Crystal Structure of Tetracarbonyl-[1-(dimethylarsino)-2-(diphenylphos-phino)tetrafluorocyclobutene-P]-iron

By F. W. B. Einstein * and R. D. G. Jones, Department of Chemistry, Simon Fraser University, Burnaby 2, British Columbia, Canada

Abstract

The title compound crystallizes in the monoclinic space group $P 2_{1} / c$ and has a unit cell of dimensions: $a=$ $11 \cdot 284(4), b=10 \cdot 800(6), c=19 \cdot 755(8) \AA, \beta=96 \cdot 85(2)^{\circ}, Z=4$. By use of three-dimensional data collected by counter methods, the structure was solved by the symbolic addition procedure and refined by full-matrix least squares to $R 0.040$ for 1149 observed reflections. The co-ordination geometry about the iron atom is a slightly distorted trigonal bipyramid. The ligand co-ordinates through the phosphorus atom in an axial position, $\mathrm{Fe}-\mathrm{P}$ being $2 \cdot 224(3) \AA$. There are no significant differences between axial and equatorial iron-carbon bond lengths, mean $1 \cdot 74(2) \AA$. The arsenic atom lies above a phenyl ring with As -C contacts ranging from $3.44-4 \cdot 19 \AA$.

Whether there is a difference between the lengths of the equatorial and axial iron-carbon bonds in iron pentacarbonyl has been a matter of discussion for some time. A. W. Hanson ${ }^{1}$ was unable to detect any significant difference in bond lengths with a somewhat limited set of observations. Using the same data but another space group, Donohue and Caron came to a similar conclusion. ${ }^{2}$ Later, an electron-diffraction study of the gas phase by Davis and H. P. Hanson indicated that the axial bond lengths were shorter than the equatorial. ${ }^{3}$ Donohue and Caron ${ }^{4}$ suggested the electron-diffraction study was subject to error and further communications by them ${ }^{5}$ and Davis and Hanson ${ }^{6}$ did not appear to resolve the matter. Recently, an exhaustive electron-diffraction study by Beagley et al. ${ }^{7}$ has shown that there is a very high probability that the axial bond lengths are very slightly shorter in the gas phase.

An X-ray crystallographic study of $\mathrm{Fe}(\mathrm{CO})_{4}($ asp $)$ [asp $=1$-(dimethylarsino)-2-(diphenylphosphino)tetrafluorocyclobutene] has been carried out to find if any differences in iron-carbon distances can be detected between the axial and equatorial bonds and to confirm that co-ordination had occurred through the phosphorus atom.

EXPERIMENTAL

The crystals were yellow plates, elongated in the b direction. The space group was determined from Weissenberg photographs of zones $h 0 l-h 2 l$ and precession photographs of zones $h k 0,0-1 k l$, taken with $\mathrm{Cu}-K_{\alpha}$ radiation $(\lambda=$ 1.5418 \AA).

Crystal Data.- $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{AsF}_{4} \mathrm{FeO}_{4} \mathrm{P}, \quad M=581 \cdot 9$, Monoclinic, $a=11 \cdot 284(4), b=10 \cdot 800(6), c=19.755(8) \AA, \beta=$ $96.85(2)^{\circ}, \quad U=2390.3 \AA^{3}, \quad D_{\mathrm{m}}=1.55 \quad$ (Berman density balance), $Z=4, \quad D_{\mathrm{c}}=1.62 \mathrm{~g} \mathrm{~cm}{ }^{-3}, \quad F(000)=1160$. Mo- $K_{\alpha_{1}}$ radiation, $\lambda=0.70926 \AA, \mu\left(\mathrm{Mo}-K_{\alpha}\right)=22.3 \mathrm{~cm}^{-1}$. Space group $P 2_{1} / c$ from systematic absences: $h 0 l$ when l is odd, $0 k 0$ when k is odd.

A crystal, cleaved to dimensions $0.02 \times 0.016 \times 0.03 \mathrm{~cm}$ was used for the measurement of cell dimensions and for

[^0]data collection. In order to minimize intrinsic multiple reflections, the b^{*} axis was offset $c a .6^{\circ}$ from the ϕ axis of the diffractometer. Cell dimensions, along with the estimated standard deviations, and the orientation matrix were determined from the least-squares analysis of the 20 , ω, and χ angles for 30 high-angle reflections; the accurate centring of reflections and the measurement of the angles was done on a computer-controlled, Picker four-circle diffractometer by use of $\mathrm{Mo}-K_{\alpha_{1}}$ radiation, ${ }^{8}$ with a take-off angle of 1° at $23.5^{\circ} \mathrm{C}$.

Intensity data were collected by the $\theta-2 \theta$ scan technique by use of Mo- K_{α} radiation (niobium filtered) and a scintillation counter equipped with a pulse-height analyser. The take-off angle was 3°. Each reflection was scanned for 1.4° (extended for the $\alpha_{1}-\alpha_{2}$ splitting) at a scan rate of $2^{\circ} \mathrm{min}^{-1}$. For reflections with $2 \theta \leq 25^{\circ}$, a stationary background count was taken for 10 s at each end of the scan range and for, those with $25^{\circ}<20 \leq 40^{\circ}$, it was taken for 20 s . Every 50 reflections, two standard reflections were scanned. The maximum deviation of any individual standard from the mean was 2.5%. In this manner, intensities for 2244 reflections with $20 \leq 40^{\circ}$ were measured.

Intensities were corrected for background (normalized to the scan time) and Lorentz-polarization factors. An absorption correction was made by considering the crystal to be approximately a cylinder of radius $0.009 \mathrm{~cm}, \mu R 0.20$. The maximum error in intensity introduced by this approximation is 4%. If the net count for a reflection was $<1 \cdot 8 \sigma$ [where $\sigma=$ (total count + background) ${ }^{\frac{1}{2}}$] the reflection was considered unobserved. The number of observed reflections was 1149 .

Structure Determination.-The symbolic addition procedure ${ }^{9}$ was used to initiate the solution of the structure. E-Values were determined and five reflections were assigned signs; three reflections were used to fix the origin ($\overline{3}, 8,6, E$ $=+3.35 ; 0,3,3, E=+2.99$; and $1,5,2, E=2.59$) while the signs of the other two ($0,6,6, E=+2 \cdot 49$; $\overline{6}, 0,12, E=+2 \cdot 41$) were deduced from Sayre relationships. ${ }^{10}$ Initially the signs of reflections with $E \geq 1.8$ were determined and later the process was extended to give signs for 305 reflections with $E \geq 1 \cdot 5$. From an F_{0} Fourier map with these 305 reflections, the positions of the arsenic, iron, and phosphorus atoms were located and, when the

[^1]co-ordinates and isotropic temperature factors for these atoms were refined by full-matrix least-squares techniques; R was $0 \cdot 35$. Reflections were assigned unit weight and the function minimized was $\Sigma w\left(\left|F_{o}\right|-\left|F_{\mathrm{c}}\right|\right)^{2}$.

Electron-density difference syntheses allowed the location of all non-hydrogen atoms and indicated anisotropic motion for the arsenic atom. Further refinement resulted in
to allow anisotropic thermal motion for the above-mentioned atoms, further refinement caused convergence at $R 0.040$ and $R^{\prime} 0.048$. The maximum shift in any parameter in the final refinement cycle was $0 \cdot 04 \sigma$. The weighting scheme used after all non-hydrogen atoms were located was $\sigma=$ A for $B \leq F_{\mathrm{o}} \leq C, \sigma=\left(\mathrm{A}^{2} B / F_{\mathrm{o}}\right)^{\frac{1}{2}}$ for $B>F_{\mathrm{o}}$, and $\sigma=$ $\left(A^{2} F_{\mathrm{o}} / C\right)^{\frac{1}{2}}$ for $C<F_{0}$, where A is a constant which reduces

Table 1
Positional (fractional co-ordinates) and thermal parameters (\AA^{2}) with estimated standard deviations in parentheses

Atom	x	y	z	$\boldsymbol{B}_{\text {lso }}$
As(1)	0.2897(2)	0.0121 (1)	0.3242 (1)	*
$\mathrm{Fe}(2)$	$0 \cdot 1235(1)$	-0.2361(1)	$0 \cdot 0688(1)$	*
$\mathrm{P}(3)$	$0 \cdot 2672(3)$	-0.1418(3)	$0 \cdot 1367(1)$	$2 \cdot 93(6)$
C(4)	$0 \cdot 151(2)$	$-0.007(2)$	$0 \cdot 3706(11)$	*
C(5)	$0 \cdot 405(2)$	$-0.027(2)$	$0 \cdot 4049(9)$	$\stackrel{*}{*}$
C(6)	$0 \cdot 287(1)$	-0.156(1)	$0 \cdot 2860$ (5)	3.8(2)
C(7)	$0 \cdot 281$ (1)	-0.202(1)	$0 \cdot 2228$ (5)	2.9 (2)
C(8)	0.287(1)	$-0.333(1)$	$0 \cdot 2482(6)$	$4 \cdot 5(3)$
C(9)	$0 \cdot 293$ (1)	-0.281(1)	$0 \cdot 3200$ (6)	4.2(3)
F(10)	0.3806(8)	$-0.4015(6)$	$0 \cdot 2354(4)$	
F(11)	0.1896(7)	-0.4063(7)	$0 \cdot 2302(4)$	*
F(12)	0.3916(7)	-0.3072(7)	$0.3611(4)$	*
$\mathrm{F}(13)$	0.2006(7)	-0.3094(7)	$0 \cdot 3542(4)$	${ }^{*}$
C(14)	$0 \cdot 245(1)$	$0 \cdot 023(1)$	$0 \cdot 1488(5)$	3•1(2)
C(15)	$0 \cdot 135(1)$	0.066(1)	$0 \cdot 1584(6)$	5•0(3)
C(16)	$0 \cdot 115(1)$	$0 \cdot 192(1)$	$0 \cdot 1710$ (7)	6.1(3)
C(17)	0.206(1)	$0 \cdot 274(1)$	$0 \cdot 1695$ (6)	$5 \cdot 7(3)$
C(18)	$0 \cdot 317(1)$	$0 \cdot 235(1)$	$0 \cdot 1599$ (6)	6.2(3)
C(19)	$0 \cdot 339(1)$	0.108(1)	$0 \cdot 1487(6)$	4•7(3)
$\mathrm{C}(20)$	0.417(1)	-0.155(1)	$0 \cdot 1143(5)$	3-2(2)
C(21)	0.516(1)	$-0.150(1)$	$0 \cdot 1636(6)$	$4 \cdot 6(3)$
$\mathrm{C}(22)$	$0 \cdot 631(1)$	$-0.151(1)$	$0 \cdot 1427(7)$	5-4(3)
$\mathrm{C}(23)$	$0 \cdot 647$ (1)	-0.162(1)	0.0764 (7)	5.6(3)
$\mathrm{C}(24)$	0.551 (1)	-0.169(1)	$0.0286(6)$	5•7(3)
$\mathrm{C}(25)$	0.435(1)	$-0.167(1)$	$0.0465(6)$	4.8(3)
$\mathrm{C}(26)$	$0 \cdot 128(1)$	$-0.115(1)$	$0.0109(6)$	$4 \cdot 5(3)$
$\mathrm{O}(27)$	$0 \cdot 130(1)$	$-0.033(1)$	$-0.0281(4)$	$6 \cdot 1(2)$
$\mathrm{C}(28)$	$0 \cdot 215(1)$	$-0.369(1)$	$0.0705(6)$	$5 \cdot 4(3)$
$\mathrm{O}(29)$	0.275(1)	-0.455(1)	$0.0722(4)$	7-2(2)
$\mathrm{C}(30)$	$0.028(1)$	-0.223(1)	$0 \cdot 1293$ (7)	5•7(3)
$\mathrm{O}(31)$	-0.041(1)	$-0.209(1)$	$0 \cdot 1702(5)$	7.9(3)
C(32)	$0.013(1)$	$-0.311(1)$	0.0145 (7)	5-6(3)
$\mathrm{O}(33)$	$-0.060(1)$	-0.361(1)	$-0.0215(5)$	*
H(15)	0.070	$0 \cdot 004$	$0 \cdot 158$	$8 \cdot 0$
$\mathrm{H}(16)$	0.033	$0 \cdot 223$	$0 \cdot 179$	$8 \cdot 0$
H(17)	$0 \cdot 194$	$0 \cdot 361$	$0 \cdot 176$	$8 \cdot 0$
H(18)	$0 \cdot 379$	$0 \cdot 296$	$0 \cdot 159$	$8 \cdot 0$
H(19)	0.417	$0 \cdot 079$	$0 \cdot 141$	$8 \cdot 0$
$\mathrm{H}(21)$	0.504	-0.143	0.211	$8 \cdot 0$
$\mathrm{H}(22)$	$0 \cdot 702$	-0.146	$0 \cdot 177$	$8 \cdot 0$
$\mathrm{H}(23)$	0.730	-0.166	$0 \cdot 064$	$8 \cdot 0$
$\mathrm{H}(24)$	$0 \cdot 567$	-0.176	-0.174	$8 \cdot 0$
$\mathrm{H}(25)$	$0 \cdot 365$	-0.173	$0 \cdot 012$	$8 \cdot 0$

* Anisotropic temperature parameters in the form: $\exp -\left[2 \pi\left(U_{11} a^{* 2} h^{2}+U_{22} b^{* 2} k^{2}+U_{33} c^{* 2} l^{2}+2 U_{12} a^{*} b^{*} h k+2 U_{13} a^{*} c^{*} h l+\right.\right.$ $\left.\left.2 U_{23} b^{*} c^{*} k l\right)\right]$ where the parameters are as follows:

Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
As(l)	$0 \cdot 167(2)$	$0 \cdot 0507(9)$	$0 \cdot 0527$ (8)	$0.001(1)$	0.0202(9)	-0.0067(9)
$\mathrm{Fe}(2)$	$0 \cdot 046$ (1)	$0 \cdot 048(1)$	$0 \cdot 0490$ (9)	-0.012(1)	$-0.0016(8)$	$0 \cdot 0013(9)$
$\mathrm{F}(10)$	$0 \cdot 132(7)$	$0 \cdot 069$ (5)	$0 \cdot 083$ (5)	$0.053(5)$	0.023(5)	$0.011(4)$
F(11)	$0 \cdot 131(7)$	$0 \cdot 067(5)$	0.086(5)	$-0.045(5)$	-0.024(5)	$0 \cdot 019(4)$
$\mathrm{F}(12)$	$0 \cdot 088(5)$	0.095 (6)	$0.072(5)$	$0.024(5)$	-0.026(4)	$0 \cdot 010(4)$
F(13)	$0 \cdot 089(5)$	$0 \cdot 095$ (6)	$0 \cdot 084$ (5)	-0.005(5)	$0 \cdot 040$ (4)	$0 \cdot 025$ (4)
$\mathrm{O}(33)$	$0 \cdot 130(9)$	$0 \cdot 117(9)$	0.106(8)	-0.058(8)	-0.052(7)	$0 \cdot 011(7)$
C(4)	$0 \cdot 19(2)$	$0 \cdot 15(2)$	0.21 (2)	$0.03(2)$	$0 \cdot 15(2)$	$-0.01(2)$
C(5)	$0 \cdot 21(2)$	0.09(1)	$0 \cdot 11(1)$	$0.01(1)$	$-0.07(1)$	-0.04(1)

$R \quad 0.068$ and $R^{\prime} 0.079$ \{where $R^{\prime}=\left[\Sigma w\left(| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right|\right)^{2} /-\right.$ $\left.\left.\Sigma w F_{n}{ }^{2}\right]^{\frac{1}{2}}\right\}$. An electron-density difference map showed that the iron and fluorine atoms, $\mathrm{C}(4), \mathrm{C}(5)$, and $\mathrm{O}(33)$ had anisotropic motion and permitted assignment of the phenyl hydrogen positions, which were included in subsequent least-squares cycles but not refined. With changes
the error-of-fit to unity. Final values for the weightingscheme parameters were: $A=2 \cdot 36, B=40 \cdot 0$, and $C=$ $50 \cdot 0$; error-of-fit was 0.97 . At the conclusion of the refinement, the major features in an electron-density difference synthesis were peaks near $\mathrm{C}(4)$ and $\mathrm{C}(5)$ of height $0.3 \mathrm{eA}^{-3}$.

Scattering factors for the non-hydrogen atoms were
taken from ref. 11, for hydrogen from ref. 12, and anomalous dispersion corrections for the arsenic and iron atoms from ref. 13.

RESULTS

Final parameters for all the atoms are listed in Table 1. Table 2 contains interatomic distances and angles. Errors in these distances and angles include contributions from the

Table 2

Molecular geometry with estimated standard deviations in parentheses

(a) Distances (\AA)		(b) Interatomic angles (deg.)	
As(1)-C(4)	1.98(2)	$\mathrm{C}(4)-\mathrm{As}(1)-\mathrm{C}(5)$	95-1(10)
	[2.00(2)*]	$\mathrm{C}(4)-\mathrm{As}(1)-\mathrm{C}(6)$	96.2(7)
$\mathrm{As}(1)-\mathrm{C}(5)$	$\begin{aligned} & 1.98(2) \\ & {[2 \cdot 03(2) *\rceil} \end{aligned}$	$\mathrm{C}(5)-\mathrm{As}(1)-\mathrm{C}(6)$	$95 \cdot 4(6)$
$\mathrm{As}(1)-\mathrm{C}(6)$	$1.96(1)$	$\mathrm{P}(3)-\mathrm{Fe}(2)-\mathrm{C}(26)$	88.6(4)
		$\mathrm{P}(3)-\mathrm{Fe}(2)-\mathrm{C}(28)$	88.7(4)
$\mathrm{Fe}(2)-\mathrm{P}(3)$	2.224(3)	$\mathrm{P}(3)-\mathrm{Fe}(2)-\mathrm{C}(30)$	91.0(4)
$\mathrm{Fe}(2)-\mathrm{C}(26)$	$1 \cdot 74(1)$	$\mathrm{P}(3)-\mathrm{Fe}(2)-\mathrm{C}(32)$	178.8(9)
$\mathrm{Fe}(2)-\mathrm{C}(28)$	1.76(1)	$\mathrm{C}(26)-\mathrm{Fe}(2)-\mathrm{C}(28)$	123.9 (6)
$\mathrm{Fe}(2)-\mathrm{C}(30)$	1.71(1)	$\mathrm{C}(26)-\mathrm{Fe}(2)-\mathrm{C}(30)$	117.8(6)
$\mathrm{Fe}(2)-\mathrm{C}(32)$	1-74(2)	$\mathrm{C}(26)-\mathrm{Fe}(2)-\mathrm{C}(32)$	$91 \cdot 0(6)$
		$\mathrm{C}(28)-\mathrm{Fe}(2)-\mathrm{C}(30)$	118.3(6)
$\mathrm{C}(26)-\mathrm{O}(27)$	1-18(1)	$\mathrm{C}(28)-\mathrm{Fe}(2)-\mathrm{C}(32)$	90.6(6)
$\mathrm{C}(28)-\mathrm{O}(29)$	1-14(1)	$\mathrm{C}(30)-\mathrm{Fe}(2)-\mathrm{C}(32)$	$90 \cdot 2(6)$
$\mathrm{C}(30)-\mathrm{O}(31)$	1-19(1)		
$\mathrm{C}(32)-\mathrm{O}(33)$	1-16(1)	$\mathrm{Fe}(2)-\mathrm{C}(26)-\mathrm{O}(27)$	179(1)
		$\mathrm{Fe}(2)-\mathrm{C}(28)-\mathrm{O}(29)$	179(2)
$\mathrm{P}(3)-\mathrm{C}(7)$	1.81(1)	$\mathrm{Fe}(2)-\mathrm{C}(30)-\mathrm{O}(31)$	177(1)
$\mathrm{P}(3)-\mathrm{C}(14)$	1.82(1)	$\mathrm{Fe}(2)-\mathrm{C}(32)-\mathrm{O}(33)$	180(4)
$\mathrm{P}(3)-\mathrm{C}(20)$	1-80(1)		
		$\mathrm{Fe}(2)-\mathrm{P}(3)-\mathrm{C}(7)$	112.3(3)
$\mathrm{C}(14)-\mathrm{C}(15)$	1-37(1)	$\mathrm{Fe}(2)-\mathrm{P}(3)-\mathrm{C}(14)$	115.3(3)
$\mathrm{C}(15)-\mathrm{C}(16)$	1.41(2)	$\mathrm{Fe}(2)-\mathrm{P}(3)-\mathrm{C}(20)$	116.9(3)
$\mathrm{C}(16)-\mathrm{C}(17)$	1-36(2)	$\mathrm{C}(7)-\mathrm{P}(3)-\mathrm{C}(14)$	103.0(5)
$\mathrm{C}(17)-\mathrm{C}(18)$	$1 \cdot 35(2)$	$\mathrm{C}(7)-\mathrm{P}(3)-\mathrm{C}(20)$	102.8(5)
$\mathrm{C}(18)-\mathrm{C}(19)$	1-42(2)	$\mathrm{C}(14)-\mathrm{P}(3)-\mathrm{C}(20)$	104.9(5)
$\mathrm{C}(19)-\mathrm{C}(14)$	$1 \cdot 39(1)$		
$\mathrm{C}(20)-\mathrm{C}(21)$	$1 \cdot 39(1)$	$\mathrm{C}(19)-\mathrm{C}(14)-\mathrm{C}(15)$	119(1)
$\mathrm{C}(21)-\mathrm{C}(22)$	1-42(2)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	121(1)
$\mathrm{C}(22)-\mathrm{C}(23)$	$1 \cdot 35(2)$	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	120(1)
$\mathrm{C}(23)-\mathrm{C}(24)$	$1 \cdot 35(2)$	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	121(1)
$\mathrm{C}(24)-\mathrm{C}(25)$	$1 \cdot 40(2)$	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	120(1)
$\mathrm{C}(25)-\mathrm{C}(20)$	1-38(1)	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(14)$	119(1)
		$\mathrm{C}(25)-\mathrm{C}(20)-\mathrm{C}(21)$	119(1)
$\mathrm{C}(6)-\mathrm{C}(7)$	1-34(1)	$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	119(1)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.51 (2)	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	121(1)
$\mathrm{C}(8)-\mathrm{C}(9)$	$1 \cdot 50(2)$	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	120(1)
$\mathrm{C}(9)-\mathrm{C}(6)$	$1 \cdot 52(2)$	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	121(1)
		$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(20)$	120(1)
$\mathrm{C}(8)-\mathrm{F}(10)$	1-34(1)		
$\mathrm{C}(8)-\mathrm{F}(11)$	1-37(1)	$\mathrm{C}(9)-\mathrm{C}(6)-\mathrm{C}(7)$	94.4(9)
$\mathrm{C}(9)-\mathrm{F}(12)$	$1 \cdot 33(1)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	92.5(9)
$\mathrm{C}(9)-\mathrm{F}(13)$	1-34(1)	$C(7)-C(8)-C(9)$	87.5(9)
		$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(6)$	85.6(9)
$\mathrm{As}(1) \cdots \mathrm{C}(14)$	$3 \cdot 44$		
$\mathrm{As}(1) \cdots \mathrm{C}(15)$	$3 \cdot 57$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{F}(10)$	117(1)
$\mathrm{As}(1) \cdots \cdot \mathrm{C}(16)$	$3 \cdot 92$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{F}(11)$	117(1)
$\mathrm{As}(1) \cdots \mathrm{C}(17)$	$4 \cdot 19$	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{F}(10)$	116(1)
$\mathrm{As}(1) \cdots \mathrm{C}(18)$	$4 \cdot 08$	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{F}(11)$	114(1)
$\mathrm{As}(1) \cdots \mathrm{C}(19)$	$3 \cdot 72$	$\mathrm{F}(10)-\mathrm{C}(8)-\mathrm{F}(11)$	105(1)
		$\mathrm{C}(6)-\mathrm{C}(9)-\mathrm{F}(12)$	117(1)
* Corrected for riding motion.		$\mathrm{C}(6)-\mathrm{C}(9)-\mathrm{F}(13)$	116(1)
		$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{F}(12)$	116(1)
		$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{F}(13)$	116(1)
		$\mathrm{F}(12)-\mathrm{C}(9)-\mathrm{F}(13)$	107(1)

variance-covariance matrix and errors in cell dimensions. The equations of selected planar atom-groups are given in Table 3.
${ }^{11}$ D. T. Cromer and J. T. Waber, Acta Cryst., 1965, 18, 104.
${ }_{12}$ R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem. Phys., 1965, 42, 3175.

TAble 3
(a) Least-squares planes, referred to orthogonal axes along a, b, and c^{*}, of the form $A X+B Y+C Z+D=0$ where X, Y, Z, and D are in \AA.

	A	B	C	D	χ^{2}
Plane (I) :					
C(14)-(19)	-0.1236	$0 \cdot 1325$	-0.9834	3.100	4.4
Plane (II) :					
$\mathrm{C}(20)$-(25)	0.0016	0.9967	-0.0817	1.855	$2 \cdot 2$
Plane (III) :					
$\begin{gathered} \mathrm{As}(1), \mathrm{P}(3), \\ \mathrm{C}(6)-(9) \end{gathered}$	-0.9986	-0.0173	-0.0495	$2 \cdot 529$	6.0
Plane (IV) :					
	-0.6880	-0.4420	-0.5986	$0 \cdot 4465$	$2 \cdot 3$
$\begin{aligned} & \mathrm{C}(28), \mathrm{O}(29), \\ & \mathrm{C}(30), \mathrm{O}(31) \end{aligned}$					
$\mathrm{Fe}(2)$ lies $0.025 \AA$ out of Plane (IV) towards C(32).					
(b) Dihedral angles (deg.) between planes					
(I)-(II)	$77 \cdot 7$		(II)-(III)	$90 \cdot 8$	
(I)-(III)	$80 \cdot 2$		(II)-(IV)	$66 \cdot 9$	
(I)-(IV)	$52 \cdot 2$		(III)-(IV)	$45 \cdot 2$	

Figure 1 A diagram of the molecule showing the numbering used

Figure 2 A stereoscopic view of the molecular packing
Figure 1 is a diagram of the molecule and indicates the numbering used. Figure 2 illustrates the packing in the unit cell.

13 'International Tables for X-ray Crystallography,' vol. III, 1962, Kynoch Press, Birmingham, p. 213.

Observed and calculated structure factors listed in Supplementary Publication No. SUP 20266 (4 pp., 1 microfiche).*

DISCUSSION

As indicated by other physical methods, ${ }^{14}$ the coordination geometry about iron is a slightly, but significantly, distorted trigonal bipyramid with the noncarbonyl ligand in an axial position. The angles $\mathrm{C}(26)^{--}$ $\mathrm{Fe}(2)-\mathrm{C}(28), \mathrm{C}(26)-\mathrm{Fe}(2)-\mathrm{C}(30)$, and $\mathrm{C}(28)-\mathrm{Fe}(2)-\mathrm{C}(30)$ are $123 \cdot 9(6), 117 \cdot 8(6)$, and $118 \cdot 3(6)^{\circ}$. This distortion may result in the opening of the angle $\mathrm{C}(26)-\mathrm{Fe}(2)-\mathrm{C}(28)$ from 120° to minimize the contact of $\mathrm{C}(20)$ and $\mathrm{H}(25)$ with $C(26)$ and $C(28)$; the final orientation adopted allows nearly equal contacts between each carbon attached to $\mathrm{P}(3)$ and adjacent carbonyl groups (Figure 3). In addition, $C(7), C(14)$, and $C(20)$ adopt a staggered conformation with respect to $C(26), C(28)$, and $\mathrm{C}(30)$ (Figure 3) when these atoms are viewed along the

Figure 3 Torsion angles looking down the $\mathrm{Fe}(2)-\mathrm{P}(3)$ bond. Non-bonded contacts between carbon atoms are also shown
$\mathrm{Fe}(2)-\mathrm{P}(3)$ bond. $\mathrm{Fe}(2)$ is displaced $0.025 \AA$ from the plane of the equatorial carbonyl groups towards $\mathrm{C}(32)$.

No significant differences are observed between the $\mathrm{Fe}(2)-\mathrm{C}(32)$ bond length $[1.74(2) \AA]$ and the equatorial iron-carbon bond lengths [mean $1 \cdot 74(2) \AA$]. Since, in general, carbonyl groups bonded to metal atoms show considerable thermal motion at room temperature, any differences in bond length which did exist would be masked by the relatively high estimated standard deviations in the bond lengths. Insignificantly different iron-carbon bond lengths have been obtained for other compounds of type $\mathrm{Fe}(\mathrm{CO})_{4} \mathrm{~L}$ [where $\mathrm{L}=$ diphenylphosphine, ${ }^{15}$ (-)-fumaric acid, ${ }^{16}$ and cumulene ${ }^{17}$]. How-

[^2]ever, in addition to iron pentacarbonyl ($L=C O$), differences between equatorial and axial iron-carbon bond lengths have been observed for the compounds where L is acrylonitrile, ${ }^{18}$ or racemic fumaric acid, ${ }^{19}$ and for 1,5-cyclo-octatrienebis(tetracarbonyliron) ${ }^{20}$ and μ -tetramethyldiphosphine-bis(tetracarbonyliron). ${ }^{21}$ In the last-mentioned compound, where phosphorus is in an axial position, the equatorial iron-carbon bond lengths are longer whereas, in the other compounds where differences were found, co-ordination was by an ethylenetype group in the equatorial position and the axial iron-carbon bond lengths were longer. Considering the accuracy of many of those structures, the difference is only clear-cut for the acrylonitrile derivative $[\mathrm{Fe}-\mathrm{C}(a x)$ $1.99(1), \mathrm{Fe}-\mathrm{C}(e q) 1 \cdot 76(1) \AA]$, the structure of which was determined at 120 K .

In the asp ligand, phosphorus and arsenic are both potential donor atoms. However, in the present compound, the ligand is unidentate, co-ordination taking place through the phosphorus. Steric considerations would favour co-ordination from arsenic and the electronegativities indicate similar donor ability. However, phosphorus, in this ligand, in addition to the fluorocyclobutene ring, has two attached electron-withdrawing phenyl groups which would enhance π bonding from filled metal d orbitals to empty phosphorus d orbitals; the arsenic atom has two donor methyl groups. $\mathrm{Fe}(2)-\mathrm{P}(3)$ is $2 \cdot 224(3) \AA$ while in $\mathrm{Fe}(\mathrm{CO})_{4}\left(\mathrm{PHPh}_{2}\right),{ }^{15}$ $\mathrm{Fe}_{3}(\mathrm{CO})_{11}\left(\mathrm{PPh}_{3}\right),{ }^{\mathbf{2 2}}$ and $\left[\mathrm{Fe}(\mathrm{CO})_{4}(\mathrm{PMe})_{2}\right]_{2}{ }^{21}$ the ironphosphorus distances are $2 \cdot 237(2), 2 \cdot 25$, and $2 \cdot 260(5) \AA$.

Table 3 and Figure 1 show that $\mathrm{As}(1)$ has close contacts ($3 \cdot 44-4 \cdot 19 \AA$) with one phenyl ring ($c f$. sum of van der Waals radii, ${ }^{23} 3 \cdot 85 \AA$). We suggest that these short contacts are due to an electronic interaction between the lone pair of electrons on $\mathrm{As}(1)$ and the π^{*} orbitals of the phenyl group. $\mathrm{C}-\mathrm{As}(1)-\mathrm{C}$ bond angles are all $c a .95^{\circ}$ which suggest that the arsenic $s p^{3}$ orbitals used in the As-C carbon bonds have a high p orbital character. As a result, the arsenic lone-pair is in an orbital of high s orbital character which has less directional nature. Calculation shows that the lone pair is directed in the region of $C(14), C(15)$, and $C(19)$. Although the contact between the arsenic atom and the phenyl ring is not symmetrical, the diffuse nature of the arsenic lone pair might lead one to expect that the interaction extends over the whole ring. Within the limits of experimental error, this interaction has not affected the carbon-carbon bond lengths in the phenyl ring.
$\mathrm{P}(3)-\mathrm{C}$ bond lengths are $1 \cdot 80,1 \cdot 81$, and $1 \cdot 82(1) \AA(c f$. $1.820(7)$ and $1.828(5) \AA$ in $\mathrm{Fe}(\mathrm{CO})_{4}\left(\mathrm{PHPh}_{2}\right)^{15}$ and $\mathrm{PPh}_{3}{ }^{24}$). The angles $\mathrm{Fe}(2)-\mathrm{P}(3)-\mathrm{C}$ are larger than
${ }_{18}^{18}$ A. R. Luxmore and M. R. Truter, Acta Cryst., 1962, 15, 1117.
${ }^{19}$ C. Pedone and A. Sirigu, Acta Cryst., 1967, 23, 759.
${ }^{20}$ C. Kruger, J. Organometallic Chem., 1970, 22, 697.
${ }^{21}$ J. A. J. Jarvis, R. H. B. Mais, P. G. Owston, and D. T. Thompson, J. Chem. Soc. (A), 1968, 622.
${ }^{22}$ D. J. Dahm and R. A. Jacobson, Chem. Comm., 1966, 496.
${ }^{23}$ L. Pauling, 'The Nature of the Chemical Bond,' Cornell University Press, Ithaca, New York, 1960.
${ }_{24}$ J. J. Daly, J. Chem. Soc., 1964, 3799.
$\mathrm{C}-\mathrm{P}(3)-\mathrm{C}$ bond angles. Since $\mathrm{Fe}(2)-\mathrm{P}(3)$ has some multiple-bond character, the angle differences are probably due to double-bond-single-bond repulsions. There are no unusual trends in the bond lengths and bond angles in either phenyl group.

Bond lengths and bond angles in the substituted cyclobutene ring show no variation from those found in complexes of 1,2-(dimethylarsino)tetrafluorocyclobutene.

Calculations.-All calculations were performed on an

IBM 36050 computer at the Simon Fraser University Computing Centre. Computer programs used are listed in ref. 8.

We thank Dr. W. R. Cullen for a gift of crystals, and the National Research Council of Canada for financial support of this work.

[^0]: ${ }^{1}$ A. W. Hanson, Acta Cryst., 1962, 15, 930.
 ${ }^{2}$ J. Donohue and A. Caron, Acta Cryst., 1964, 17, 663.
 ${ }^{3}$ M. I. Davis and H. P. Hanson, J. Phys. Chem., 1965, 69, 3405.
 ${ }_{5}^{4}$ J. Donohue and A. Caron, J. Phys. Chem., 1966, 70, 603.
 J. Donohue and A. Caron, J. Phys. Chem., 1967, 71, 777.
 ${ }^{6}$ M. I. Davis and H. P. Hanson, J. Phys. Chem., 1967, 71,

[^1]: ${ }^{7}$ B. Beagley, D. W. J. Cruickshank, P. M. Pinder, A. G. Robiette, and G. M. Sheldrick, Acta Cryst., 1969, B, $25,737$.
 ${ }_{8}$ Data collection programs were those of P. G. Lenhert; Symbolic Addition Programs were those of F. Ahmed; all other programs are listed in F. W. B. Einstein and R. D. G. Jones, J. Chem. Soc. (A), 1971, 3359.

 9 J. Karle and I. L. Karle, Acta Cryst., 1966, 21, 849.
 ${ }^{10}$ D. Sayre, Acta Cryst., 1952, 5, 60.

[^2]: * For details of Supplementary Publications see Notice to Authors No. 7 in J. Chem. Soc. (A), Issue No. 20, 1970 (items less than 10 pp . will be supplied as full size copies).

 14 W. R. Cullen, personal communication.
 ${ }^{15}$ B. T. Kilbourn, J. A. Raeburn, and D. T. Thompson, J. Chem. Soc. $(A), 1969,1906$.
 ${ }^{16}$ C. Pedone and A. Sirigu, Inorg. Chem., 1968, 7, 2614.
 17 D. Bright and O. S. Mills, Chem. Comm., 1966, 211.

