A Spectroscopic Examination of Phenyltellurium Trihalides

By William R. McWhinnie • and Prasak Thavornyutikarn, Department of Chemistry, University of Aston in Birmingham, Birmingham B4 7ET

The far-i.r. spectra, and where possible the Raman spectra, of RTeX₃ are presented and assignments of tellurium-halogen modes are made (R = Ph, p-Me⁺C₆H₄, p-Me⁺C₆H₄, p-EtO⁺C₆H₄, p-PhO⁺C₆H₄; X = Cl, Br, or I). Consideration of the low-frequency vibrational data and other physical evidence suggests the compounds are associated to some degree with dimeric structures involving five-co-ordinate tellurium atoms the most probable for chlorides and iodides. There is evidence to suggest that some bromides notably PhTeBr₃, (p-Me·C₆H₄)TeBr₃. and $(p-PhO \cdot C_{6}H_{4})$ TeBr₃ are more associated. It is suggested that the variety of structural possibilities are best understood in terms of donor-acceptor interactions between X⁻ and RTeX₂⁺.

THE organotellurium halides provide a challenging area for structural investigations. Vibrational spectroscopy is, in principle, a powerful tool for these investigations but the possibility that ambiguous conclusions may be drawn from attempts to interpret the i.r. and Raman spectra of complex molecules is well illustrated by the recent literature of TeCl₄.^{1,2} Thus both covalent structures based on the ψ -trigonal bipyramid (TeCl₄)^{1a} and ionic structures (TeCl₃+Cl⁻)² were proposed. Despite a number of earlier attempts³ the structure of the tetrachloride was only recently shown by X-ray methods⁴ to be based on the tetrameric unit Te₄Cl₁₆ with the co-ordination number of each tellurium atom being six by virtue of three normal covalent bonds $(2\cdot3 \text{ Å})$ and three much longer bonds $(2\cdot9 \text{ Å})$.

We recently considered a series of diaryltellurium dihalides,⁵ R_2TeX_2 , and concluded that the ψ -bipyramidal

structure with axial halogen atoms held for a considerable variety of groups R. In this paper we consider the more difficult problem of the aryltellurium trihalides. Although the presence of an aryl group complicates the low-frequency vibrational spectra, the greater ease of preparation and handling and the possibility of examining a wide range of compounds offers some compensation. Understandably, the methyltellurium trihalides have been the subject of some investigations. Of particular relevance to this work are the investigations of Chen and George ⁶ with MeTeBr₃ and of Wynne and George with some selenium analogues 7. Wynne and Pearson 8,9 have recently published two papers which will be relevant to our discussion. An early investigation of the i.r. spectra of some phenyltellurium compounds including PhTeCl_a is also noted.¹⁰

⁴ B. Buss and B. Krebs, Angew. Chem. Internat. Edn., 1970, **9**, 463.

- ⁵ W. R. McWhinnie and M. Patel, J.C.S. Dalton, 1972, 199
- ⁶ M. T. Chen and J. W. George, J. Amer. Chem. Soc., 1968, 90, 4580. ⁷ K. J. Wynne and J. W. George, J. Amer. Chem. Soc., 1969,
- 91, 1649.
 - ⁶ K. J. Wynne and P. S. Pearson, *Inorg. Chem.*, 1969, 9, 106.
 ⁶ K. J. Wynne and P. S. Pearson, *Chem. Comm.*, 1970, 556.
 ¹⁰ H. P. Fritz and H. Keller, *Chem. Ber.*, 1961, 94, 1524.

¹ (a) G. C. Hayward and P. J. Hendra, J. Chem. Soc. (A), 1967, 643; (b) N. Katsaros and J. W. George, Inorg. Chim. Acta, 1969, **3**, 165.

² (a) N. N. Greenwood, B. P. Straughan, and A. E. Wilson, . Chem. Soc. (A), 1966, 1479; 1968, 2209; (b) D. M. Adams and P. J. Lock, ibid., 1967, 145; (c) I. R. Beattie and H. Chudzynska, ibid., 1967, 984.

³ E.g. A. W. Cordes, R. F. Kruh, E. K. Gordon, and M. K. Kemp, Acta Cryst., 1964, 17, 756 and refs. quoted in ref. 4.

EXPERIMENTAL

Synthesis of the Compounds.—The majority of the compounds we consider have previously been reported in the literature (see Table 1 for references) but limited details of PhTeBr₃ have been given ¹¹ and PhTeI₃, $(p-\text{MeC}_{6}H_{4})$ TeBr₃, and $(p-\text{MeC}_{6}H_{4})$ TeI₃ appear to be new compounds. The trichlorides RTeCl₃ (where $R = p-\text{MeO}\cdot\text{C}_{6}H_{4}$, $p-\text{EtO}\cdot\text{C}_{6}H_{4}$, and $p-\text{PhO}\cdot\text{C}_{6}H_{4}$) were prepared by the direct reaction of tellurium tetrachloride and the appropriate ether. The corresponding bromides and iodides were obtained via the diaryl ditellurides by oxidation with either bromine or iodine.¹² When $R = \text{Ph or } p-\text{MeC}_{6}H_{4}$ — it is possible to synthesise the aryltellurium trichloride by reaction of tellurium tetrachloride with the appropriate organomercuric crystals) or benzene $[(p-MeC_6H_4)TeI_3, yield 0.65 g red-brown needles].$

It was noted that if iodine was added to diphenyl ditelluride at 10—15 °C a black, benzene-soluble material was obtained. Careful inspection showed this to be a mixture of PhTeI₃ and a second substance. We found no suitable solvent for the separation of the two substances. It is suggested that the black material may be the intermediate phenyltellurenyl iodide, PhTeI. Very few tellurenyl compounds are known and only one organotellurenyl halide, (2-naphthyl)TeI, has been reported.¹⁴ Analytical and physical data are given in Table 1.

Physical Measurements.—I.r. spectra were recorded on the following instruments: 4000—400 cm⁻¹, Perkin-Elmer

	Analyt	ical and pl	nysical dat	a for arylt	ellurium trihal	ides	
	Found (%)		Calc. (%)				
Compound	C	H	C C	н	M.p. (°C)	Lit. m.p.	Ref.
C ₂ H ₄)TeCl ₂	22.5	1.55	$23 \cdot 2$	1.6	214 - 217	215 - 218	13
C.H.TEBr.	16.2	1.12	16.2	1.15	227 - 229		11 and this work
C,H,)TeI,	12.5	0.85	12.3	0.85	180 - 181		This work
p-MeC _e H ₄)TeCl ₃	$25 \cdot 9$	$2 \cdot 1$	25.9	$2 \cdot 15$	187 - 188	181 - 182	13
p-MeC, H) TeBr,	18.8	1.65	18.3	1.55	215 - 216		This work
p-MeC, H) TeI	14.6	1.5	14.0	1.12	175 - 176		This work
p-MeO'C,H ₄)TeCl ₃	$24 \cdot 2$	2.05	24.6	2.05	196 - 197	190	a
p-MeO·C, H) TeBr,	17.6	1.4	17.7	1.5	189 - 190	188 - 189	ь
p-MeO·C,H)TeI	13.7	1.1	13.7	1.12	131 - 133	131133	ь
p-EtO·C,H,TeCl,	26·8	2.55	$27 \cdot 1$	2.55	184-187	182 - 183	с
p-EtO•C,H_)TeBr ₃	19.3	1.9	19.7	1.85	197 - 206	195 - 205	b
p-EtO C H ₄)TeI ₃	15.7	1.45	15.3	1.45	133134	133134	b
p-PhO C ₆ H ₄)TeCl ₃	36-1	2.15	35.8	2.25	155 - 156	15 6—15 7	d
p-PhO·C,H ₄)TeBr ₃	26.5	1.65	26.9	1.7	204 - 205	$206 \cdot 5 - 207$	Ь
p-PhO•C ₆ H₄)TeI₃	$22 \cdot 2$	1.45	21.3	1.35	161 - 162	160.5 - 161	ь

^a G. T. Morgan and R. E. Kellet, J. Chem. Soc., 1926, 1080. ^b N. Petragnani, Tetrahedron, 1960, 11, 11. ^c G. T. Morgan and H. D. K. Drew, J. Chem. Soc., 1925, 2307. ^d H. D. K. Drew, J. Chem. Soc., 1926, 227.

halide,¹³ however despite purification of all starting materials we found both PhTeCl₃ and $(p-\text{MeC}_6\text{H}_4)$ TeCl₃ prepared by this method to be contaminated with small amounts of a greyish material which was difficult to remove by recrystallisation. We therefore found it convenient to reduce the crude trichlorides to the ditelluride ¹³ and reoxidise the purified ditelluride with chlorine to pure RTeCl₃ (R = Ph or $p-\text{MeC}_6\text{H}_4$). The ditellurides were also required for the preparation of the bromides and iodides.

Phenyl- and (p-Tolyl)tellurium Tribromide.—Bromine in carbon tetrachloride was slowly added with stirring to a carbon tetrachloride solution of the diaryl ditelluride (2 mmol) at 10 °C. The brown ditelluride became yellow and yellow crystals were deposited. Addition of bromine was continued until an excess was present. The mixture was stirred for a further 30 min after which the precipitate was filtered off and dried. The product was recrystallised from glacial acetic acid to afford yellow crystals of RTeBr₃ (0.79 g, R = Ph; 0.61 g, R = p-MeC₆H₄).

Phenyl- and (p-Tolyl)tellurium Tri-iodide.—The appropriate diaryl ditelluride (1 mmol) in carbon tetrachloride was maintained at 3-5 °C whilst iodine (0.72 g) in carbon tetrachloride was added. The solution was then stirred for 30 min after which the red-brown precipitate was collected and dried. The crude tri-iodide was recrystallised from benzene-light petroleum (PhTeI₃, yield 0.31 g brown

¹¹ N. Petragnani and G. Vicenti, Univ. São Paulo, Fre. Filosoff. Cienc. Letres. Bol. Comm., 1959, 5, 75. 457 (Nujol mulls or KBr discs); 400—200 cm⁻¹, Perkin-Elmer 225 (Nujol mulls, Polythene supports); 400—40 cm⁻¹, R.I.I.C. FS 720—FS 200 Fourier spectrometer, spectra were computed to a resolution of 2 cm⁻¹ with the University ICL 1905 computer. Samples were Nujol mulls in Polythene cells and the instrument was calibrated with water vapour. Raman spectra were determined for crystalline specimens by He–Ne laser excitation using a Cary 81 instrument. These measurements were made by courtesy of the Chemistry Department, University of Nottingham.

X-Ray powder photographs were taken with $Cu-K_{\alpha}$ radiation. The results were disappointing in some cases despite replication of the measurements with various exposure times.

Conductivity measurements were made with a Henelec bridge.

RESULTS

The low-frequency i.r. and Raman spectra are tabulated in Tables 2 (phenyl-compounds) and 3. The tri-iodides absorbed strongly at 6328 Å and showed signs of decomposition in the laser beam, therefore only limited data are reported. The X-ray powder data were of poor quality, particularly for the bromides, however the following isomorphous systems may be noted: PhTeCl₃ and PhTeI₃; $(p-MeC_6H_4)TeCl_3$ and $(p-MeC_6H_4)TeCl_3$; $(p-EtO\cdot C_6H_4)TeCl_3$

¹³ W. V. Farrar, Research, 1951, 4, 177.

¹⁴ G. Vicenti, E. Giesbrecht, and L. R. M. Pitombo, *Chem. Ber.*, 1959, **92**, 40.

1	ABLE	I

.

-

¹² N. Petragnani, Tetrahedron, 1960, 11, 15.

and $(p\text{-EtO}\cdot C_6H_4)$ TeBr₃. In other cases the data do not enable definite conclusions to be drawn. However careful examination of the i.r. spectra $(4000-400 \text{ cm}^{-1})$ showed considerable differences between PhTeBr₃ and PhTeX₃ (X = Cl or I); the spectra of all three *p*-methoxyphenylcompounds differed in detail and $(p\text{-PhO}\cdot C_6H_4)$ TeI₃ differed from the other two members of the group. By contrast the i.r. spectra $(4000-400 \text{ cm}^{-1})$ of the *p*-tolyl-series were identical and this was the case for the *p*-ethoxyphenylseries. Thus there is correlation between observed spectral seem to have previously drawn comment, is that, with the exception of the group $RTeX_{a}$ for which R = p-MeO·C_eH₄, the bromide has a higher melting point than the other two members.

DISCUSSION

Our data for PhTeCl₃ do not agree exactly with those of Fritz and Keller ¹⁰ who fail to report a band at 337 cm⁻¹, however Wynne and Pearson⁸ report bands at

PhTeCl ₃		PhTeI ₃		PhTeBr ₃		
I.r. (cm ⁻¹) 337s 317sh 306s 178s 153sh	Raman 342s 318m 303m 174w 143m	I.r. (cm ⁻¹) 169s 158s 97m 86m	Raman 168s 153s 94m	I.r. (cm ⁻¹) 220sh 213s 198m 134m 123m }	Raman 210sh 198vs 132w 120vw	$ \left. \begin{array}{l} \nu(\text{Te-X}) \text{ terminal} \\ \nu(\text{Te-X}) \text{ bridge } + \delta(\text{TeX}_2) \end{array} \right. $
260 255 250 206m	$260 \\ 255 \\ m 256 \\ 250 \\ 206m \\ 100m$	250sh 247 241 196m	241 238m 205	113sh J 260m—s 185m 93w	234m	<pre>} u(Te-Ph) i.e. phenyl t and t' modes } Phenyl x and u modes Unassigned</pre>

 TABLE 2

 The low-frequency vibrational spectra of phenyltellurium trihalides

differences and the more positive conclusions from the X-ray measurements.

The solubilities of the phenyl-compounds in benzene were qualitatively investigated, and the order of solubility was $PhTeCl_a \gg PhTeI_a > PhTeBr_a$. This is in contrast to the

 TABLE 3

 Tellurium-halogen vibrations of aryltellurium trihalides,

 RTeX,

	X = Cl		X = Br		vī
	Tr.	~	/	·	A ≔ I Ir
R	(cm ⁻¹)	Raman	(cm ⁻¹)	Raman	(cm ⁻¹)
p-MeC.H.	336s	341s	220ms	219 m	178s
r4	318sh	316w	204vs	199vs	155s
	304s	303w	126ms	$131 \mathrm{mw}$	
	180s	179m	113ms		
	152m				
p-MeO·C _e H ₄	323s	3 2 9s	213s	2 09m	164s
1 0 4	295s	301m,	192ms		154vs
		298m			
	180s	186w	136 m		91 ms
	148s	1 39 m	115ms		
<i>ϕ</i> -EtO·C ₆ H ₄	334 s	330s	218 s	216 s	174s
	326s	327s	206 vs		154ms
	318s		194vs	192wm	94m
	298s	305m	126s	135m	
	179s		104vs	105 mw	
	146s				
p-PhO·C ₆ H ₄	334s	339s	224m	224s	162s
	320s	315m—s	2 11s	204vs	15 4 s
	311s		194s	190s	94m
	172s	179w	136m	133m	
			120m—s		

behaviour of the methyl series where the order of solubilities was $MeTeCl_3 > MeTeBr_3 > MeTeI_3$ (insoluble).⁸ We found that, in general, the iodide was more soluble than the bromide within a given group. Evidence for complex conductivity behaviour in polar solvents was found but the need to seriously consider ionic structures for the solid state does not arise.

A further point of interest from Table 1, which does not

338 cm⁻¹ and 315 cm⁻¹ for MeTeCl₃. The positions of the three tellurium-bromide modes reported by Chen and George⁶ for MeTeBr₃ are in good agreement with those we assign for PhTeBr₃ in Table 2. Assignments of bands below 200 cm⁻¹ to tellurium-halogen modes, must be made with caution since both lattice modes and low-frequency vibrations of complex organic groups R in RTeX₃ complicate the spectra. Also, given the possibility that both long and short telluriumhalogen bonds may be present, as in TeCl₄, stretching vibrations associated with the long bonds and deformation modes associated with the short bonds may occur in similar regions. Thus, particularly in the case of the trichlorides, when two vibrations below 200 cm⁻¹ are assigned as tellurium-halogen modes (Tables 2 and 3), it is probable that one is a deformation mode.

Phenyltellurium Trihalides.-It is convenient to discuss the phenyl compounds separately since the ring vibrations may be identified with more certainty in these cases.¹⁵ Both the high frequency i.r. data (vide supra) and the X-ray data indicate that PhTeBr_a may differ structurally from the other two members of the group. The higher melting point and reduced solubility in benzene indicate a greater molecular complexity in this case. This is in contrast to the methyltellurium trihalides where the tri-iodide was considered to have the higher degree of association.8 We therefore take the view that the chloride and iodide are iso-structural and note the relatively simple i.r. spectrum of the iodide which would be compatible with a structure based on ' PhTeI₂⁺ units ' associated via iodide bridges to give a five co-ordinate tellurium atom in agreement with the theory of Wynne and Pearson.8 Thus the higher frequency bands at 169 cm⁻¹ and 158 cm⁻¹ are assigned to

the stretching of the short tellurium-iodine bonds of ' PhTeI₂⁺' and the lower frequency bands at 97 cm⁻¹ and 86 cm⁻¹ to both stretching vibrations involving the bridge bonds and also, possibly, deformation vibrations of 'PhTeI₂⁺'. We do not imply the structure to be ionic, but that we may conveniently regard the structure as being built up from $RTeX_2^+$ and X^- units to give the molecular types illustrated in the Figure. The appearance of three bands in the 340-300 cm⁻¹ region for PhTeCl₃ probably reflects coupling of vibrations of ' PhTeCl₂⁺ ' groups within a molecular unit or between chromophores within the unit cell, since the isomorphism of PhTeCl₃ and PhTeI₃ does not enable us to interpret the greater band multiplicity for v(TeCl) than for v(TeI)in terms of structural differences. The phenyl t modes are also affected by coupling in the case of the chloride and iodide. For a substituent of the mass of tellurium, it is the phenyl t and t' modes ¹⁵ which are most reasonably termed tellurium-phenyl stretching vibrations, but, as calculations on simple monohalogeno-benzenes¹⁶ demonstrate, such a description is approximate.

Although there are many coincidences between the i.r. and Raman frequencies for PhTeCl₃ and PhTeI₃, some differences of the order of 5-10 cm⁻¹ are noted and in this respect data for TeCl₄ and TeBr₄ are similar. Thus whilst it is not apparent from the available data that a centrosymmetric structure exists, final judgement must be reserved until more detailed X-ray data are available since as implied in the above discussion of coupling of v(TeX), the observed spectra more properly reflect the symmetry, of the unit cell. Several structures may be built up from donor-acceptor interactions of X^- and $PhTeX_2^+$ which, in accordance with the theory of Wynne and Pearson⁸ have five-co-ordinate tellurium atoms and the absence of bonds to halogen in positions trans to phenyl. Also differing degrees of association may be readily accounted for, thus if PhTeCl₃ and PhTeI₃ are at least dimers, PhTeBr₃ may be a trimer as illustrated in the Figure.

Other Aryltellurium Trihalides.—Allowing for the greater complexity of the spectra due to the more complex aryl groups, it may be concluded that a pattern very similar to that for the phenyl compounds emerges. Thus, in general, there is more evidence of vibrational coupling for the chlorides than for the bromides and

iodides and also agreement between i.r. and Raman tellurium-halogen frequencies is less precise for the chlorides than for the bromides. The relative simplicity of the i.r. data for the iodides is again noted, although it now becomes difficult to assign confidently tellurium-halogen modes below 100 cm⁻¹ due to the presence of the more complex aryl groups. Again structures built from RTeI_2^+ and I^- may be proposed with dimeric molecules being the most probable. We believe that the structures of the chlorides and bromides may be understood in similar terms.

We suggest that the conclusions that may be legitimately drawn from this study are as follows. There is

Illustration of typical structures resulting from donoracceptor interaction of X^- and $PhTeX_2^+$

good evidence to suggest that PhTeBr₃ is more associated than PhTeCl₃ and PhTeI₃, and that similar conclusions are valid for $(p-MeC_6H_4)TeBr_3$ and $(p-MeC_6H_4)TeBr_3$ $PhO \cdot C_6H_4$) TeBr₃. However it is not generally true that the bromide is the most complex member of any series $RTeX_3$, the structure being a function of both R and X. We believe that the most probable structure for the chlorides and iodides is the dimer represented in the Figure; this is in agreement with the theory of Wynn and Pearson.⁸ However, more complex structures are possible in which the co-ordination number of the tellurium remains five and in which no halogen atom trans to the organic groups is present. The structural variety possible for the compounds is best understood if we consider each structure to arise from donor-acceptor interaction between X^- and $RTeX_2^+$.

We thank Dr. G. Davidson (University of Nottingham) for access to the Cary 81 instrument. One of us (P. T.) thanks the Colombo Plan for a scholarship and Chiengmai University (Thailand) for study leave.

[1/1753 Received, 23rd September, 1971]

¹⁵ D. H. Whiffen, J. Chem. Soc., 1956, 1630.

¹⁶ H. J. Becher and F. Hofler, Spectrochim. Acta, 1969, 25A, 1703.