Infrared Spectra, Electronic Spectra, and Magnetic Properties of Dihalogenobis(pyrazine) Complexes of Cobalt(II) and Nickel(II): a Structural **Re-assignment**

By M. Goldstein,* F. B. Taylor, and W. D. Unsworth, Department of Chemistry, The Polytechnic of North London, Holloway Road, London N7 8DB

Detailed studies have been made of the i.r. (to 80 cm⁻¹) and Raman spectra, and variable-temperature magnetic susceptibilities, of the complexes MX_2 (pyrazine)₂ [M = Co or Ni; X = Cl, Br, or I]. It is shown that the compounds are of sheet structure, having metal atoms linked by pyrazine bridges, with trans-terminal halogen atoms, rather than the halogen-bridged chain structure previously proposed. This has necessitated a re-interpretation of their electronic spectra.

PREVIOUS studies ¹ of the electronic spectra and roomtemperature magnetic moments of complexes MX₂(pyz)₂ (M = Co or Ni; X = Cl, Br, or I; pyz = pyrazine) have shown that in these compounds the metal atoms are octahedrally co-ordinated. This co-ordination may be achieved either by bridging of halogen atoms, leaving the pyrazine groups unidentate, structure (I), or by bridging of the pyrazine ligands with terminal halogen, structure (II). On the basis of a mid-i.r. spectral criterion for the denticity of pyrazine,¹ structure (I), analogous to that found ² for α -CoCl₂(pyridine)₂, was preferred.

We have recently investigated the i.r. and Raman spectra of some pyrazine complexes and have been able to characterise the vibrational spectral properties of unidentate and bidentate pyrazine groups more rigorously.³ This work cast some doubt on the previously suggested ¹ structure (I) of the $MX_2(pyz)_2$ compounds.

¹ A. B. P. Lever, J. Lewis, and R. S. Nyholm, J. Chem. Soc., 1962, 1235; 1963, 5042; 1964, 4761. ² J. D. Dunitz, Acta Cryst., 1957, **10**, 307.

These latter systems are frequently referred to as 'model' compounds for discussion of electronic and

³ M. Goldstein and W. D. Unsworth, Spectrochim. Acta, 1971, 27A, 1055.

TABLE 1

Experimental and calculated magnetic data ^a

				NiCl ₂ (py) ₂						
T/K $10^{6}\chi_{A} \text{ (obs)}$ $10^{6}\chi_{A} \text{ (calc)}$ $\mu_{eff}/B.M.$	$303 \cdot 2$ 4604 4691 $3 \cdot 26$	274·2 5106 5206 3·27	244·5 5817 5874 3·31	216·7 6700 6683 3·35		186·1 7907 7889 3·38		156·9 9599 9546 3·43	127·8 12,155 12,093 3·49	88·4 18,928 18,945 3·64
				NiBr.(pv).						
$\begin{array}{l} T/\mathrm{K} \\ 10^{6}\chi_{\mathrm{A}} \ (\mathrm{obs}) \\ 10^{6}\chi_{\mathrm{A}} \ (\mathrm{calc}) \\ \mu_{\mathrm{eff}}/\mathrm{B.M.} \end{array}$	303·2 4940 4976 3·38	$\begin{array}{c} 274 \cdot 2 \\ 5442 \\ 5510 \\ 3 \cdot 38 \end{array}$	$\begin{array}{c} 244 \cdot 5 \\ 6119 \\ 6198 \\ 3 \cdot 40 \end{array}$	216·7 7056 7027 3·44		$186.1 \\8275 \\8255 \\3.46$		156-9 10,011 9925 3-51	$127.8 \\ 12,572 \\ 12,455 \\ 3.55$	88·4 19,031 19,082 3·65
				NiCl ₂ (pyz) ₂	1					
$T/K = \frac{10^{6} \chi_{A} \text{ (obs)}}{10^{6} \chi_{A} \text{ (calc)}} = \frac{10^{6} \chi_{A} \text{ (calc)}}{\mu_{\text{eff}}/\text{B.M.}}$	333·2 3745 3781 3·06	303·2 4090 4134 3·06	274·2 4495 4549 3·06	244·5 5023 5076 3·06	$216.7 \\ 5723 \\ 5702 \\ 3.09$		186·1 6621 6608 3·08	156·9 7840 7806 3·09	127.895879550 3.10	88·4 13,742 13,770 3·09
				NiBr ₂ (pyz)	2					
$T/K 10^{6} \chi_{A} \text{ (obs)} 10^{6} \chi_{A} \text{ (calc)} \mu_{eff}/B.M.$	333·2 3681 3725 3·03	303·2 4020 4070 3·03	274·2 4417 4475 3·03	244.5 4940 4989 3.03	$\begin{array}{c} 216.7 \\ 5613 \\ 5598 \\ 3.06 \end{array}$		186·1 6486 6477 3·05	156·9 7668 7634 3·06	127·8 9362 9309 3·06	88·4 13,298 13,321 3·04
				$NiI_2(pyz)_2$						
$ \begin{array}{l} T/\mathrm{K} \\ 10^6 \chi_{\mathrm{A}} \ (\mathrm{obs}) \\ 10^6 \chi_{\mathrm{A}} \ (\mathrm{calc}) \\ \mu_{\mathrm{eff}}/\mathrm{B.M.} \end{array} $	$333\cdot 2 \\ 3443 \\ 3469 \\ 2\cdot 93$	303·2 3753 3788 2·93	274.2411941632.92	244.5461146382.93	216·7 5208 5201 2·93	:	$186 \cdot 1 \\ 6035 \\ 6014 \\ 2 \cdot 94$	156·9 7122 7084 2·94	127.8 8683 8631 2.94	88·4 12,336 12,332 2·93

^a χ_A in c.g.s.u. $\mu_{eff} = 2.83 [\chi_A \text{ (obs) } T]^{\frac{1}{2}}$.

TABLE 2

Mid-i.r. and Raman spectra (cm^{-1}) of $CoX_2(pyz)_2$ and related compounds a, b

$CoCl_2(pyz)_2$		$CoBr_2(pyz)_2$		$CoI_2(pyz)_2$		CoX_2	$Ag(NO_3)(pyz) d$		
Raman	I.r. 3100sh 3080m	Raman	I.r. 3115m 3090m	Raman	I.r. 3110w 3090m	Raman		Raman	I.r. 3100 3090 3040
3092s		3087m		3076s		3108w °		3084s 3070m	•••••
1604s 1524m		1606w		1602s 1520m		1608w °		1604m 1522m	
	1480m 1405m		1490m 1410s		1495w 1420s		$egin{array}{cccc} 1487 \pm 3\mathrm{ms} \\ 1418 \pm 3\mathrm{s} \end{array}$		1500s 1440s
1214s		1220 m		1224s		1218 ± 6 mw		1240m	
	1150s		1150 s		1160s		1165 \pm 5s		1155s
	1110s		1117s 1090w		1120s 1090w		1120s 1090w1		1135s 1080s
1099	1050s	1090-	1055s	1098-	1060s	1094 / 9mg	$1056 \pm 4s$	10994	1055s
018w	985s	10305	990 m	908m	983s	1034 ± 2005		980w 920w	9 90w
510W	$\binom{815}{810}$ s		$egin{smallmatrix} 820 \ 815 \end{bmatrix} { m s}$	Joom	820s		$788 \pm 2s$	02011	$\binom{820}{800}$ s
750w 700s 650s		755wbr 700m 648m		764m 700s 648vs		$764 \pm 4s \\ 704 \pm 4s \\ 649 \pm 3s$		745m 700s 672m	
	470s		473s		472 s		$474 \pm 2s$		4 37s

^a I.r. data on NiX₂(pyz)₂ compounds are essentially similar to the Co analogues, but satisfactory Raman data were not obtained. ^b Assignments for free pyz, $SnX_4(pyz)_2$ (X = Cl or Br), and $SnX_4(pyz)$ (X = Cl, Br, or I) are given in ref. 3. ^c Ranges for X = Cl, Br, and I. ^d Bands due to nitrate groups at 1392w, 1344m, and 1044s (Raman); and at 1350s, br and 820s (i.r.). ^e X = Cl only. ^f X = Cl and Br only. vibrational spectra of other complexes; ⁴ it therefore became important to investigate their structures in more detail, and to review their spectral and magnetic properties in the light of the results. Since this investigation was completed, a single-crystal X-ray diffraction study on $CoCl_2(pyz)_2$ has been undertaken in this Department, and has confirmed the conclusions here deduced.⁵

EXPERIMENTAL

The complexes were prepared as previously described,¹ and their purity established by elemental analysis.

Mid-i.r. spectra of mulls in Nujol and hexachlorobutadiene were recorded on Perkin-Elmer models 237 (4000-650 cm⁻¹) and 137KBr (800-400 cm⁻¹) spectrometers. R.I.I.C. FS-520 (450-80 cm⁻¹) and FS-720 (200-20 cm⁻¹) interferometers were used to obtain the far-i.r. spectra (polyethylene or wax discs), the latter instrument at the P.C.M.U., Harwell. Raman spectra were obtained on a Cary model 81 spectrometer using He-Ne 632.8 nm laser excitation.

Magnetic susceptibilities (Table 1) were determined by the Gouy method over the temperature range 330-90 K, and were independent of field strength (5440, 6360, 7050 Oe) at each temperature studied.

RESULTS AND DISCUSSION

Mid-i.r. and Raman Spectra (4000–400 cm⁻¹).—Table 2 summarises the results for the MX₂(pyz)₂ compounds studied. The absence of coincidence between Raman and i.r. bands clearly indicates that in these systems the pyrazine ligands are centrosymmetrically co-ordinated. Furthermore, the i.r. and Raman activities of the modes are essentially the same as those found for known pyrazine-bridged complexes $SnX_4(pyz)$ (X = Cl, Br, or I),³ CoX₂(pyz) (X = Cl, Br, or I),⁶ and Ag(NO₃)(pyz) ⁷ (cf. Table 2), but markedly different to those of $SnX_4(pyz)_2$ (X = Cl or Br)³ in which pyz is unidentate. In view of the octahedral co-ordination of the metal atoms,¹ the halogen atoms must be in terminal positions. A number of geometrical arrangements may be suggested on this basis, of which the regular sheet structure (II) is the most symmetrical.

Far-i.r. Spectra (400—80 cm⁻¹).—Results are given in Table 3, with representative spectra shown in the Figure. $CoX_2(pyz)_2$ (X = Cl or Br) were also studied to 20 cm⁻¹. It is immediately clear that the spectra of these complexes are very different to those known to have halogen-bridged octahedral structures as in (I) [cf. Figures 1 and 2 of ref. 6]. Moreover, comparison of chlorides, bromides, and iodides leads to the assignment

⁴ See, e.g., H. D. Stidham and J. A. Chandler, J. Inorg. Nuclear Chem., 1965, 27, 397; R. A. Walton, J. Chem. Soc. (A), 1967, 1485; 1969, 61; M. Brierley and W. J. Geary, J. Chem. Soc. (A), 1967, 963; R. W. Stotz, J. A. Walmsley, and F. Walmsley, Inorg. Chem., 1969, **8**, 807; R. W. Matthews and R. A. Walton, *ibid.*, 1971, **10**, 1433; G. W. A. Fowles and R. A. Walton, J. Chem. Soc., 1964, 4330; B. E. Bridgland, G. W. A. Fowles, and R. A. Walton, J. Inorg. Nuclear Chem., 1965, **27**, 383; A. E. Allen, K. Feenan, and G. W. A. Fowles, J. Chem. Soc., 1965, 1636; I. S. Ahuja and P. Rastogi, J. Chem. Soc. (A), 1970, 2161. of only one $\nu(MN)$ and one $\nu(MX)$ band, whereas for complexes having $[MX_2]_n$ chains, two $\nu(MX)$ modes are predicted and found.⁶

For the octahedral polymeric sheet structure (II), the

TABLE 3

Far-i.r. spectra (cm ⁻¹) of MX ₂ (pyz) ₂ compounds									
		$\nu(MX)$	$\nu(MN)$	δ(NN	IN)	δ(NMX)			
Complex	Temp. "	a24	eu	a_{2u} and	d e_u	eu			
$CoCl_2(pyz)_2$	RT ^ø	260s	235s	162s	135s	125s			
	LT	262s	245s	165s	137s	125s			
$CoBr_2(pyz)_2$	RT،	203s	232s	157s	${136s \\ 130sh}$	105vs			
	LT	207s	244s	157s	${ 137s \atop 130sh }$	107vs			
$CoI_2(pyz)_2$	RT	177s	228s	157mw	${ 138s \\ 130sh }$	92s			
	LT	182s	240s	160m	142s	92s			
NiCl ₂ (pyz) ₂	\mathbf{RT}	$260 \mathrm{sh}$	250s	177s	140sbr ^a	140sbr ^a			
	LT	262s ^d	262s ª	180s	147s	137s			
$NiBr_2(pyz)_2$	\mathbf{RT}	220s	246s	165s	146m	112vs			
	LT	222s	257s	165s	147m	112vs			
NiI ₂ (pyz) ₂	\mathbf{RT}	197s	242s		136s	96s			
	LT	204s	252s		140s	98s			

^a RT = Room temperature, LT = ca. 100 K. ^b Studied to 20 cm⁻¹; additional band observed at 67 m. ^e Studied to 20 cm⁻¹; additional band observed at 52 m. ^d Coincident bands.

Far-i.r. spectra at ca. 100 K of A, $CoCl_2(pyz)_2$; B, $CoBr_2(pyz)_2$; C, $CoI_2(pyz)_2$; spectra of Ni analogues are similar; assignments (see Table 2): a, $\nu(CoN)$; b, $\nu(CoX)$; c, $\delta(NCoX)$

following predictions for skeletal modes are made (pyz groups taken as point masses; sheet factor group D_{4h}):

$$\Gamma^{\mathrm{sheet}} = a_{1g}(\mathrm{R}) + e_g(\mathrm{R}) + 2a_{2u} (\mathrm{i.r.}) + b_{2u} (\mathrm{inactive}) + 3e_u (\mathrm{i.r.});$$

 $\Gamma_{\text{MX}}^{\text{sheet}} = a_{1g}(\text{R}) + a_{2u} \text{ (i.r.);}$ $\Gamma_{\text{MN}}^{\text{sheet}} = e_u \text{ (i.r.).}$

Hence only one v(MX) and one v(MN) band are predicted for the i.r. spectra, as are found.

Preliminary crystallographic studies show that

⁵ P. M. Carreck and E. M. McPartlin, personal communication.
⁶ M. Goldstein and W. D. Unsworth, *Inorg. Chim. Acta*, 1970,
4, 342.

⁷ R. G. Vranka and E. L. Amma, Inorg. Chem., 1966, 5, 1020.

 $CoCl_2(pyz)_2$ crystallizes in space-group $I4/mmm(D_{4h}^{17})$ with one formula unit per primitive cell.⁵ Thus factorgroup analysis of the crystal is identical with the sheetgroup analysis. Hence five skeletal modes are predicted to occur in the i.r., in agreement with the number of i.r. bands observed in the region expected for these modes (350-80 cm⁻¹). These predictions are similar to those for Me₂SnF₂ and SnF₄.⁸ If, as is likely, the pyrazine groups are oriented in the same way as the pyridine ligands in $MX_2(pyridine)_4$ [X = Cl, M = Co or Ni; 9 X = Br, M = Ni 10], viz. propellor-like, then the factor group will be lower than D_{4h} . As a result, some new features may be observed, and indeed weak shoulders on the main bands are found.

It is clear that the spectra obtained are in very good agreement with the predictions made for structure (II), and (contrary to a recent report ¹¹) are inconsistent with a halide-bridged structure (I).

Magnetic Properties.—As the structure previously suggested ¹ for the bis(pyrazine) complexes, (I), is analogous to that of corresponding bis(pyridine) compounds MX₂(py)₂,^{2,12} it was necessary to compare the magnetic properties of both series. The nickel(II) compounds were chosen for study [NiI₂(py)₂ was excluded as it is a tetrahedral monomer 13] because a d^8 ion in an octahedral field gives rise to an orbital singlet ground-state $({}^{3}A_{23})$ and the susceptibility of such a system can readily be fitted to that calculated for a particular model. The magnetic properties of NiX₂(py)₂ (X = Cl or Br) have been previously measured over a range of temperatures,¹⁴ and our results are essentially similar. However, no attempt was made in the earlier work to fit the data to any particular model. Magnetic moments, at ambient temperature only, have previously been given for the $MX_2(pyz)_2$ compounds.¹

Table	4
-------	---

Magnetic parameters

	magnetic parameters								
	g	J/cm ⁻¹	θ_4/K	$10^2 R$ a					
$NiCl_2(py)_2$	2·23 ^b	+6.6	+22	0.60					
	2.22 °			0.04					
$\operatorname{NiBr}_2(\operatorname{py})_2$	2.33	$+4\cdot7$	+20	0.04					
NiCl ₂ (pyz) ₂	2·17 b	+0.4	+2	0.51					
	2.16 °		-						
$NiBr_2(pyz)_2$	2.16 %	-0.5	+2	0.57					
Nil (DVZ)	2.13 0	0.3	-1- 4	0.48					
1112(Py2/2	2.05	-0.3	-1- a	0.40					

^a $R^2 = [\Sigma(\chi_{obs} - \chi_{calc})^2 / \Sigma \chi^2_{obs}]$. ^b From computer-fitting. ^c From plot of χ^{-1} against T.

All the $NiX_2(py)_2$ and $NiX_2(pyz)_2$ complexes studied show Curie-Weiss behaviour over the temperature range used; values of $\theta [\chi \propto (T - \theta)^{-1}]$ are given in Table 4. ⁸ M. Goldstein and W. D. Unsworth, J. Chem. Soc. (A), 1971,

2121. 9 M. A. Porai-Koshits, Trudy Inst. Kristallogr. Akad. Nauk

S.S.S.R., 1954, 10, 117. ¹⁰ A. S. Antsishkina and M. A. Porai-Koshits, Soviet Phys.

Cryst., 1958, 3, 684. ¹¹ J. R. Ferraro, J. Zipper, and W. Wozniak, Appl. Spectro-

scopy, 1969, 23, 160. ¹² N. S. Gill, R. S. Nyholm, G. A. Barclay, T. I. Christie, and P. Pauling, J. Inorg. Nuclear Chem., 1961, 18, 88.

The susceptibilities have been calculated for a linear system of ten atoms using a dipolar coupling model which includes in the perturbing Hamiltonian the term $-2\Sigma J_{ii}S_iS_i$, where J_{ii} is the isotropic exchange integral between the *i*-th and *j*-th centres of spin states S_i and S_{i} .¹⁵ The use of a ten-atom model for polymeric systems is valid, because the susceptibilities of linear systems containing more than approximately four atoms have been shown to be similar over the present temperature range.¹⁶ Calculations have also been made using the model of Fisher.¹⁷ In both cases, the magnetic parameters (g and I) were varied until the best fits between the calculated and experimental susceptibilities were obtained. The temperature independent contribution to the susceptibility was taken as 230×10^{-6} c.g.s.u. As expected, the agreement between the results from the two models was very good over the temperature range used.

Theory predicts ¹⁸ a ferromagnetic interaction (θ and I positive) between two d^8 ions in octahedral sites when the angle between the bonds bridging the metal atoms (angle M-L-M) is 90° . The value of the exchange integral I should depend on the nature of the bridging group L, and decrease with decreasing M-M distance. For the halogen-bridged pyridine complexes (isomorphous ¹² with α -CoCl₂(py)₂ in which the Co-Cl-Co angle is 2 94.5°), this is exactly the behaviour observed (Table 4).

In contrast, the bis(pyrazine) complexes are apparently magnetically dilute (θ and J negligible). Moreover, the value of *I* is independent of halogen within experimental error (Table 4). It is clear, therefore, that the magnetic properties are inconsistent with the presence of $[NiX_2]_n$ halogen-bridged chains as in structure (I). In the proposed structure (II), the nickel-(bridging ligand)nickel angle is 180°, in which case an antiferromagnetic interaction is predicted.¹⁸ The apparent magnetic dilution in these compounds therefore suggests a counterbalancing ferromagnetic effect, which could arise either from the orthogonal overlap of pyrazine π -orbitals with nickel e_a orbitals, or from interaction between nickel atoms at opposite corners of the square arrays.

We conclude that the vibrational spectral and magnetic data are incompatible with a halogen-bridged structure (I) and are entirely consistent with the sheet arrangement (II). In view of this, it is pertinent to re-examine other data on these compounds, as follows.

Electronic Spectra.—In a previous analysis of the electronic spectra of MX₂(pyz)₂ compounds,¹ comparison was made with the spectra of corresponding X-bridged

¹³ J. R. Allan, D. H. Brown, R. H. Nuttall, and D. W. A. Sharp, J. Chem. Soc. (A), 1966, 1031.
 ¹⁴ D. M. L. Goodgame, M. Goodgame, and M. J. Weeks, J.

Chem. Soc., 1964, 5194. ¹⁵ J. H. Van Vleck, 'Theory of Electric and Magnetic Sus-ceptibilities,' Oxford University Press, London, 1932.

¹⁶ A. Earnshaw, B. N. Figgis, and J. Lewis, J. Chem. Soc. (A), 1966, 1656.

¹⁷ M. E. Fisher, Amer. J. Phys., 1964, **32**, 343; J. C. Bonner and M. E. Fisher, Phys. Rev., 1964, A, **135**, 640.

¹⁸ J. Kanamori, J. Phys. and Chem. Solids, 1959, 10, 87.

 $MX_2(py)_2$ series. This led to the conclusion that the crystal-field splitting energy of pyrazine was greater than

TABLE 5

Diffuse reflectance electronic spectra of six-co-ordinate complexes of nickel(II) halides with pyrazine or pyridine

Complex	Ref.		$v_{\rm max}$	$(cm^{-1} \times$	10 ⁻³)	
NiCl ₂ (pyz) ₂	1	10.5	$12 \cdot 2$	16.15		
NiCl ₂ (py) ₄	a	10.8	13.0	16· 1	19.6	$25 \cdot 6$
NiCl ₂ (pyz)	6	8.77		14.3		27.0
$NiCl_2(py)_2$	а		13.0	14.1	22.7	$24 \cdot 4$
$NiBr_2(pyz)_2$	1	10.4		15.75		
$NiBr_2(py)_4$	a	10.5	$12 \cdot 5$	15.4		25.0
$NiBr_2(pyz)$	6	$8 \cdot 7$		14.3		
$NiBr_2(py)_2$	a			13.5		$23 \cdot 3$
$NiI_2(pyz)_2$	1	10.6		15.6		
$NiI_2(py)_4$	a		12.3	15.8		25.0
Nil ₂ (pyz)	6	$8 \cdot 1$				

^a J. R. Allan, D. H. Brown, R. H. Nuttall, and D. W. A. Sharp, J. Inorg. Nuclear Chem., 1964, 26, 1895; 1965, 27, 1529.

that of pyridine, and was explained in terms of greater π -bonding of the metal atom with the former ligand.¹

However, since the present results show that the $MX_2(pyz)_2$ series are not X-bridged, a more appropriate comparison is with spectra of corresponding *trans*- $MX_2(py)_4$ complexes. This leads (*e.g.* Table 5) to the more reasonable conclusion that (bridging) pyrazine and (terminal) pyridine occupy essentially the same positions in the spectrochemical series. The close similarity between spectra of corresponding $MX_2(py)_2$ (X-bridged) and $MX_2(pyz)$ (X- and pyz-bridged) complexes (Table 5) supports this view. There is no evidence to suggest that π -bonding involving pyrazine is more significant than in pyridine complexes. In fact, since pyrazine is a weaker base towards the proton than pyridine ¹⁹ by a factor of *ca.* 10⁴, back π -bonding from the metal is more likely than in the pyridine complexes.

We thank the S.R.C. for a grant to purchase the FS-520 interferometer, and for use of the P.C.M.U. service.

[1/1681 Received, September 14th, 1971]

¹⁹ C. R. Noller, 'Chemistry of Organic Compounds,' 3rd edn., Saunders, London, 1965, p. 690.