	-0.7134
D	4.471	4-147	4.974
Atoms in plane	$\mathrm{N}(1)-\mathrm{C}(26)$	$\mathrm{N}(1)-\mathrm{C}(16)$	$\mathrm{N}(2)-\mathrm{C}(26)$

* Atom used to define the plane. \dagger Equation of the plane in the form $A X+B Y+C Z=D$ where $X Y Z$ are the orthogonal co-ordinates (in \AA) relative to a, b, and c.

However, the $\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{H}(23)$ (130°) is much larger than the corresponding $\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13)$ angle (123°). These observations suggest that steric repulsions between

Figure 2 An ORTEP drawing of the $\left[\mathrm{GaCl}_{2}(\mathrm{bipy})_{2}\right]^{+}$cation and [GaCl_{4}]- anion showing the atomic numbering and vibration ellipsoids. The central Ga atom in each ion has not been labelled for clarity. Both ions have C_{2} symmetry as required by the space group
$\mathrm{H}(13)$ and $\mathrm{H}(23)$ are reduced by a combination of out-ofplane $[\mathrm{H}(13)]$ and in-plane bending $[\mathrm{H}(23)]$.

The two Ga-N bonds in the cation appear to be
significantly different $\left(t_{0} 2 \cdot 82\right)^{12}$ although no chemically reasonable explanation is obvious. However, the $N(2)$ atom $[\mathrm{Ga}-\mathrm{N}(2) 2 \cdot 111 \AA]$ is trans to $\mathrm{Cl}(1)$ while $\mathrm{N}(1)$ is trans to $\mathrm{N}(\mathbf{1})$ related by the two-fold axis. In $\mathrm{GaCl}_{3}-$ (terpy) (terpy $=2,2^{\prime}, 2^{\prime \prime}$-terpyridyl) the outer $\mathrm{Ga}-\mathrm{N}$ bonds (mutually trans) average $2 \cdot 112 \pm 0.006 \AA$; in (hydrogen ethylenediaminetetra-acetato)aquogallium(III) the $\mathrm{Ga}-\mathrm{N}$ bonds are 2.182 ± 0.005 and $2.097 \pm$ $0.006 \AA$, with the short bond opposite the water molecule. ${ }^{13}$ Therefore, the $\mathrm{Ga}-\mathrm{N}$ bond length appears to be dependent upon both the nature of the atom trans to the bond as well as the other atoms in the co-ordination sphere. However, the variation of the $\mathrm{Ga}-\mathrm{N}$ distance in the compounds studied $(2 \cdot 097-2 \cdot 112 \AA)$ is small compared to the variation in the $\mathrm{Ga}-\mathrm{Cl}$ distances (vide infra). An explanation for these observations may be premature because of the lack of data.

The $\mathrm{Ga}-\mathrm{Cl}$ bond distance of $2 \cdot 265 \pm 0 \cdot 001 \AA$ found in the cation was the first measurement of a $\mathrm{Ga}-\mathrm{Cl}$ bond in an octahedral gallium species. The values reported recently in GaCl_{3} (terpy) ${ }^{13}$ of $2 \cdot 235,2 \cdot 329$, and $2 \cdot 403 \AA$ (all $\pm 0.003 \AA$) show a wide range, with two of the bonds significantly longer than in $\left[\mathrm{Cl}_{2} \mathrm{Ga}(\mathrm{bipy})_{2}\right]^{+}$. The difference in the chlorine and nitrogen bond radius is $c a$. $0.29 \AA$ * but the difference in the $\mathrm{Ga}-\mathrm{Cl}$ and $\mathrm{Ga}-\mathrm{N}$ distances is only $0 \cdot 159 \AA$. This comparison suggests that either the $\mathrm{Ga}-\mathrm{N}$ bond is longer than or the $\mathrm{Ga}-\mathrm{Cl}$ bond is shorter than a single bond. The consistency of the $\mathrm{Ga}-\mathrm{N}$ bond distance in the various molecules together with the change in $\mathrm{Ga}-\mathrm{Cl}$ bonds suggests that the $\mathrm{Ga}-\mathrm{Cl}$ bonds are shorter than a normal single bond. This conclusion may be premature since only three observations are involved in the comparison.

The two $\mathrm{Ga}-\mathrm{Cl}$ distances in the anion appear to be significantly different $\left(t_{0} 3 \cdot 18\right)^{12}$ although no reasonable explanation is possible. The value of $2.19 \AA$ (no estimated standard deviation was given ${ }^{14}$) found in $\mathrm{Ga}^{+}\left[\mathrm{GaCl}_{4}\right]^{-}$is probably not significantly different from

[^2]the present value. The value reported for the terminal $\mathrm{Ga}-\mathrm{Cl}$ bonds in $\mathrm{Ga}_{2} \mathrm{Cl}_{6}$ of $2.09 \pm 0.02 \AA{ }^{15}$ is significantly shorter but the shortening may be related to the presence of the long $\mathrm{Ga}-\mathrm{Cl}$ bond of $2 \cdot 29 \pm 0 \cdot 02 \AA$ to the bridging chlorine atoms. The only other tetrahedral gallium species reported is $(\mathrm{Me})_{3} \mathrm{NGaH}_{3}{ }^{16}$ where the $\mathrm{Ga}-\mathrm{N}$ distance is $1.97 \pm 0.09 \AA$. The relatively large estimated standard deviation of the $\mathrm{Ga}-\mathrm{N}$ bond precludes any useful comparison. However, the difference between the $\mathrm{Ga}-\mathrm{N}$ and $\mathrm{Ga}-\mathrm{Cl}$ bond distances in the tetrahedral molecules is $0 \cdot 20 \AA$, close to the difference of $0 \cdot 16 \AA$ observed in the octahedral cation $\left[\mathrm{GaCl}_{2}(\text { bipy })_{2}\right]^{\dagger}$. A tetrahedral gallium species containing both Cl and N atoms would make a useful comparison with the two ions in the present study.

Table 5
Interatomic distances (\AA)

$\mathrm{C}(23) \cdots \mathrm{Cl}\left(\mathbf{1}^{\mathrm{I}}\right)$	$3 \cdot 374(6)$	$\mathrm{H}(25) \cdots \mathrm{C}\left(24^{\mathrm{IIII}}\right)$	$2 \cdot 78$
$\mathrm{C}(24) \cdots \mathrm{Cl}\left(\mathbf{1}^{\mathrm{I}}\right)$	$3 \cdot 420(7)$	$\mathrm{H}(25) \cdots \mathrm{H}\left(24^{\mathrm{III}}\right)$	$2 \cdot 17$
$\mathrm{Cl}(1) \cdots \mathrm{H}\left(24^{\mathrm{II}}\right)$	$2 \cdot 85$	$\mathrm{H}(25) \cdots \mathrm{C}\left(15^{\mathrm{III}}\right)$	$2 \cdot 86$
$\mathrm{H}(24) \cdots \mathrm{Cl}\left(3^{\mathrm{III}}\right) 2 \cdot 84$			

$\mathrm{H}(24) \cdots \mathrm{Cl}\left(3^{\mathrm{III}}\right) 2.84$
Roman numerals as superscripts denote the following equivalent positions relative to the reference molecule at x, y, z :

$$
\begin{array}{cl}
\text { I } \frac{3}{2}-x, y, \frac{1}{2}+z & \text { III } 2-x, 1-y, 1-z \\
\text { II } \frac{3}{2}+x,-y, \frac{1}{2}-z & \text { IV } x, \frac{1}{2}-y, \frac{1}{2}+z
\end{array}
$$

All the intermolecular distances $<4.0 \AA$ were calculated and surveyed for any unusual interactions. Interatomic distances less than the appropriate sum of the radii ${ }^{17}$ are tabulated in Table 5. None of the distances appear short enough to suggest any unusual intermolecular interactions, hence the packing appears normal.

We thank the National Research Council of Canada for financial support of this research.
[1/1026 Received, 21st June, 1971]
${ }^{14}$ G. Garton and H. M. Powell, J. Inorg. Nuclear Chem., 1957, 4, 84.
${ }_{15}$ P. A. Akiskin, V. A. Naumov, and V. M. Tatevskii, Soviet Phys. Cryst., 1960, 4, 174.
${ }_{16}$ D. F. Shriver and C. E. Nordman, Inorg. Chem., 1963, 2, 1298.
${ }^{17}$ L. Pauling, 'The Nature of the Chemical Bond,' Cornell University Press, Ithaca, New York, 1960, p. 260.

[^0]: ${ }^{2}$ C. H. L. Kennard, Inorg. Chim. Acta, 1967, 1, 347.
 ${ }^{3}$ A. J. Carty, Canad. J. Chem., 1968, 46, 3779.
 ${ }^{4}$ A. J. Carty, Co-ordination Chem. Rev., 1969, $4,29$.
 5 I. R. Beattie, T. Gilson, and G. A. Ozin, J. Chem. Soc. (A), 1968, 1092.
 ${ }^{6}$ R. Restivo and G. J. Palenik, Chem. Comm., 1969, 867.

[^1]: 7 ' International Tables for X-Ray Crystallography,' vol. III, Kynoch Press, Birmingham, 1962.

 8 D. T. Cromer, Acta Cryst., 1965, 18, 17.
 ${ }^{9}$ See J. G. Gibson and E. D. McKenzie, J. Chem. Soc. (A), 1969,2637 , and references therein.
 ${ }_{10}$ 'M. V.' Veidis, Ph.D. Thesis, University of Waterloo, 1969; W. R. McWhinnie and J. D. Miller, Adv. Inorg. Chem. Radiochem., 1969, 12, 135.
 ${ }_{11}$ L. L. Merritt, jun., and E. D. Schroeder, Acta Cryst., 1956, 9, 801.

[^2]: * The difference can be estimated by a comparison of $\mathrm{C}-\mathrm{Cl}$ and $\mathrm{C}-\mathrm{N}$ bond lengths in compounds where the bonds are expected to be single bonds.

 12 D. W. J. Cruickshank and A. P. Robertson, Acta Cryst., 1953, 6, 698.
 ${ }^{13}$ G. Beran, A. J. Carty, H. A. Patel, and G. J. Palenik, Chem. Comm., 1970, 222.

