Crystal Structures of the Isomorphous Tris(hexafluoroacetylacetonato)copper(II) and Tris(hexafluoroacetylacetonato)magnesium Salts of Monoprotonated 1,8-bis(dimethylamino) naphthalene

By Mary R. Truter ${ }^{\bullet}$ and B. L. Vickery, A.R.C. Unit of Structural Chemistry, University College London, Inveresk House, 346 Strand, London WC2R OHG

Three-dimensional X-ray crystal structure analyses have been carried out on the compounds $\left[\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{2}\right]+\left[\left(\mathrm{CF}_{3}{ }^{\circ}-\right.\right.$ $\left.\left.\mathrm{CO} \cdot \mathrm{CH} \cdot \mathrm{CO} \cdot \mathrm{CF}_{3}\right)_{3} \mathrm{M}\right]-(\mathrm{M}=\mathrm{Mg}$ or Cu$)$. Both have $Z=4$ in a monoclinic unit cell with space group P_{1} / n and dimensions: $(M=M g) a=12 \cdot 775, b=21 \cdot 268, c=13.594 \AA, \beta=99^{\circ} 10^{\prime}:(M=\mathrm{Cu}) a=12 \cdot 878, b=21 \cdot 00$, $c=13.620 \AA$, $\beta=98^{\circ} 44^{\prime}$. A full-matrix refinement gave R values of 0.095 for 1998 observations (Mg) and 0.108 for 2478 observations (Cu).

In the cation the proton lies in the plane of the naphthalene ring between the two nitrogen atoms which are slightly displaced on opposite sides of the ring, and are $2 \cdot 60(1)(\mathrm{Mg})$ and $2 \cdot 65(2)(\mathrm{Cu}) \AA$ apart: the proton appears closer to one nitrogen in the magnesium and the other nitrogen in the copper complex. With a standard deviation of $0.15 \AA$ it is not possible to distinguish between a proton in a double potential well and a proton equidistant from the nitrogen atoms.
In the anions all six chelate rings show delocalisation. The magnesium ion is octahedrally co-ordinated by oxygen atoms, mean $\mathrm{Mg}-\mathrm{O} 2 \cdot 06$ (2) \AA. For copper there appears to be a tetragonal distortion, four short bonds, mean $\mathrm{Cu}-\mathrm{O} 2 \cdot 01(2) \AA$, and two long ones at $2 \cdot 16(3)$ and $2 \cdot 20(3) \AA$. The evidence for accepting the significance of this is discussed.

A CONSEQUENCE of the ' remarkable basicity ' of 1,8 -bis(dimethylamino)naphthalene ${ }^{\mathbf{1}}$ is that an attempt to make its adduct with bis(1,1,1,5,5,5-hexafluoropentan2,4 -dionato)copper, $(\mathrm{hfac})_{2} \mathrm{Cu}$, led to protonation of the base giving the 1,8 -bis(dimethylammonium)naphthalene cation, $\left(\mathrm{IH}^{+}\right)$, and the (hfac) $)_{3} \mathrm{Cu}^{-}$anion. ${ }^{2}$ A higher yield was obtained from a 1:1:1 mixture of (I), hfacH, and $\mathrm{Cu}(\mathrm{hfac})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)$ in benzene. Other divalent metals form similar complexes, those of magnesium, ${ }^{2}$ manganese, and nickel are all isomorphous ${ }^{3}$ with the copper compound. A preliminary account of the synthesis and crystal
${ }^{1}$ R. W. Alder, P. S. Bowman, W. R. S. Steele, and D. R. Winterman, Chem. Comm., 1968, 723.
structures of the copper and magnesium complexes has been published. ${ }^{2}$ We now report the complete results of crystal-structure analysis; the features of particular interest are the location of the protonic hydrogen atom, a comparison of the $\mathrm{M}^{2+}-\mathrm{O}$ bond lengths for a d^{9} and d^{0} electronic configuration, and any consequent effect on the bond lengths in the chelate ligands.

Preliminary X-ray photographs had shown that the compounds were isomorphous being monoclinic with the space group $P 2_{1} / n$. With $Z=4$ no symmetry was
${ }^{2}$ D. E. Fenton, M. R. Truter, and B. L. Vickery, Chem. Comm., 1971, 93.
${ }_{3}$ D. E. Fenton and C. Nave, 1971, personal communication.
required. Observations were collected on the automatic diffractometer for both compounds, and the structure of the copper compound was solved by direct methods. Refinement by full-matrix methods was carried out first on the copper compound, then, with the copper parameters as a starting point, on the magnesium compound. It was necessary to allow for anisotropic vibration of the metal atoms and of the CF_{3} groups. All the hydrogen atoms were located but only for the protonic one, designated $\mathrm{H}(18)$, were the parameters refined.

The final parameters for the copper compound are given in Table 1 and for the magnesium compound in

Table 1

(a) Fractional atomic co-ordinates for the copper compound and isotropic vibration parameters. Here, and throughout the paper, figures in parentheses are the standard deviations in the least significant digits

	x	y	z	B / \AA^{2}
Cu	0.0149 (1)	$0.2392(1)$	0.5165(1)	*
C(11)	$0 \cdot 3473(13)$	$0 \cdot 1882(12)$	0.5251 (12)	*
C(12)	$0 \cdot 2362(10)$	$0 \cdot 1871$ (6)	$0 \cdot 5474(10)$	$4 \cdot 61$ (31)
C(13)	$0 \cdot 2109(10)$	$0 \cdot 1380$ (6)	$0 \cdot 6066(9)$	4.41(29)
C(14)	$0 \cdot 1063(10)$	$0 \cdot 1285(6)$	$0 \cdot 6256(9)$	$4 \cdot 37(30)$
$\mathrm{C}(15)$	$0.0911(19)$	$0 \cdot 0693$ (10)	$0.6831(18)$	*
$\mathrm{O}(12)$	$0 \cdot 1784(7)$	0.2292(4)	0.5016 (6)	$5 \cdot 66(22)$
$\mathrm{O}(14)$	0.0262 (7)	$0 \cdot 1604(4)$	0.5973 (6)	$5 \cdot 53(22)$
F(111)	0.4145 (8)	$0 \cdot 1849$ (6)	$0 \cdot 6084(9)$	
F(112)	$0 \cdot 3784$ (8)	$0 \cdot 2397$ (6)	$0 \cdot 4886$ (8)	*
F(113)	$0.3713(9)$	$0 \cdot 1411$ (7)	$0 \cdot 4737(12)$	*
F(151)	$0 \cdot 0289(12)$	$0 \cdot 0788(6)$	$0 \cdot 7494(11)$	*
$\mathrm{F}(152)$	$0 \cdot 1718(9)$	$0.0409(6)$	$0 \cdot 7263(11)$	*
$\mathrm{F}(153)$	$0 \cdot 0394(12)$	$0 \cdot 0264(6)$	0.6257(11)	*
C(21)	$-0.3195(17)$	$0 \cdot 2828(17)$	0.4533 (20)	*
$\mathrm{C}(22)$	$-0.2210(10)$	$0 \cdot 2515(6)$	$0.4397(10)$	4.97(31)
$\mathrm{C}(23)$	$-0.2065(10)$	$0 \cdot 2271$ (6)	$0 \cdot 3452(10)$	5.03(31)
$\mathrm{C}(24)$	$-0 \cdot 1156(10)$	$0 \cdot 1963$ (6)	$0 \cdot 3296(9)$	4.44(30)
$\mathrm{C}(25)$	$-0 \cdot 1170(15)$	$0 \cdot 1628(9)$	$0 \cdot 2311(14)$	*
$\mathrm{O}(22)$	$-0 \cdot 1549(7)$	$0 \cdot 2501(5)$	$0 \cdot 5182(7)$	6.71(24)
$\mathrm{O}(24)$	$-0.0302(7)$	$0 \cdot 1888(4)$	$0 \cdot 3901(7)$	$5 \cdot 50(22)$
$\mathrm{F}(211)$	$-0.3100(11)$	$0 \cdot 3366$ (8)	$0 \cdot 4920$ (15)	*
$\mathrm{F}(212)$	$-0.3756(11)$	$0 \cdot 2467(10)$	$0 \cdot 5034(12)$	*
$\mathrm{F}(213)$	$-0.3849(9)$	$0 \cdot 2886$ (6)	$0 \cdot 3689$ (10)	*
$F(251)$	$-0 \cdot 1127(9)$	$0 \cdot 1011(5)$	$0 \cdot 2450(8)$	*
$\mathrm{F}(252)$	$-0.1971(8)$	$0 \cdot 1772(5)$	$0 \cdot 1643$ (7)	*
F(253)	$-0.0305(9)$	$0 \cdot 1773(6)$	$0 \cdot 1921$ (7)	*
$\mathrm{C}(31)$	$-0.0639(17)$	0.4182(11)	$0 \cdot 3885$ (12)	${ }^{*}$
$\mathrm{C}(32)$	$-0.0271(10)$	0.3709 (6)	$0 \cdot 4664$ (10)	$4 \cdot 80(31)$
C(33)	$-0.0255(10)$	$0 \cdot 3894(6)$	$0 \cdot 5639(10)$	5.03(32)
$\mathrm{C}(34)$	$0 \cdot 0092(11)$	0.3503(7)	$0 \cdot 6419$ (10)	$5 \cdot 29(33)$
$\mathrm{C}(35)$	$0 \cdot 0134(21)$	$0 \cdot 3775(12)$	$0 \cdot 7445(14)$	*
$\mathrm{O}(32)$	$0 \cdot 0017(7)$	0.3188(4)	0.4346 (7)	$5 \cdot 79(23)$
$\mathrm{O}(34)$	$0.0413(7)$	$0 \cdot 2936$ (4)	$0.6413(7)$	$5 \cdot 87(23)$
$\mathrm{F}(311)$	$-0.1113(10)$	$0 \cdot 4671$ (6)	$0 \cdot 4113(8)$	*
$F(312)$	$0 \cdot 0189(12)$	0.4416 (7)	$0.3505(11)$	*
$F(313)$	$-0 \cdot 1164(15)$	$0 \cdot 3937$ (6)	$0 \cdot 3124(10)$	*
$\mathrm{F}(351)$	$-0.0390(13)$	$0 \cdot 4274$ (7)	0.7546(8)	*
$\mathrm{F}(352)$	$0 \cdot 1081(15)$	$0 \cdot 3983(10)$	$0 \cdot 7781(12)$	*
$\mathrm{F}(353)$	$-0.0003(20)$	$0 \cdot 3412(7)$	$0 \cdot 8108(11)$	*
$\mathrm{C}(1)$	$0 \cdot 2606(10)$	$0 \cdot 3946$ (7)	$0 \cdot 3132(10)$	5.02(32)
$\mathrm{C}(2)$	$0 \cdot 2652(13)$	$0 \cdot 3825$ (8)	$0 \cdot 4118(13)$	$7 \cdot 61$ (43)
$\mathrm{C}(3)$	$0 \cdot 2919(14)$	$0 \cdot 4344(9)$	$0 \cdot 4774$ (13)	$9 \cdot 15(51)$
$\mathrm{C}(4)$	$0 \cdot 3187(14)$	$0 \cdot 4946$ (9)	$0 \cdot 4454$ (14)	$8 \cdot 70(48)$
$\mathrm{C}(5)$	$0 \cdot 3404(13)$	0.5671 (8)	$0 \cdot 3077$ (13)	7-78(44)
$\mathrm{C}(6)$	$0 \cdot 3305(13)$	$0.5786(8)$	$0 \cdot 2046$ (13)	7-78(44)
$\mathrm{C}(7)$	$0 \cdot 2920$ (12)	$0.5306(8)$	$0 \cdot 1357(11)$	$6.47(38)$
$\mathrm{C}(8)$	$0 \cdot 2653(11)$	0.4716(7)	$0 \cdot 1689$ (10)	$4 \cdot 99(32)$
$\mathrm{C}(9)$	$0 \cdot 2780$ (10)	$0 \cdot 4541$ (6)	$0 \cdot 2710$ (10)	$4 \cdot 57(31)$
$\mathrm{C}(10)$	$0.3110(12)$	$0 \cdot 5050$ (8)	$0 \cdot 3390$ (12)	6.61 (39)
N(1)	$0 \cdot 2457(9)$	$0 \cdot 3406(6)$	$0 \cdot 2428$ (9)	$5 \cdot 71(28)$
C(11N)	$0 \cdot 1474(12)$	0.3009(7)	$0 \cdot 2540$ (11)	7-09(41)
$\mathrm{C}(12 \mathrm{~N})$	$0 \cdot 3437(11)$	$0 \cdot 3000(7)$	$0 \cdot 2486(11)$	$6 \cdot 34(38)$
$\mathrm{N}(8)$	$0 \cdot 2231$ (9)	$0 \cdot 4246$ (5)	0.0955 (9)	$5 \cdot 16(26)$
$\mathrm{C}(81 \mathrm{~N})$	$0 \cdot 1072(13)$	$0 \cdot 4380$ (8)	$0 \cdot 0644(12)$	7-70(44)
$\mathrm{C}(82 \mathrm{~N})$	0.2766(11)	$0.4172(7)$	$0 \cdot 0070$ (11)	6.29(37)
H(18)	$0 \cdot 2067(115)$	$0 \cdot 3747(75)$	$0 \cdot 1681(119)$	11.95(497)

Table 1 (Continued)
(b) Hydrogen atoms in assumed positions

x			y	z	B / \AA^{2}	
$\mathrm{H}(13)$		658	$0 \cdot 1088$	$0 \cdot 6353$		$5 \cdot 00$
$\mathrm{H}(23)$	$3)-0.2$	631	$0 \cdot 2320$	$0 \cdot 2895$		$5 \cdot 00$
$\mathrm{H}(33)$) -0.0	492	$0 \cdot 4318$	0.5770		$5 \cdot 00$
$\mathrm{H}(2)$		528	$0 \cdot 3421$	$0 \cdot 4373$		$6 \cdot 50$
$\mathrm{H}(3)$		923	$0 \cdot 4297$	$0 \cdot 5487$		6.50
$\mathrm{H}(4)$		433	0.5291	$0 \cdot 4899$		$6 \cdot 50$
$\mathrm{H}(5)$		657	0.5995	$0 \cdot 3559$		6.50
$\mathrm{H}(6)$		493	$0 \cdot 6204$	$0 \cdot 1818$		6.50
$\mathbf{H}(7)$		857	0.5390	$0 \cdot 0652$		6.50
H(111)		000	$0 \cdot 3040$	$0 \cdot 2370$		$7 \cdot 00$
$\mathrm{H}(112)$		900	$0 \cdot 3040$	$0 \cdot 3190$		$7 \cdot 00$
$\mathrm{H}(113)$		600	0.2660	0.2030		$7 \cdot 00$
$\mathrm{H}(121)$		900	$0 \cdot 3100$	$0 \cdot 2370$		$7 \cdot 00$
$\mathrm{H}(122)$		600	$0 \cdot 2850$	$0 \cdot 3190$		$7 \cdot 00$
$\mathrm{H}(123)$		100	$0 \cdot 2660$	$0 \cdot 2030$		$7 \cdot 00$
$\mathrm{H}(811$		500	$0 \cdot 3900$	$0 \cdot 0290$		$7 \cdot 00$
$\mathrm{H}(812)$		000	$0 \cdot 4750$	$0 \cdot 0200$		$7 \cdot 00$
$\mathrm{H}(813)$		700	0.4370	$0 \cdot 1420$		$7 \cdot 00$
H(821)		533	$0 \cdot 4098$	$0 \cdot 0332$		$7 \cdot 00$
$\mathrm{H}(822$		400	$0 \cdot 3670$	-0.0360		$7 \cdot 00$
H(823)		652	$0 \cdot 4536$	-0.0337		$7 \cdot 00$
Cu	$\begin{gathered} U_{11} \\ 62(1) \end{gathered}$	$\begin{gathered} U_{22} \\ 54(2) \end{gathered}$	$\begin{gathered} U_{33} \\ 56(1) \end{gathered}$	$\begin{aligned} & U_{12} \\ & 5(1) \end{aligned}$	$\begin{gathered} U_{13} \\ 10(1) \end{gathered}$	$\begin{aligned} & U_{23} \\ & 2(1) \end{aligned}$
C(11)	47(1)	171(22)	41(10)	-8(13)	11 (9)	26(13)
$\mathrm{F}(111)$	$71(7)$	240 (16)	152(11)	$-4(8)$	21 (8)	48(12)
$\mathrm{F}(112)$	87(8)	184(11)	153(10)	1(8)	52(7)	85(10)
$\mathrm{F}(113) 1$	117(11)	217(16)	322(20)	$-48(9)$	141(12)	- $-173(16)$
$\mathrm{C}(15) 1$	118(20)	78(16)	106(18)	$-15(15)$	-5(16)) $18(14)$
$\mathrm{F}(151) 2$	229(16)	$150(11)$	177(14)	25(11)	112(13)) 78(12)
$\mathrm{F}(152)$	84(8)	$165(11)$	268(16)	19(8)	$2(10)$) $151(12)$
$\mathrm{F}(153) 1$	194(15)	119(11)	188(15)	$-38(9)$	34(11)) $20(10)$
$\mathrm{C}(21)$	71(16)	274(37)	131 (20)	$-25(20)$	$39(16)$	6) $-145(25)$
$\mathrm{F}(211) 1$	153(13)	237(18)	342(22)	37(12)	$-3(14)$	-221(19)
$\mathrm{F}(212) 1$	116(11)	359(27)	200(16)	6(13)	94(11)	1(17)
$\mathrm{F}(213) 1$	107(10)	178(11)	169 (13)	39(8)	28(10)) $-35(10)$
$\mathrm{C}(25)$	73(14)	91(16)	87(15)	-21(12)	$25(12)$) $-15(12)$
$\mathrm{F}(251) 2$	217(13)	58(7)	116(9)	$-5(8)$	15(8)	$-20(7)$
$\mathrm{F}(252)$	87(7)	$160(11)$	84(7)	24(7)	$-7(6)$	$-29(7)$
$\mathrm{F}(253) 1$	118(9)	170(11)	96(8)	15(8)	30 (7)	-14(7)
$\mathrm{C}(31)$	96(16)	131(20)	42(11)	22(15)	6(11)) $-4(12)$
$\mathrm{F}(311) 1$	190(13)	$131(9)$	$110(9)$	$94(9)$	34(9)	25(7)
$\mathrm{F}(312) 1$	196(14)	$179(13)$	214(16)	74(12)	$119(14)$) $115(13)$
$\mathrm{F}(313) 3$	396(25)	105(9)	113(10)	6(12)	$-121(14)$) $15(9)$
$\mathrm{C}(35) 1$	$138(20)$	107(18)	66(14)	$-7(16)$	25(14)	- $-16(13)$
$\mathrm{F}(351) 2$	278(20)	181(13)	85(8)	116(13)	34(10)) $-32(9)$
$\mathrm{F}(352)$	229(19)	343(27)	145(15)	0(19)	$-39(13)$	-128(17)
$\mathrm{F}(353) 6$	$600(40)$	117(11)	117(11)	$-10(16)$	190(17)) $11(10)$

* Anisotropic vibration parameters ($10^{3} U / \AA^{2}$) in the form: $\exp \left[-2 \pi^{2}\left(U_{11} h^{2} a^{* 2}+U_{22} k^{2} b^{* 2}+U_{33} l^{2} c^{* 2}+2 U_{13} h l a^{*} c^{*}+{ }_{23} h l b^{*} c^{*}+2 U_{12} h k a^{*} b^{*}\right)\right]$.

Table 2. For both compounds the same designations of the atoms were used and these are explained in Figures 1 and 2.

The structure as a whole is shown in Figure 3. It consists of sheets parallel to the (101) planes in which each ion has four neighbours of the opposite charge. These sheets are stacked in the direction of the [101] axis so that ions of the same charge are in contact. This may account for the low melting points $\left(110-112{ }^{\circ} \mathrm{C}\right.$ for the copper and $117-118^{\circ} \mathrm{C}$ for the magnesium compound) but not for the crystal habits; the needle axis is c for both compounds.

Interionic distances $<4 \cdot 0 \AA$ were calculated excluding all hydrogen atoms except $\mathrm{H}(18)$. None were found between cations but many between anions and also between cations and anions. Contacts $<3 \cdot 5 \AA$ in either compound are shown in Table 3. It can be seen that
the anion-anion contacts are shorter than the anioncation contacts on the whole, and there are no particularly short contacts to that part of the cation where the positive charge might be expected. The first group of cation-anion contacts are those in the sheet parallel to (101), the first anion-anion contacts [to (IV) and (V)] are along the [101] direction.

The Cation.-Bond lengths and angles in the cation in both structures are given in Table 4, with the corresponding distances in naphthalene. ${ }^{4}$ With our larger standard deviations there are no significant differences between the different kinds of bonds. The $\mathrm{C}\left(s p^{2}\right)-\mathrm{N}$ distances $(1.48,1.48,1.45$, and $1.48 \AA$) are close to

Table 2
(a) Fractional atomic co-ordinates for the magnesium compound and isotropic vibration parameters

	x	y	z	B / \AA^{2}
Mg	$0 \cdot 0163(3)$	0.2391(2)	0.5198(3)	*
C(11)	$0 \cdot 3439(12)$	$0 \cdot 1854(8)$	$0 \cdot 5268(12)$	*
$\mathrm{C}(12)$	$0 \cdot 2357(9)$	$0 \cdot 1834(5)$	$0.5486(9)$	4.03(27)
C(13)	$0 \cdot 2135(10)$	$0 \cdot 1350$ (6)	$0 \cdot 6082$ (9)	$4 \cdot 97(29)$
C(14)	$0 \cdot 1138(10)$	$0 \cdot 1239$ (6)	$0 \cdot 6304(9)$	$4 \cdot 69(29)$
C(15)	$0 \cdot 1009(12)$	$0 \cdot 0664(8)$	$0 \cdot 6906(13)$	${ }^{*}$
$\mathrm{O}(12)$	$0 \cdot 1742(6)$	$0 \cdot 2260(3)$	$0 \cdot 5091$ (5)	4.24(18)
$\mathrm{O}(14)$	$0.0328(6)$	$0 \cdot 1596(4)$	$0 \cdot 6053(6)$	4-89(19)
F(111)	$0 \cdot 4174$ (7)	$0 \cdot 1852(5)$	$0 \cdot 6071$ (9)	
$\mathrm{F}(112)$	$0 \cdot 3738(6)$	$0 \cdot 2385(5)$	$0 \cdot 4892$ (8)	*
$\mathrm{F}(113)$	$0.3710(8)$	$0 \cdot 1400(6)$	$0 \cdot 4763(11)$	*
F(151)	$0 \cdot 0419(11)$	$0 \cdot 0762(5)$	0.7541 (9)	*
$\mathrm{F}(152)$	$0 \cdot 1778(7)$	0.0368 (5)	$0 \cdot 7272(10)$	*
$\mathrm{F}(153)$	$0 \cdot 0390$ (9)	$0.0259(5)$	$0 \cdot 6337(10)$	*
C(21)	$-0.3177(11)$	$0 \cdot 2777$ (8)	$0 \cdot 4612(12)$	*
$\mathrm{C}(22)$	$-0.2161(10)$	$0 \cdot 2487$ (6)	$0 \cdot 4415(10)$	$5 \cdot 12(30)$
$\mathrm{C}(23)$	$-0.2075(10)$	$0 \cdot 2274$ (6)	$0 \cdot 3500(9)$	4.78(29)
$\mathrm{C}(24)$	$-0.1153(10)$	$0 \cdot 1954(5)$	$0 \cdot 3297$ (9)	4-62(28)
$\mathrm{C}(25)$	$-0.1241(11)$	$0 \cdot 1640$ (7)	$0 \cdot 2326(10)$	*
$\mathrm{O}(22)$	$-0 \cdot 1465(6)$	$0 \cdot 2476(3)$	$0 \cdot 5200$ (6)	4-82(18)
$\mathrm{O}(24)$	$-0.0303(6)$	$0 \cdot 1911(4)$	$0 \cdot 3885(6)$	$4 \cdot 81(19)$
$\mathrm{F}(211)$	$-0.3066(7)$	$0 \cdot 3320$ (6)	$0 \cdot 5006(10)$	
$\mathrm{F}(212)$	$-0.3681(7)$	$0 \cdot 2381$ (6)	0.5116(8)	*
$\mathrm{F}(213)$	$-0.3880(7)$	$0 \cdot 2857(5)$	$0 \cdot 3781$ (7)	*
$\mathrm{F}(251)$	$-0 \cdot 1165(8)$	$0 \cdot 1022$ (4)	0.2446(7)	*
F(252)	$-0.2001(7)$	$0 \cdot 1779$ (4)	$0 \cdot 1637$ (6)	*
F(253)	$-0.0326(7)$	$0 \cdot 1765$ (4)	$0 \cdot 1919$ (6)	*
C(31)	$-0.0650(13)$	$0.4188(7)$	$0 \cdot 3862(11)$	${ }^{*}$
$\mathrm{C}(32)$	$-0.0261(10)$	$0 \cdot 3729$ (6)	$0 \cdot 4700(10)$	$4 \cdot 95(30)$
$\mathrm{C}(33)$	-0.0261(9)	$0 \cdot 3896$ (6)	$0 \cdot 5641$ (10)	$5 \cdot 06(30)$
$\mathrm{C}(34)$	$0.0110(9)$	$0 \cdot 3502$ (6)	$0 \cdot 6453(10)$	$4 \cdot 91(30)$
$\mathrm{C}(35)$	$0 \cdot 0058(16)$	$0 \cdot 3779$ (8)	$0 \cdot 7450$ (12)	${ }^{*}$
$\mathrm{O}(32)$	$0.0074(6)$	$0.3213(4)$	$0 \cdot 4410$ (6)	4.93(19)
$\mathrm{O}(34)$	0.0402 (6)	$0 \cdot 2959(4)$	$0 \cdot 6429(6)$	4.57(18)
F(311)	$-0.1113(7)$	$0 \cdot 4680(4)$	0.4106(7)	
$\mathrm{F}(312)$	$0.0227(10)$	$0 \cdot 4442$ (5)	$0 \cdot 3574(8)$	*
$\mathrm{F}(313)$	$-0.1139(11)$	$0 \cdot 3948$ (5)	$0 \cdot 3124(8)$	*
$\mathrm{F}(351)$	$-0.0436(10)$	$0 \cdot 4274(5)$	$0 \cdot 7547(7)$	*
$F(352)$	$0 \cdot 1037(12)$	$0 \cdot 3977$ (8)	0.7809(9)	
F(353)	$-0.0049(16)$	$0 \cdot 3399$ (6)	0.8136(8)	*
C(1)	$0 \cdot 2661(10)$	$0 \cdot 3984(6)$	$0.3153(10)$	5-35(31)
$\mathrm{C}(2)$	$0.2707(11)$	$0 \cdot 3854$ (7)	0.4173(12)	7-67(40)
$\mathrm{C}(3)$	$0 \cdot 2967(13)$	$0 \cdot 4382(9)$	0.4781 (13)	$9 \cdot 03(46)$
C(4)	$0 \cdot 3248(13)$	$0 \cdot 4970$ (8)	$0 \cdot 4456$ (14)	8.86(45)
$\mathrm{C}(5)$	$0 \cdot 3422(11)$	$0.5659(7)$	$0 \cdot 3074$ (12)	$6 \cdot 80(37)$
C(6)	$0 \cdot 3319(11)$	0.5774 (6)	$0 \cdot 2101(12)$	6.40 (35)
C(7)	$0 \cdot 2969(10)$	$0 \cdot 5308(6)$	$0 \cdot 1417(10)$	5.41(31)
$\mathrm{C}(8)$	$0 \cdot 2710$ (9)	$0.4731(6)$	$0 \cdot 1717(9)$	$4 \cdot 05(27)$
$\mathrm{C}(9)$	$0 \cdot 2826(9)$	$0 \cdot 4578$ (6)	$0 \cdot 2762(9)$	$4 \cdot 45(28)$
$\mathrm{C}(10)$	$0 \cdot 3172(11)$	$0 \cdot 5079$ (7)	$0 \cdot 3441$ (11)	$6 \cdot 08(34)$
$\mathrm{N}(1)$	$0 \cdot 2481$ (8)	$0 \cdot 3456(5)$	$0 \cdot 2479$ (8)	$5 \cdot 60(25)$
$\mathrm{C}(11 \mathrm{~N})$	$0 \cdot 1560(12)$	$0 \cdot 3032(7)$	$0 \cdot 2618(11)$	$8 \cdot 00(41)$
$\mathrm{C}(12 \mathrm{~N})$	$0 \cdot 3416(10)$	$0 \cdot 3025$ (6)	$0 \cdot 2480(10)$	$5 \cdot 88(33)$
N(8)	$0 \cdot 2248$ (8)	$0 \cdot 4263$ (5)	$0 \cdot 1024(8)$	$4 \cdot 82(23)$
$\mathrm{C}(81 \mathrm{~N})$	$0 \cdot 1024(12)$	$0 \cdot 4388$ (7)	$0 \cdot 0693(12)$	$8 \cdot 38(42)$
$\mathrm{C}(82 \mathrm{~N})$	$0 \cdot 2730(11)$	0.4178 (7)	$0 \cdot 0116(11)$	7-01(37)
H(18)	$0 \cdot 2470(78)$	$0 \cdot 3737(51)$	$0 \cdot 1405(79)$	6.56(304)

Table 2 (Continued)
(b) Hydrogen atoms in assumed positions

Atom		x	y	z	B
$\mathrm{H}(13)$		0.2731	$0 \cdot 1063$	$0 \cdot 6376$	$5 \cdot 00$
$\mathrm{H}(23)$		-0.2680	$0 \cdot 2353$	$0 \cdot 2941$	$5 \cdot 00$
$\mathrm{H}(33)$		-0.0532	0.4321	$0 \cdot 5772$	$5 \cdot 00$
$\mathrm{H}(2)$		$0 \cdot 2597$	$0 \cdot 3429$	$0 \cdot 4434$	$7 \cdot 00$
$\mathrm{H}(3)$		$0 \cdot 2921$	0.4333	0.5515	$7 \cdot 00$
$\mathrm{H}(4)$		$0 \cdot 3442$	0.5324	$0 \cdot 4952$	$7 \cdot 00$
$\mathrm{H}(5)$		$0 \cdot 3696$	0.6003	$0 \cdot 3554$	$7 \cdot 00$
$\mathrm{H}(6)$		$0 \cdot 3489$	0.6202	$0 \cdot 1857$	$7 \cdot 00$
$\mathrm{H}(7)$		$0 \cdot 2922$	0.5399	$0 \cdot 0688$	$7 \cdot 00$
$\mathrm{H}(11$		$0 \cdot 1900$	$0 \cdot 3040$	$0 \cdot 3200$	7.00
$\mathrm{H}(112$		$0 \cdot 1000$	0.3230	$0 \cdot 2900$	$7 \cdot 00$
$\mathrm{H}(11$		$0 \cdot 1250$	$0 \cdot 2900$	$0 \cdot 2100$	7.00
$\mathrm{H}(12$		$0 \cdot 4000$	$0 \cdot 3230$	$0 \cdot 2610$	$7 \cdot 00$
$\mathrm{H}(122$		$0 \cdot 3200$	$0 \cdot 2750$	$0 \cdot 1950$	7.00
$\mathrm{H}(123)$		$0 \cdot 3800$	$0 \cdot 2950$	$0 \cdot 3190$	$7 \cdot 00$
$\mathrm{H}(81$		$0 \cdot 0800$	0.4370	$0 \cdot 1250$	$7 \cdot 00$
$\mathrm{H}(812$		$0 \cdot 1000$	$0 \cdot 4650$	$0 \cdot 0250$	$7 \cdot 00$
$\mathrm{H}(81$		$0 \cdot 0700$	$0 \cdot 4100$	$0 \cdot 0000$	$7 \cdot 00$
$\mathrm{H}(82$		$0 \cdot 3300$	0.4100	0.0270	$7 \cdot 00$
$\mathrm{H}(822$		$0 \cdot 2900$	$0 \cdot 3670$	-0.0300	$7 \cdot 00$
$\mathrm{H}(82$		$0 \cdot 2700$	$0 \cdot 4500$	-0.0250	$7 \cdot 00$
	U_{11}	U_{22}	U_{33}	$U_{12} \quad U_{13}$	U_{23}
Mg	42(2)	$55(2)$	62(3)	$7(3) \quad 11(3)$	0 (3)
C(11)	64(13)	141(18)	87(14)	$-42(12) \quad 13(11)$	24(14)
$\mathrm{F}(111)$	57(7)	248(14)	185(12)	$-7(8) \quad 48(8)$	56(11)
$\mathrm{F}(112)$	64 (6)	185(11)	196(12)	$0(7) \quad 55(7)$	78(10)
$\mathrm{F}(113)$	127(10)	232(14)	331 (20)	-66(10) 152(12)	-183(14)
$\mathrm{C}(15)$	70(14)) $104(16)$	$111(16)$	-28(12) 6(13)	35(14)
$\mathrm{F}(151)$	304 (18)	113(9)	187(14)	40(11) 158(14)	77(10)
$\mathrm{F}(152)$	86(8)	161(11)	303(17)	$36(8) \quad 13(10)$	166(11)
$\mathrm{F}(153)$	$165(12)$) $106(9)$	245(15)	$-28(8)-1(13)$	56(10)
$\mathrm{C}(21)$	47(12)) $132(18)$	105(15)	$49(12) \quad 6(13)$	-25(14)
$\mathrm{F}(211)$	83(8)	214(14)	337(19)	$62(8) \quad 13(10)$	$-183(14)$
$\mathrm{F}(212)$	$78(8)$	$301(18)$	161 (12)	$28(9) \quad 69(8)$	49(11)
$\mathrm{F}(213)$	76(7)	175(9)	141(9)	$48(7) \quad 4(7)$	$-15(9)$
C (25)	58(11)) $110(16)$	61(11)	2(11) 16(10)	-1(11)
$\mathrm{F}(251)$	195(11)) 66(7)	114(8)	$1(7) \quad 2(7)$	$-22(6)$
F (252)	91 (6)	171(9)	$73(6)$	$27(7)-11(6)$	$-23(7)$
$\mathrm{F}(253)$	127(8)	129(9)	81 (6)	$35(7) \quad 30(6)$	-11(6)
C(31)	118(17)) 94(16)	59(13)	$0(14) \quad 25(12)$	16(11)
$\mathrm{F}(311)$	157(10)	95(7)	124(9)	64(7) 32(7)	16(7)
F(312)	228(14)) 161 (11)	167 (12)	78(10) 110(11)	98(10)
$\mathrm{F}(313)$	330 (19)) 99(9)	112(9)	$23(10)-126(11)$	$-2(7)$
$\mathrm{C}(35)$	202(25)) 80(16)	60(15)	6(15) $31(16)$	-36(11)
$\mathrm{F}(351)$	244(16)	166(7)	101(8)	106(11) 21(9)	-50(9)
$\mathrm{F}(352)$	238(18)) $340(25)$	135(14)	$-13(6) \quad-29(12)$	$-135(16)$
$\mathrm{F}(353)$	$591(36)$	130(11)	99(10)	16(15) 177(16)	$1(9)$

* Anisotropic vibration parameters, $10^{3} U / \AA^{2}$.
standard values ${ }^{5}$ for carbon to four-covalent nitrogen, but the $C(M e)-N$ distances average $1.52(1) \AA$ which is longer than usual. The planes through the carbon atoms of the naphthalene rings were computed [planes (A) and (B) of Table 5]. The nitrogen atoms are on opposite sides of the naphthalene ring, making the distance between them greater than if they were coplanar. The hydrogen atom is not significantly out of the plane; it is on the same side as the nearer nitrogen atom. As the hydrogen appears closer to $N(1)$ in the copper compound and closer to $\mathrm{N}(8)$ in the magnesium compound we may say that there is a double potential well or that the position found is not significantly different from that for a symmetrical hydrogen bond

[^0]with both $\mathrm{N}-\mathrm{H}$ at $1 \cdot 4 \AA$. This ambiguous result is commonly found in structures with strong, possibly symmetrical, hydrogen bonds. For the hydrobromide

Figure 1 The designations of the atoms in the 1,8-bis(dimethylammonium)naphthalene cation, $\mathbf{I H}+$. Except for the methyl carbon atoms $\mathrm{C}(n \mathrm{~N})$ and the hydrogen atoms in these groups, all atoms are approximately coplanar
an anomalous i.r. spectrum was noted ${ }^{1}$ with a weak absorption from $3000-800 \mathrm{~cm}^{-1}$ but no recognisable $\mathrm{N}-\mathrm{H}$ stretching frequency, taken as indicative of strong hydrogen bonding. The angles round the nitrogen are approximately tetrahedral, that subtended at $\mathrm{H}(18)$ is consistent with hydrogen bonding. The geometry of this hydrogen bond, i.e. formation of a six-membered

Figure 2 The anion $\left[(\mathrm{hfac})_{3}{ }^{-} \mathrm{M}^{2+}\right]-$ showing the designations of the atoms. The view is along the normal to the plane through $O(12), O(24)$, and $O(32)$. In the hfac groups each atom has two numbers, the first, 1,2 , or 3 being that of the chelate ring. There are two anions with this configuration and two with its mirror image in the unit cell
ring, is similar to that of a β-diketone in the enol form. Unfortunately, in the electron diffraction study of hexafluoroacetylacetone, ${ }^{6}$ the hydrogen atom could not be
${ }^{6}$ A. L. Andreassen, D. Zebelman, and S. H. Bauer, J. Amer. Chem. Soc., 1971, 93, 1148.
located precisely but it appeared approximately midway between the oxygen atoms [$\mathrm{O} \cdots \mathrm{O} 2 \cdot 55(3) \AA$] giving an $\mathrm{O} \cdots \mathrm{H} \cdots \mathrm{O}$ angle of $176(2)^{\circ}$.

There is no reason to suppose that the cation is really different in the compounds with the different anions, particularly as cation-anion contacts are relatively long. We shall use differences between the measured dimensions to estimate the error in comparing the structures and particularly to fix a level of statistical significance which must be achieved before chemical significance can be claimed. Apart from dimensions involving $H(18)$ the largest difference in the bond lengths is for $N(8)-C(81 N)$

Figure 3 The structure in projection down the b axis showing ions which lic approximately between $y=0$ and $y=\frac{1}{2}$. For clarity the fluorine atoms have been omitted from the anions. The smallest circles represent carbon atoms, some with their designations, the crosses represent $H(18)$, and the largest circles represent the metal atoms. The ions corresponding to the co-ordinates of Tables 1 and 2 are shown without Roman numerals, the others are obtained by the operations defined in Table 3. In a complete projection each ion of one kind would be covered by another of the same kind, the anions being related by centres of symmetry and the cations by screw axes. Thus cation (II) is above cation (I) (which is shown) while anion (II) is bencath and anion (VIII) is above the original anion
which is 2.68 times the corresponding statistical standard deviation (non-rounded figures were used for this calculation, not the rounded ones in Table 4). A more serious discrepancy is found in the angles, e.g. for the Cu compound it appears that $\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(1)\left(129^{\circ}\right)$ is significantly greater than $\mathrm{C}(4)-\mathrm{C}(10)-\mathrm{C}(5)\left(117^{\circ}\right)$ the difference being $5 \cdot 8 \sigma$, whereas for the magnesium compound the difference is only $1 \cdot 9 \sigma$ and not significant. The corresponding angles do not differ significantly between the two compounds so we think the effect in the copper compound is not of chemical significance.

Dimensions of Chelate Ligands.--The bond lengths and angles in the ligands are shown in Table 6. All six ligands have the same dimensions for the corresponding bonds and there is no indication of alternation in any of the ligands attached to copper. In hfacH itself the bond lengths are: C-F $1 \cdot 337(2), \mathrm{C}\left(\mathrm{CF}_{3}\right)-\mathrm{C} 1 \cdot 546(3), \mathrm{C}-\mathrm{C}$

Table 3
Interionic distances $<3.5 \AA$. Standard deviations are $c a .0 .06 \AA$ except for those including $\mathrm{H}(18), 0.2 \AA$

Anion	Cation	Cu compound	Mg compound
$\mathrm{F}(253)$. C(11N)	$3 \cdot 48$	$3 \cdot 64$
$\mathrm{O}(32) \cdot$	- C(11N)	$3 \cdot 33$	3.34
$\mathrm{F}(112)$	- $\mathrm{C}(12 \mathrm{~N})$	$3 \cdot 47$	$3 \cdot 51$
$\mathrm{F}(312)$	- $\mathrm{C}(1)$	$3 \cdot 38$	3.39
F(112)	$\cdots \mathrm{C}(2)$	$3 \cdot 43$	$3 \cdot 47$
$\mathrm{F}(312)$	$\cdot \mathrm{C}(2)$	$3 \cdot 39$	$3 \cdot 38$
F(212)	$\cdots \mathrm{C}\left(11 \mathrm{~N}^{1}\right)$	$3 \cdot 53$	$3 \cdot 48$
$\mathrm{O}(14)$.	- $\mathrm{C}\left(12 \mathrm{~N}^{1}\right)$	$3 \cdot 45$	3-45
F (151)	- $\mathrm{C}\left(12 \mathrm{~N}^{\text {I }}\right.$)	$3 \cdot 49$	3.63
$\mathrm{O}(22)$.	$\cdot \mathrm{C}\left(12 \mathrm{~N}^{\text {² }}\right.$)	$3 \cdot 31$	$3 \cdot 30$
$\mathrm{O}(22)$.	H(181)	$3 \cdot 91$	$3 \cdot 45$
F (212)	$\cdots{ }^{\text {H }} 18{ }^{\text { }}$)	$3 \cdot 45$	3-17
F(153)	$\cdots \mathrm{C}\left(7^{1}\right)$	$3 \cdot 43$	$3 \cdot 34$
$\mathrm{F}(151)$	$\cdots \mathrm{C}\left(9^{\text {I }}\right.$)	3.36	$3 \cdot 45$
F(211)	$\cdots \mathrm{C}\left(5^{11}\right)$	$3 \cdot 47$	$3 \cdot 48$
F(113)	$\cdot \mathrm{C}\left(7^{\text {III }}\right)$	$3 \cdot 33$	$3 \cdot 39$
F(253)	$\cdots \mathrm{C}\left(5^{\text {III }}\right.$)	$3 \cdot 37$	$3 \cdot 38$
F(253)	- $\mathrm{C}\left(6^{\text {III }}\right.$)	$3 \cdot 44$	$3 \cdot 42$
Anion	Anion		
$\mathrm{O}(12)$.	- $\mathrm{F}\left(252^{\text {IV }}\right.$)	$3 \cdot 20$	$3 \cdot 18$
$\mathrm{C}(12) \cdot$	F(252 ${ }^{\text {IV }}$)	$3 \cdot 31$	$3 \cdot 38$
C(13).	F(313 ${ }^{\text {IV }}$)	$3 \cdot 37$	$3 \cdot 12$
F(111)	$\cdots \mathrm{F}\left(252^{\text {V }}\right.$)	$3 \cdot 37$	$3 \cdot 42$
F (111)	$\cdots \mathrm{F}\left(253{ }^{\text {IV }}\right.$)	3.15	3-19
F(111)	$\cdots \mathrm{F}\left(313^{\text {IV }}\right.$)	$3 \cdot 31$	$3 \cdot 35$
F(112)	$\cdots \mathrm{F}\left(252^{\text {IV }}\right.$)	$3 \cdot 23$	$3 \cdot 22$
$\mathrm{F}(112)$	\cdots (F253 ${ }^{\text {rV }}$)	$3 \cdot 33$	$3 \cdot 35$
F(151)	$\cdots \mathrm{F}\left(213^{\text {IV }}\right)$	3.33	$3 \cdot 45$
F (152)	$\cdots \mathrm{F}\left(311^{\text {IV }}\right.$)	$3 \cdot 47$	$3 \cdot 37$
F (152)	$\cdots \mathrm{F}\left(313^{\text {IVV }}\right.$)	$3 \cdot 12$	3.09
F (212)	$\cdots \mathrm{F}\left(353{ }^{\mathrm{v}}\right.$)	$3 \cdot 40$	$3 \cdot 40$
$\mathrm{F}(213)$	- F (353v)	$3 \cdot 15$	$3 \cdot 12$
F (252)	- $\mathrm{O}\left(34^{\mathrm{V}}\right)$	$3 \cdot 39$	$3 \cdot 33$
F (112)	- F(353v)	$3 \cdot 51$	$3 \cdot 47$
F(113)	$\cdots \mathrm{F}\left(353^{\mathrm{v}}\right.$)	$2 \cdot 98$	$2 \cdot 95$
F(152)	- $\mathrm{F}\left(251^{\mathrm{VIIII}}\right)$	$3 \cdot 12$	$3 \cdot 10$
F(153)	$\cdot \mathrm{F}\left(251^{\text {VIIII }}\right.$)	$3 \cdot 36$	3.26
$\mathrm{C}(33)$.	$F\left(311{ }^{\text {II }}\right)$	$3 \cdot 48$	$3 \cdot 49$ $3 \cdot 16$
$\mathrm{F}(312)$	- $\mathrm{F}\left(351^{\text {II }}\right)$	$3 \cdot 13$	3-16

Roman numeral superscripts relate the ions to those of Tables 1 and 2 at x, y, z by the following operations:

$$
\begin{array}{lr}
\text { I } x-\frac{1}{2}, \frac{1}{2}-y, \frac{1}{2}+z & \text { V } x-\frac{1}{2}, \frac{1}{2}-y, z-\frac{1}{2}-1 \\
\text { II }-x,-y+1,-z+1 & \text { VI } \frac{1}{2}+x, \frac{1}{2}-y, z-\frac{1}{2} \\
\text { III } \frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z & \text { VII } x+1, y, z+\frac{1}{2}+x, \frac{1}{2}+z \\
\text { III }-x,-y, 1-z
\end{array}
$$

Table 4
Bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ in the cation
(a) Distances

	Cu	Mg
$\mathrm{C}(1)-\mathrm{C}(2){ }^{\text {a }}$	1-36(2)	1-41(2)
$\mathrm{C}(2)-\mathrm{C}(3)^{\text {b }}$	$1 \cdot 42(2)$	$1 \cdot 40$ (2)
$\mathrm{C}(3)-\mathrm{C}(4){ }^{\text {a }}$	1-40(2)	$1 \cdot 39(2)$
$\mathrm{C}(4) \mathrm{C}(10){ }^{\text {a }}$	1-45(2)	1-39(2)
$\mathrm{C}(5)-\mathrm{C}(10)^{\text {c }}$	1-44(2)	1-39(2)
$\mathrm{C}(5)-\mathrm{C}(6){ }^{\text {a }}$	1.41 (2)	1.33(2)
$\mathrm{C}(6)-\mathrm{C}(7){ }^{\text {b }}$	1.41(2)	1-38(2)
$\mathrm{C}(7)-\mathrm{C}(8){ }^{\text {a }}$	1-38(2)	$1 \cdot 35(2)$
$\mathrm{C}(8)-\mathrm{C}(9)$ 。	1-42(2)	1-44(1)
$\mathrm{C}(9)-\mathrm{C}(1){ }^{\text {c }}$	1.41 (2)	1-40(2)
$\mathrm{C}(9)-\mathrm{C}(10)^{d}$	1.44(2)	$1.43(2)$
$\mathrm{C}(1)-\mathrm{N}(1)$	1-48(2)	1-45(1)
$\mathrm{N}(1)-\mathrm{C}(11 \mathrm{~N})$	$1.54(2)$	$1 \cdot 52(2)$
$\mathrm{N}(1)-\mathrm{C}(12 \mathrm{~N})$	1.51 (2)	1.51(1)
$\mathrm{C}(8)-\mathrm{N}(8)$	1.45(2)	1-43(1)
$\mathrm{N}(8)-\mathrm{C}(81 \mathrm{~N})$	1.51 (2)	1.58(2)
$\mathrm{N}(8)-\mathrm{C}(82 \mathrm{~N})$	1-48(2)	1-48(2)
$\mathrm{N}(1)-\mathrm{H}(18)$	1-27(17)	1.58(11)
$\mathrm{N}(8)-\mathrm{H}(18)$	1-49(16)	1-25(11)
$\mathrm{N}(1) \cdots \mathrm{N}(8)$	2.65(2)	$2 \cdot 60$ (1)

In naphthalene ${ }^{4}$ the bond lengths of types a, b, c, and d, average $1 \cdot 361(4), 1 \cdot 421(3), 1 \cdot 425(6)$, and $1 \cdot 410(6)$.

Table 4 (Continued)
(b) Angles
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(10)$
$\mathrm{C}(4)-\mathrm{C}(10-\mathrm{C}(9)$
$\mathrm{C}(4)-\mathrm{C}(10-\mathrm{C}(5)$
$\mathrm{C}(10)-\mathrm{C}(5)-\mathrm{C}(6)$
$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(9)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{N}(8)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(1)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{N}(8)$
$\mathrm{C}(9)-\mathrm{C}(1)-\mathrm{C}(2)$
$\mathrm{C}(9)-\mathrm{C}(1)-\mathrm{N}(1)$
$\mathrm{C}(1)-\mathrm{C}(9)-\mathrm{C}(10)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{N}(1)$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(11 \mathrm{~N})$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(12 \mathrm{~N})$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{H}(18)$
$\mathrm{C}(11 \mathrm{~N})-\mathrm{N}(1)-\mathrm{C}(12 \mathrm{~N})$
$\mathrm{C}(11 \mathrm{~N})-\mathrm{N}(1)-\mathrm{H}(18)$
$\mathrm{C}(12 \mathrm{~N}) \mathrm{N}(1)-\mathrm{H}(18)$
$\mathrm{C}(8)-\mathrm{N}(8)-\mathrm{C}(81 \mathrm{~N})$
$\mathrm{C}(8)-\mathrm{N}(8)-\mathrm{H}(18)$
$\mathrm{C}(8)-\mathrm{N}(8) \mathrm{C}(82 \mathrm{~N})$
$\mathrm{C}(81 \mathrm{~N})-\mathrm{N}(8)-\mathrm{C}(82 \mathrm{~N})$
$\mathrm{C}(81 \mathrm{~N}) \mathrm{N}(8)-\mathrm{H}(18)$
$\mathrm{C}(82 \mathrm{~N})-\mathrm{N}(8)-\mathrm{N}(18)$
$\mathrm{N}(1)-\mathrm{H}(18)-\mathrm{N}(8)$

Cu	Mg
$117(2)$	$113(2)$
$123(2)$	$126(2)$
$118(2)$	$119(2)$
$120(2)$	$119(1)$
$117(2)$	$122(2)$
$117(2)$	$122(1)$
$123(2)$	$120(1)$
$121(1)$	$120(1)$
$120(1)$	$121(1)$
$124(1)$	$121(1)$
$118(1)$	$122(1)$
$129(1)$	$125(1)$
$115(1)$	$116(1)$
$118(1)$	$117(1)$
$126(1)$	$125(1)$
$115(1)$	$114(1)$
$117(1)$	$118(1)$
$119(1)$	$117(1)$
$112(1)$	$116(1)$
$112(1)$	$115(1)$
$95(6)$	$106(4)$
$112(1)$	$106(1)$
$99(7)$	$117(4)$
$126(7)$	$97(4)$
$108(1)$	$111(1)$
$96(6)$	$108(5)$
$117(1)$	$117(1)$
$111(1)$	$108(1)$
$95(6)$	$115(5)$
$127(6)$	$98(5)$
$148(12)$	$134(8)$

Table 5
Planes through various groups of atoms. The equations refer to an orthogonal system of axes parallel to the crystallographic a, b, and c^{*} axes. Deviations of the atoms from these planes are shown in square brackets; atoms designated in italics were used to define the plane
Plane (A, Mg): $-0.961 X+0.274 Y-0.026 Z+0.328=0$ $[C(1)-0.07, C(2)-0.02, C(3) 0.07, C(4) 0.01, C(5)-0.04$, $C(6)-0.02, C(7) 0.02, C(8) 0.06, C(9) 0.01, C(10)-0.01$, $\mathrm{N}(1) \quad-0.27, \mathrm{~N}(8) \quad 0.23, \mathrm{C}(11 \mathrm{~N}) \quad 0.64, \mathrm{C}(12 \mathrm{~N})-1.67$, $\mathrm{C}(81 \mathrm{~N}) 1.75, \mathrm{C}(82 \mathrm{~N})-0.57, \mathrm{H}(18)-0.28]$

Plane (B, Cu): $-0.959 X+0.282 Y-0.018 Z+0.262=0$ $[C(1)-0.07, C(2)-0.03, C(3) 0.06, C(4) 0.03,(C 5)-0.05$, $C(6)-0.04, C(7) 0.03, C(8) 0.07, C(9)-0.01, C(10) 0.00$, $\mathrm{N}(1)-0.33, \mathrm{~N}(8) 0.19, \mathrm{C}(11 \mathrm{~N}) 0.67, \mathrm{C}(12 \mathrm{~N})-1 \cdot 77, \mathrm{C}(81)$ $1.64, \mathrm{C}(82)-0.67, \mathrm{H}(18) 0.22]$
Plane (C, Cu): $\quad-0.100 X-0.561 Y-0.822 Z+8.409=0$
Plane (D, Cu): $\quad 0.393 X+0.870 Y-0.297 Z-1.370=0$
Plane (E, Cu): $-0.944 X-0.330 Y-0.015 Z+1.433=0$
Plane (F, Mg): $-0.130 X-0.547 Y-0.827 Z+8.448=0$
Plane (G, Mg): $\quad 0.362 X+0.878 Y-0.312 Z-1.442=0$
Plane (H, Mg) : $-0.934 X-0.355 Y-0.047 Z+1.853=0$
For planes (C)-(H) the ligands are designated $\operatorname{hfac}(n)$ and the (n) has been omitted from the designations of the atoms

	$\underset{\operatorname{hfac}(1)}{(\mathrm{C})}$	$\begin{gathered} (\mathrm{D}) \\ \mathrm{hfac}(2) \end{gathered}$	$\begin{gathered} (E) \\ \mathrm{hfac}(3) \end{gathered}$	$\stackrel{(\mathrm{F})}{\operatorname{hfac}(1)}$	$\underset{\operatorname{hfac}(2)}{(\mathrm{G})}$	$\stackrel{(\mathrm{H})}{\mathrm{hfac}(3)}$
$C(1)$	0.05	0.00	-0.01	0.02	-0.02	0.01
$C(2)$	-0.04	-0.01	0.01	-0.01	0.01	0.01
C (3)	-0.07	0.08	0.03	-0.06	$0 \cdot 11$	$0 \cdot 16$
C (4)	-0.03	0.05	0.02	0.00	0.04	-0.16
$C(5)$	0.06	-0.10	-0.04	0.04	-0.11	-0.02
$O(2)$	0.03	-0.08	-0.03	0.02	-0.08	-0.04
$O(4)$	0.00	0.05	0.02	-0.01	0.05	0.04
Cu	-0.03	0.59	0.50			
Mg				0.02	0.51	0.5

$1 \cdot 407(10)$, and C-O 1-259(6) \AA as determined by electron diffraction ${ }^{6}$ and are consistent with delocalisation in the enol ring, i.e. they should be comparable with those in metal complexes.
We find a large spread in the $\mathrm{C}-\mathrm{F}$ distances; mean values are $1 \cdot 30(4) \AA$ for both complexes but this standard deviation from the spread about the mean value is twice that from ORFFE.* Although anisotropic vibration parameters were obtained we did not attempt to apply a correction for libration to the bond lengths. The apparent shortness probably results from this systematic error. As shown in Tables 1 and 2 the isotropic temperature factors of all the atoms are fairly high (if $B=7 \cdot 2 \AA^{2}$ the mean square amplitude of vibration is $0.09 \AA^{2}$ or root-mean-square amplitude $0.3 \AA$, which is large compared with the bond lengths). For fluorine the mean square amplitudes of vibration can be as much as $0.6 \AA^{2}$. These high values may be in part a result of disorder rather than actual motion.

For the other bond lengths the spread about the mean gives the same standard deviation as ORFFE, mean lengths are $\mathrm{C}\left(\mathrm{CF}_{3}\right)-\mathrm{C}, 1 \cdot 49, \mathrm{C}-\mathrm{C} 1 \cdot 39$, and $\mathrm{C}-\mathrm{O} 1 \cdot 26 \AA$. All the bond lengths are the same as those found in $\pi-\mathrm{C}_{5} \mathrm{H}_{5}(\mathrm{hfac})_{3} \mathrm{Zr}^{7}$ and $\mathrm{CsM}^{I I I}(\mathrm{hfac})_{4}\left(\mathrm{M}^{\mathrm{III}}=\mathrm{Y},{ }^{8} \quad \mathrm{Eu},{ }^{9}\right.$ or Am ${ }^{9}$) even including the short $\mathrm{C}-\mathrm{F}$ distances. Other comparable compounds are (hfac) $)_{2}($ bipy $) \mathrm{Cu}^{\text {II }}$ (ref. 10)

Table 6

(a) Bond lengths, (\AA) and angles, $\left({ }^{\circ}\right)$ in the anions. The chelate rings are designated $\operatorname{hfac}(n)$ and n has been omitted in the designations of the atoms
(i) Bonds
$\mathrm{Cu}-\mathrm{O}(2)$
$\mathrm{Cu}-\mathrm{O}(4)$
$\mathrm{C}(1)-\mathrm{C}(2)$
$\mathrm{C}(2)-\mathrm{C}(3)$
$\mathrm{C}(3)-\mathrm{C}(4)$
$\mathrm{C}(4)-\mathrm{C}(5)$
$\mathrm{C}(2)-\mathrm{O}(2)$
$\mathrm{C}(4)-\mathrm{O}(4)$
$\mathrm{C}(1)-\mathrm{F}(11)$
$\mathrm{C}(1)-\mathrm{F}(2)$
$\mathrm{C}(1)-\mathrm{F}(13)$
$\mathrm{C}(5)-\mathrm{F}(51)$
$\mathrm{C}(5)-\mathrm{F}(52)$
$\mathrm{C}(5)-\mathrm{F}(53)$
(ii) Angles

$\mathrm{O}(2)-\mathrm{Cu}-\mathrm{O}(4)$	$88 \cdot 9(4)$	$84 \cdot 7(4)$	$89 \cdot 2(4)$
$\mathrm{Cu}-\mathrm{O}(2)-\mathrm{C}(2)$	$122(1)$	$122(1)$	$123(1)$
$\mathrm{Cu}-\mathrm{O}(4)-\mathrm{C}(4)$	$128(1)$	$126(1)$	$122(1)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$116(1)$	$121(1)$	$117(1)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$122(1)$	$122(1)$	$122(1)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$114(1)$	$117(1)$	$117(1)$
$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(1)$	$113(1)$	$113(1)$	$115(1)$
$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(3)$	$130(1)$	$126(1)$	$128(1)$
$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{C}(3)$	$129(1)$	$129(1)$	$129(1)$
$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{C}(5)$	$116(1)$	$114(1)$	$113(1)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{F}(11)$	$110(1)$	$115(2)$	$119(1)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{F}(12)$	$117(1)$	$111(2)$	$110(1)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{F}(13)$	$115(1)$	$112(1)$	$113(2)$
$\mathrm{F}(11)-\mathrm{C}(1)-\mathrm{F}(12)$	$101(1)$	$109(2)$	$108(2)$
$\mathrm{F}(11)-\mathrm{C}(1)-\mathrm{F}(13)$	$104(2)$	$107(2)$	$108(2)$
$\mathrm{F}(12)-\mathrm{C}(1)-\mathrm{F}(13)$	$109(1)$	$100(2)$	$101(1)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{F}(51)$	$112(2)$	$110(1)$	$118(2)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{F}(52)$	$118(2)$	$114(1)$	$111(2)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{F}(53)$	$111(1)$	$110(1)$	$118(2)$
$\mathrm{F}(51)-\mathrm{C}(5)-\mathrm{F}(52)$	$107(2)$	$110(1)$	$100(2)$
$\mathrm{F}(51)-\mathrm{C}(5)-\mathrm{F}(53)$	$102(2)$	$105(1)$	$107(2)$
$\mathrm{F}(52)-\mathrm{C}(5)-\mathrm{F}(53)$	$105(2)$	$107(1)$	$100(2)$

Table 6 (Continued)

(iii) Bonds			
$\mathrm{Mg}-\mathrm{O}(2)$	$2 \cdot 064(8)$	2.088(9)	2.043(9)
$\mathrm{Mg}-\mathrm{O}(4)$	$2 \cdot 044(9)$	$2 \cdot 059(9)$	2.048(9)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.46(2)	$1.50(2)$	1.52(2)
$\mathrm{C}(2)-\mathrm{C}(3)$	1-37(1)	$1 \cdot 35(2)$	1.33 (2)
$\mathrm{C}(3)-\mathrm{C}(4)$	1-38(2)	$1 \cdot 42(2)$	$1 \cdot 41(2)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.50(2)$	$1.47(2)$	1.49 (2)
$\mathrm{C}(2)-\mathrm{O}(2)$	1-26(1)	1-27(1)	1.26(1)
$\mathrm{C}(4)-\mathrm{O}(4)$	$1 \cdot 28(1)$	1-25(1)	$1.21(1)$
$\mathrm{C}(1)-\mathrm{F}(11)$	1-32(2)	1-27(2)	$1.27(2)$
$\mathrm{C}(1)-\mathrm{F}(12)$	1-32(2)	1-32(2)	$1 \cdot 36(2)$
$\mathrm{C}(1)-\mathrm{F}(13)$	$1 \cdot 26(2)$	$1 \cdot 34(1)$	$1.21(1)$
$\mathrm{C}(5)-\mathrm{F}(51)$	$1 \cdot 25(2)$	1-33(1)	$1 \cdot 25(2)$
$\mathrm{C}(5)-\mathrm{F}(52)$	1.21(1)	1-27(1)	$1 \cdot 34(2)$
$\mathrm{C}(5)-\mathrm{F}(53)$	$1 \cdot 33(2)$	$1 \cdot 40$ (1)	1-26(2)
(iv) Angles			
$\mathrm{O}(2)-\mathrm{Mg}-\mathrm{O}(4)$	85•1(3)	83.9(3)	84.9(3)
$\mathrm{Mg}-\mathrm{O}(2)-\mathrm{C}(2)$	128(1)	124(1)	125(1)
$\mathrm{Mg}-\mathrm{O}(4)-\mathrm{C}(4)$	130(1)	128(1)	125(1)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	116(1)	120(1)	120(1)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	123(1)	122(1)	123(1)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	117(1)	116(1)	115(1)
$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(1)$	116(1)	111(1)	114(1)
$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(3)$	128(1)	128(1)	126(1)
$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{C}(3)$	125(1)	125(1)	128(1)
$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{C}(5)$	118(1)	119(1)	117(2)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{F}(11)$	114(1)	114(1)	116(1)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{F}(12)$	116(1)	110(1)	107(1)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{F}(13)$	116(1)	113(1)	114(1)
$\mathrm{F}(11)-\mathrm{C}(1)-\mathrm{F}(12)$	96(1)	113(1)	111(2)
$\mathrm{F}(11)-\mathrm{C}(1)-\mathrm{F}(13)$	103(2)	105(1)	111(2)
$\mathrm{F}(12)-\mathrm{C}(1)-\mathrm{F}(13)$	109(1)	102(1)	106(1)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{F}(51)$	112(1)	110(1)	122(2)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{F}(52)$	120(1)	120(1)	106(2)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{F}(53)$	109(1)	109(1)	116(1)
$\mathrm{F}(51)-\mathrm{C}(5)-\mathrm{F}(52)$	110(2)	111(1)	$99(1)$
$F(51)-\mathrm{C}(5)-\mathrm{F}(53)$	98(1)	101(1)	110(2)
$\mathrm{F}(52)-\mathrm{C}(5)-\mathrm{F}(53)$	106(2)	105(1)	98(2)

(b) Angles $\mathrm{O}-\mathrm{Cu}-\mathrm{O}^{\prime}$ and, in parentheses, $\mathrm{O}-\mathrm{Mg}-\mathrm{O}^{\prime}\left({ }^{\circ}\right)$. The estimated standard deviation in the difference between corresponding values is 0.5°

O	$\mathrm{O}(12)$	$\mathrm{O}(14)$	(O22)	$\mathrm{O}(\mathbf{2 4})$	$\mathrm{O}(32)$	$\mathrm{O}(34)$
$\mathrm{O}^{\prime} \mathrm{O}$						
$\mathrm{O}(12)$		$\begin{gathered} 88 \cdot 9 \\ (85 \cdot 1) \end{gathered}$	$\begin{gathered} 175 \cdot 3 \\ (175 \cdot 2) \\ 94 \cdot 0 \\ (94 \cdot 8) \end{gathered}$	$\begin{gathered} 91 \cdot 6 \\ (91 \cdot 3) \\ 91 \cdot 4 \\ (94 \cdot 1) \\ 84 \cdot 7 \\ (83 \cdot 9) \end{gathered}$		$\begin{gathered} 95 \cdot 2 \\ (96 \cdot 7) \end{gathered}$
					(92.9)	
$\mathrm{O}(14)$					$179 \cdot 4$	$\begin{gathered} 90.9 \\ (92.0) \end{gathered}$
					(176.2)	
$\mathrm{O}(22)$					$85 \cdot 3$	$\begin{gathered} (92 \cdot 0) \\ 88 \cdot 5 \\ (88 \cdot 1) \end{gathered}$
					(87-4)	
$\mathrm{O}(24)$					$88 \cdot 5$	$\begin{array}{r} 172 \cdot 9 \\ (170 \cdot 3) \end{array}$
					(89.2)	
$\mathrm{O}(32)$						$89 \cdot 2$
$\mathrm{O}(34)$						(84.9)

and (hfac) $\left(\mathrm{Me}_{2} \mathrm{en}\right)_{2} \mathrm{CuI}^{\mathrm{II}}$ (ref. 11) (bipy $=2,2^{\prime}$-bipyridyl and $\mathrm{Me}_{2} \mathrm{en}=N N$-dimethylethylenediamine). In the latter compound the hfac is co-ordinated to the copper through one oxygen atom only but there are no significant differences between the two $\mathrm{C}-\mathrm{O}$ bond lengths (mean 1-234 \AA) or the $\mathrm{C}-\mathrm{C}$ bond lengths in the ring (mean $1 \cdot 390 \AA$); the $\mathrm{C}-\mathrm{CF}_{3}$ distance is $1.530(5) \AA$ and the mean $\mathrm{C}-\mathrm{F}$ bond lengths is $1 \cdot 313(9) \AA$. Only for the bipyridyl

* ORFFE, the Busing-Levy programme with local modifications.
${ }^{7}$ M. Elder, Inorg. Chem., 1969, 8, 2103.
${ }^{8}$ M. J. Bennett, F. A. Cotton, P. Legzdins, and S. J. Lippard, Inorg. Chem., 1968, 7, 1770.
9 J. H. Burns and M. D. Danford, Inorg. Chem., 1969, 8, 1780.
${ }^{10}$ M. V. Veidis, G. H. Schreiber, T. E. Gough, and G. J. Palenik, J. Amer. Chem. Soc., 1969, 91, 1859.
${ }^{11}$ M. A. Bush and D. E. Fenton, J. Chem. Soc. (A), 1971, 2446.
complex ${ }^{10}$ is there evidence for incomplete delocalisation; estimated standard deviations are not quoted for the $\mathrm{C}-\mathrm{O}$ bonds, 1.261 and $1.218 \AA$, or the $\mathrm{C}-\mathrm{C}$ (ring) bonds, 1.433 and $1.385 \AA$, but comparison with those quoted for $\mathrm{Cu}-\mathrm{O}$ and $\mathrm{Cu}-\mathrm{N}$ suggests $\pm 0.01 \AA$ so that the differences would be $c a .3 \sigma$, the minimum which crystallographers now require before attributing chemical significance to differences. Of the six chelate hfac ligands reported here, only the third one of the magnesium (Table 6) shows differences of this kind and chemical significance is most improbable; we take it as yet another warning to be wary of estimates of statistical significance.

For each hfac ligand the plane through the five carbon and two oxygen atoms was calculated; there are no significant deviations from planarity (Table 4), each metal lying in the plane of one chelate ring and ca. $0 \cdot 5 \AA$ from those of the other two.

The Environment of the Metal.-No symmetry is required so that six independent metal-oxygen distances are obtained; the arrangement approximates to octahedral round magnesium and to a tetragonally distorted octahedron about copper. The bond lengths and chelate angles are shown in Table $6(a)$. All chelate angles are less than 90° those at magnesium being smaller than those at copper. Other angles subtended at the metal are shown in Table $6(b)$. Planes through the groups of four oxygen atoms were calculated and greater deviations from the ideal arrangement, coplanar oxygens with the three sets of planes orthogonal, were found for magnesium than for copper.

Only in two actual $\mathrm{M}-\mathrm{O}$ bond lengths does the copper structure appear less regular than the magnesium. These differences in bond lengths must be treated with caution, since internal evidence suggests that chemical significance cannot be assigned to differences less than six times the corresponding statistical deviation in comparing the two structures. Further, for the copper compound there is the possibility that the calculated standard deviations in the $\mathrm{Cu}-\mathrm{O}$ bonds are too small (such an explanation often being required for metalligand bond distances which vary by statistically significant amounts without any chemically convincing reason). For magnesium the six bonds are equal, mean $2.058(17) \AA$; for copper there are four short bonds, mean $2 \cdot 012(25)$, and two long ones, mean $2 \cdot 178(32) \AA$. Here the values in parentheses are obtained from the spread about the mean; for magnesium the value is twice that from the estimated standard deviation in the coordinates.

In another pair of isomorphous tris-chelated complexes of copper and magnesium, the octamethylphosphoramides, ${ }^{12}$ crystallographic symmetry (corre-

[^1]sponding to a true instead of a pseudo-three-fold axis in Figure 2), precludes tetragonal distortion and the mean $\mathrm{Mg}-\mathrm{O}$ and $\mathrm{Cu}-\mathrm{O}$ bond lengths are $2.061(2)$ and $2.065(2) \AA$. That for $\mathrm{Mg}-\mathrm{O}$ is in good agreement with ours. It has been suggested that this and other tris-chelated copper complexes with three-fold symmetry involve a ' dynamic' Jahn-Teller distortion with the 'long' bonds spread equally. ${ }^{13,14}$ No such restriction is found in this compound so that it makes an ideal example for checking on the reality of the Jahn-Teller distortion.
The 'long' bonds are closely parallel to the a axis, the difference between the length of which in the copper and the magnesium compounds would account for only $0.02 \AA$ in $\mathrm{M}-\mathrm{O}$ bond length. The shorter of the 'long, bonds $[\mathrm{Cu}-\mathrm{O}(12) 2 \cdot 156 \AA]$ is $0.121 \AA$ longer than the longest of the short bonds, so that in the most unfavourable case the difference is $9 \cdot 5 \sigma$, while the difference between the mean long and mean short values at $0.156 \AA$ is 3.8 times the standard deviation obtained from the spread. On balance we think that the distortion is probably significant.

EXPERIMENTAL

Copper Compound

A pale green acicular crystal $0.025 \times 0.03 \times 0.055 \mathrm{~cm}$ was mounted on a rigid support * on a Picker 4 -circle automatic diffractometer.
Preliminary X-ray photographs had established the space group and approximate unit-cell dimensions. Accurate dimensions were obtained by careful centering of 16 reflections and refinement by the least-squares programme PICK3. ${ }^{15}$

Crystal Data. $-\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{CuF}_{18} \mathrm{~N}_{2} \mathrm{O}_{6}, M=900$, Monoclinic, $a=12 \cdot 878(7), \quad b=21 \cdot 00(1), \quad c=13 \cdot 620(7) \AA, \quad \beta=$ $98^{\circ} 44^{\prime}\left(2^{\prime}\right), U=3640(7) \AA^{3}, D_{\mathrm{m}}$ (flotation) $=1 \cdot 66, Z=4$, $D_{\text {c }}=1 \cdot 64, \quad F(000)=1796 . \quad$ Space-group $\quad P 2_{1} / n \quad\left(\mathrm{C}_{2 h}^{5}\right)$ uniquely determined. This is a non-standard setting of $P 2_{1} / c$ and the equivalent positions are: $x, y, z ; \frac{1}{2}+x$, $\frac{1}{2}-y, \frac{1}{2}+z ; \frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z ;$ and $\vec{x}, \vec{y}, \vec{z}$. No molecular symmetry is required. $\mathrm{Mo}-K_{\alpha}$ radiation, $\mathrm{Zr}-$ filtered; $\lambda\left(\mathrm{Mo}-K_{\alpha}\right)=0.70926 \AA \quad\left(1 \AA \equiv 10^{-10} \mathrm{~m}\right)$. Singlecrystal diffraction intensities measured by counter. $\mu\left(\right.$ Mo- $\left.K_{\alpha}\right) 7.70 \mathrm{~cm}^{-1}$, no absorption correction applied.

Intensities were collected in shells of reciprocal space for the ($h k l$) and ($h k l$) octants out to $2 \theta=45^{\circ}$. Scanning was carried out at $1^{\circ} \min ^{-1}$ from 0.4° below the Mo- $K_{\alpha, 1}$ peak to $0 \cdot 4^{\circ}$ above the $\mathrm{Mo}-K_{\alpha, 2}$ peak and backgrounds were counted for 10 s at each end of the scan. Three standard reflections, (400), (006), and (060) were measured after every 50 reflections. 4739 unique reflections were measured, Lorentz and polarisation factors ($L P$) were applied and the standard deviation was calculated from the formula $\sigma_{(F)}^{2}=\sigma^{2}(I) / 4 . I . L P$ where $\sigma^{2}(I)=$ total count $+(0.25 \times$ background) \times (scan time/background time) ${ }^{2}$ with the programme PRED. ${ }^{16}$

14 B. J. Hathaway, M. J. Bew, D. E. Billing, R. J. Dudley, and P. Nicholls, J. Chem. Soc. $(A), 1969,2312$.

15 Programmes PICK3, FORDAP, NUCLS4, ORFFE, from the Northwestern University; crystallographic systems, J. A. Ibers.

16 B. L. Vickery, programmes MAMIE and PRED for the IBM 1130 .

Structure Determination.-Attempts to determine the structure by Patterson and Fourier methods were unsuccessful. Both the Patterson synthesis and a difference Pattersonsynthesis with coefficients ($F_{\mathrm{Ca}}{ }^{2}-F_{\mathrm{Mg}}{ }^{2}$) showed that the copper was close to $(1 / 4,0,1 / 4),(0,1 / 4,0)$, or $(1 / 4,1 / 4$, $1 / 4)$. All positions gave R ca. $0 \cdot 60$ and no recognisable molecule could be obtained from Fourier syntheses. Apart from the false symmetry produced by having one atom in these positions, the copper contributes only ca. 20% of the total scattering power and so failure of the heavy-atom method is not surprising.

Direct methods were tried, the programmes SAPl and SAP2 ${ }^{17}$ were used to calculate the overall scale and temperature factor ($B=4.0 \AA^{2}$) and the E values. The 578 largest were used as input to the programme RELI ${ }^{18}$ which calculated eight sets of signs. One set converged in eight cycles to leave only one reflection unsigned and was clearly the most promising. An E map was calculated using FORDAP ${ }^{15}$ and revealed the copper (at $0.014,0.255$, 0.515), the cation, and an octahedron about the copper, two atoms of which were part of a clearly defined chelating hfac group. This group, the cation, and the copper were used to calculate structure factors having I greater than $3 \sigma(I)$. A Fourier synthesis for the 1691 observations revealed the remaining two hfac ligands. Isotropic refinement was carried out by full-matrix least-squares with the programme MAMIE ${ }^{16}$ which refined only 81 parameters at a time; this meant that the parameters had to be divided into 4 groups to be refined in successive cycles. R was reduced from 0.38 to 0.17 but some fluorine atoms had very high vibration parameters. A Fourier difference synthesis was computed and indicated anisotropic vibration for the copper and the fluorine atoms.

Final refinement was carried out with the full-matrix programme NUCLS4. ${ }^{15}$ At first the copper atom only was allowed anisotropic vibration and all parameters refined together; R was reduced to $0 \cdot 14$. To allow anisotropic vibration for the CF_{3} groups the number of parameters was increased to $350(56 \times 3+25 \times 6+31 \times 1+1)$ so that a large number of observations was required; those with $\left|F_{0}\right|>3 \sigma\left(F_{0}\right)$ were included, giving a total of 2561.

To prevent the computing time becoming prohibitive the parameters were refined alternately in two sets, one containing the copper and CF_{3} groups, i.e. all the anisotropic atoms, and the scale factor, and the second, again containing the copper parameters and the scale factor, and also the remaining atoms with isotropic vibration parameters. The function minimised was $R^{\prime}=\Sigma w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2}$ and the weighting function $w=1 / \sigma^{2}$ where ideally σ is that given by the counting statistics $\sigma_{\text {count }}$ but in practice to give a uniform value of R^{\prime} in ranges of $\sin \theta / \lambda$ and of $\left|F_{0}\right|$ a function $\sigma=\sigma_{\text {count }}+0.01\left|F_{\mathrm{o}}\right|+0.0003\left|F_{\mathrm{o}}\right|^{2}$ was required. R was reduced to $0 \cdot 121$ and a difference synthesis revealed all twelve hydrogen atoms on the methyl groups and the proton between the nitrogen atoms. Positive regions appeared at the expected positions for the hydrogens round the naphthalene ring and on $\mathrm{C}(n 3)$ of the hfac ligands. All the hydrogen atoms with isotropic temperature factors were included in the next structure-factor calculations.

* For details of Supplementary Publications see Notice to Authors No. 7 in J. Chem. Soc. (A), 1970, Issue No. 20.

17 Programmes SAP and MPLN adapted by B. L. V. for the IBM 1130 from N.R.C. programmes by F. R. Ahmed.

18 Programme RELl by R. E. Long, Ph.D. Thesis, University of California at Los Angeles, 1965.

Only for the cationic proton were the parameters refined, making another four parameters in the second set. Scattering factors for hydrogen were taken from ref. 19, those for the other atoms from ref. 20; for copper the Cu^{2+} curve was used and allowance was made for the real and imaginary parts of the anomalous dispersion so that the calculated structure-factors became complex numbers.

Several cycles of refinement reduced R to 0.111. Eightythree planes were found to have $\left|F_{0}\right|$ in the range $10-20$ with $\left|F_{\mathrm{c}}\right|$ close to zero. This phenomenon of very weak reflections being observed at too high a value is discussed elsewhere. ${ }^{21}$ These planes were removed and refinement continued until the largest shift was $<0.5 \sigma$ when R was $0 \cdot 108$ for 2478 observed reflections.

In a final difference synthesis there were peaks of $0.7 \mathrm{e}^{-3}$ near CF_{3} groups, probably an indication of disorder in these groups, as found ${ }^{7}$ in other hfac complexes. No attempt was made to include this in the model.

The parameters are shown in Table 1.

Magnesium Compound

Only measurements which differ from those for the copper compound are described. A colourless acicular crystal $0.02 \times 0.04 \times 0.08 \mathrm{~cm}$ was mounted with the needle axis, c, approximately coincident with the ϕ-axis of the diffractometer. Accurate cell dimensions were obtained from 24 reflections.
Crystal Data.- $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{~F}_{18} \mathrm{MgN}_{2} \mathrm{O}_{6}, \quad M=860 \cdot 8$, Monoclinic, $a=12 \cdot 775(5), b=21 \cdot 268(8), c=13 \cdot 594(6) \AA, \beta=$ $99^{\circ} 10^{\prime}\left(2^{\prime}\right), \quad U=3646 \AA^{3}, D_{\mathrm{m}}=1 \cdot 60, Z=4, D_{\mathrm{c}}=1 \cdot 57$, $F(000)=1728 . \quad \mu\left(\mathrm{Mo}-K_{\alpha}\right)=1.99 \mathrm{~cm}^{-1}$, no absorption correction applied.
Intensities were collected for $2 \theta=3^{\circ}$ to $2 \theta=40^{\circ}$. The scanning range was 0.35° below and above the $K_{\alpha, 1}$ and $K_{\alpha, 2}$ peaks, respectively. The standard reflections were (060), (008), and (600). After 3895 observations had been recorded the crystal rapidly decomposed.

For refinement 1998 planes for which I was $>3 \sigma(I)$ were used (i.e. corresponding to the 1691 planes of the copper compound) and the initial parameters were those which had given the minimum R value with these 1691 planes, except that the scattering factor for Mg^{2+} was used instead of that for Cu^{2+} and no allowance was made for anomalous dispersion. NUCLS4 was used with the same two sets of parameters, the weighting scheme was adjusted so that $\sigma=\sigma_{\text {count }}+$ $0.01\left|F_{0}\right|+0.0004\left|F_{0}\right|^{2}$ and the final R value was 0.095 . The difference map again showed peaks of $0.7 \mathrm{e}^{-3}$ near the CF_{3} groups. Parameters are listed in Table 2.
Both Compounds.-Observed and calculated structure amplitudes are listed in Supplementary Publication No. SUP 20255 (32 pp., 1 microfiche).*
Bond lengths and angles were calculated with the programme ORFFE. ${ }^{15}$ This computes the standard deviations from the variance-covariance matrix; to obtain an appropriate matrix for each compound one cycle of refinement was carried out, having as parameters all the atomic co-ordinates, 171, but no vibration parameters. The results are in Tables 4 and 6.

Interionic distances were computed with the programme
${ }^{19}$ R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem. Phys., 1965, 42, 3175.
${ }_{20}$ D. T. Cromer and J. T. Waber, Acta Cryst., 1965, 18, 104.
${ }^{21}$ M. R. Truter and B. L. Vickery, Acta Cryst. (B), 1972, in the press.

BANGL ${ }^{22}$ and planes through various groups of atoms with MPLN. ${ }^{17}$ Computations were carried out on the Unit's IBM 1130 or the CDC 6600 in the University of London (FORDAP, NUCLS4, REL1, and ORFFE).
${ }^{22}$ Programme BANGL by D. Bright for the IBM 1130.

We thank Dr. D. E. Fenton for the crystals, the authors for their computer programmes, and the Director of the University of London Computing Laboratory for facilities. Some of the apparatus was provided by the Royal Society.

1/1311 Received, July 27th, 1971]

[^0]: 4 D. W. J. Cruickshank, Acta Cryst., 1957, 10, 504.
 ${ }^{5}$ Interatomic Distances, Chem. Soc. Special Publ., No. 18, London, 1965.

[^1]: * Designed by R. H. B. Mais and P. G. Owston, Imperial Chemical Industries Ltd.
 ${ }^{12}$ M. D. Joesten, M. Sakhawat, and P. G. Lenhert, Inorg. Chem., 1970, 9, 151.
 ${ }^{13}$ D. L. Cullen and E. C. Lingafelter, Inorg. Chem., 1970, 9, 1858 .

