Crystal and Molecular Structure of Nitrilohexaphosphonitrilic Chloride [2,2,3a,5,5,6a,8,8,9a-Nonachloro-2,2,5,5,8,8-hexahydro-1,3,4,6,7,9,9b-hepta-aza-2,3a,5,6a,8,9a-hexaphospha(3a,6a,9a,-PV)phenalene]

By W. Harrison and J. Trotter,* Department of Chemistry, University of British Columbia, Vancover 8, British Columbia, Canada

Abstract

Crystals of the title compound are monoclinic, $a=19 \cdot 817, b=6 \cdot 357, c=29.897 \AA, \beta=99 \cdot 38^{\circ}, Z=8$, space group $C 2 / c$. The structure was determined by direct methods, and was refined by electron-density and fullmatrix least-squares procedures to $R 0.048$ for 1947 observed reflections. $\mathrm{P}_{6} \mathrm{~N}_{7} \mathrm{Cl} 9$ has a non-planar condensed ring structure which shows small but significant deviations from $C_{3 v}$ symmetry. The structure can be interpreted as containing a set of three central weakened σ-bonds supplemented by π-bonds. These central $\mathrm{P}-\mathrm{N}$ bonds, $1-723(6)$ Â, are longer than for any other phosphazene derivative hitherto reported. The remaining $\mathrm{P}-\mathrm{N}$ bonds average $1.558(6)$ and $1.570(6) A$. The two types of $\mathrm{P}-\mathrm{Cl}$ bonds have significantly different values, $2.004(3)$ and 1.980(3) Å.

Nitrilohexaphosphonitriuc chloride ($\mathrm{P}_{6} \mathrm{~N}_{7} \mathrm{Cl}_{9}$) (I) was first discovered ${ }^{1}$ in 1897 with the series $\left(\mathrm{NPCl}_{2}\right)_{n}$, but its chemistry was not studied. The compound was again isolated and fully characterized during a study ${ }^{2}$ of the chemistry of condensed ring phosphazene chlorides. Vibrational, mass, and ${ }^{31}$ n n.m.r. spectra confirmed the condensed ring structure of the molecule.
(I)

The chemistry of $\mathrm{P}_{6} \mathrm{~N}_{7} \mathrm{Cl}_{9}$ is at present more limited than that of the ordinary cyclic chlorides. The introduction of the central nitrogen into the $\mathrm{P}_{6} \mathrm{~N}_{6}$ ring system has a drastic effect on the properties of the molecule. Various substitution reactions were attempted on the condensed ring chloride. ${ }^{2}$ When attempts at substitution of the chlorine are made with ring-activating groups (F, OMe), the tricyclic ring structure of the PN skeleton is destroyed. Reaction with deactivating groups (NMe_{2}) is less destructive, and only partial ring cleavage occurs, leading to the isolation of a compound in which the tricyclic PN skeleton has been lost, but in which some crosslinking of the ring is still apparent.

The differences between the condensed ring chloride and the ordinary cyclic phosphazene chlorides are therefore quite marked. The latter are stable to substitution, whereas the former is not. The physical and chemical properties of $\mathrm{P}_{6} \mathrm{~N}_{7} \mathrm{Cl}_{9}$ suggest that the reason for this lies in the weakness of the internal PN bond, which appears to be weaker than an exocyclic PCl bond.

The structure has been reported briefly ${ }^{3}$ and a detailed description of the crystal structure analysis is now given.

[^0]
EXPERIMENTAL

Crystal Data. $-\mathrm{P}_{6} \mathrm{~N}_{7} \mathrm{Cl}_{9}, \quad M=603 \cdot 0$, monoclinic, $a=$ $19.817(5), \quad b=6.357(2), \quad c=29.897(6) \AA, \quad \beta=99.38(4)^{\circ}$, $U=3715.85 \AA^{3}, \quad D_{\mathrm{m}}=2.10 \mathrm{~g} \mathrm{~cm}^{-3}$ (flotation), $Z=8$, $D_{\mathrm{c}}=2 \cdot 15$. Space group $C 2 / c\left(C_{2 h}^{6}\right)$ from absent spectra: $h k l, \quad h+k \neq 2 n ; \quad h 0 l, \quad l \neq 2 \mathrm{n} ; \quad 0 k 0, \quad k \neq 2 \mathrm{n}$. Mo-K radiation, $\lambda=0.71069 \AA ; \mu\left(\mathrm{Mo}-K_{\alpha}\right)=18 \mathrm{~cm}^{-1}$.

Crystals of $\mathrm{P}_{6} \mathrm{~N}_{7} \mathrm{Cl}_{9}$ from benzene are transparent plates, slightly elongated along b. The space group and initial unit-cell parameters were determined from precession and Weissenberg films. Accurate unit-cell parameters were later obtained by a least-squares treatment of $22 \sin ^{2} \theta(h k l)$ values measured on a General Electric XRD 6 diffractometer.

Intensity data were collected on a Datex-automated General Electric XRD 6 diffractometer using a $\theta-2 \theta$ scan at $2^{\circ} \min ^{-1}$ in 2θ. All reflections with $2 \theta\left(\mathrm{Mo}-K_{\alpha}\right) \leqslant 50^{\circ}$ were measured. Two crystals were used for data collection. A check reflection was monitored every 30 reflections; approximately midway through the data collection the intensity of the check reflection had fallen off by 30% of its starting value. At this point a second crystal was used for the remainder of the data collection. The same check reflection was again monitored every 30 reflections and at the end of the data collection its intensity had again fallen off by 30% of its starting value. Lorentz and polarization corrections were applied and the structure amplitudes were derived. No corrections were made for absorption; the crystal dimensions were $0.4 \times 0.4 \times 0.2$ and $0.4 \times 0.3 \times$ 0.2 mm ., the maximum possible error in $\left|F_{0}\right|$ as a result of the absorption being $c a .9 \%$ with most errors much smaller than this value. Of the 3148 independent reflections, 1197 had intensities $<2 \sigma(I)$ above background, where $\sigma^{2}(I)=$ $S+B+(0.05 S)^{2}$, and $S=$ scan count, and $B=$ background. These reflections were classed as unobserved.

Structure Determination and Refinement.-The structure was solved by direct methods. Sixteen sets of signs for 217 reflections with normalized structure factor $|E| \geqslant 1.80$ were determined by a computer program which uses Sayre relationships in an iterative procedure. ${ }^{4}$ The starting set of reflections is given in Table 1. One set of signs was outstanding in that the iteration procedure converged in two cycles to a set having the highest consistency index ${ }^{4}(0 \cdot 89)$

[^1]and approximately equal numbers of positive and negative signs. An E-map was computed using the 217 signed values of E from this set. The nine chlorine and six phosphorus atoms accounted for the fifteen highest peaks

Table 1
Starting set reflections for $\mathrm{P}_{6} \mathrm{~N}_{7} \mathrm{Cl}_{\mathbf{9}}$

h	k	l	$\|E\|$	
2	2	21	3.57	Origin
13	1	-10	$4 \cdot 78$	determining
11	1	10	-4.50	
19	1	-22	3.82	
13	1	22	-3.69	
5	3	1	3.04	

Table 2
Final positional parameters (fractional) with standard deviations in parentheses

	x	y	z
Atom	x	0	z
$\mathrm{Cl}(1)$	$0.1870(1)$	$0.6105(4)$	$0.0171(1)$
$\mathrm{Cl}(2)$	$0.1601(1)$	$0.1361(5)$	$0.0200(1)$
$\mathrm{Cl}(3)$	$0.0183(1)$	$0.8539(5)$	$0.0633(1)$
$\mathrm{Cl}(4)$	$-0.1402(1)$	$0.1428(4)$	$0.1026(1)$
$\mathrm{Cl}(5)$	$-0.1768(1)$	$0.6112(4)$	$0.1052(1)$
$\mathrm{Cl}(6)$	$0.0012(1)$	$0.8479(5)$	$0.1816(1)$
$\mathrm{Cl}(7)$	$0.1449(1)$	$0.1221(5)$	$0.2621(1)$
$\mathrm{Cl}(8)$	$0.1855(1)$	$0.5867(5)$	$0.2754(1)$
$\mathrm{Cl}(9)$	$0.1814(1)$	$0.7961(4)$	$0.1478(1)$
$\mathrm{P}(1)$	$0.1407(1)$	$0.3987(4)$	$0.0505(1)$
$\mathrm{P}(2)$	$0.0202(1)$	$0.5443(4)$	$0.0757(1)$
$\mathrm{P}(3)$	$-0.0958(1)$	$0.4216(4)$	$0.1116(1)$
$\mathrm{P}(4)$	$0.0161(1)$	$0.5387(4)$	$0.1747(1)$
$\mathrm{P}(5)$	$0.1353(1)$	$0.3932(4)$	$0.2297(1)$
$\mathrm{P}(6)$	$0.1497(1)$	$0.4957(4)$	$0.1419(1)$
$\mathrm{N}(1)$	$0.0613(3)$	$0.4355(13)$	$0.0424(2)$
$\mathrm{N}(2)$	$0.0624(3)$	$0.5199(11)$	$0.1305(2)$
$\mathrm{N}(3)$	$0.1773(3)$	$0.3905(13)$	$0.1015(2)$
$\mathrm{N}(4)$	$0.1733(3)$	$0.3761(13)$	$0.1873(2)$
$\mathrm{N}(5)$	$0.0576(3)$	$0.4579(15)$	$0.2195(2)$
$\mathrm{N}(6)$	$-0.0557(3)$	$0.4282(13)$	$0.1614(2)$
$\mathrm{N}(7)$	$-0.0551(3)$	$0.4615(14)$	$0.0720(2)$

Table 3

Final thermal parameters. $\quad U_{i j}$ are the components of the thermal vibration tensors referred to axes a, b, and $c\left(\AA^{2} \times 10^{2}\right)$

[^2]on the map. The seven nitrogen atom locations were then obtained from a difference Fourier. A re-examination of the E-map did show peaks at the nitrogen atom positions although there were larger, spurious peaks in the map. Refinement proceeded with full-matrix least-squares calculations, finally with all atoms having anisotropic temperature factors, the scattering factors of ref. 5 being used. Convergence was reached at $R 0.048$ for 1947 observed reflections. Four reflections (208, 40 $\overline{8}, 600$, and 110) were omitted from the refinement because of suspected extinction errors. All reflections were given unit weights. Other weighting schemes were applied but showed no improvement in the consistency of $\Sigma w \Delta^{2}$ over ranges of $\left|F_{0}\right|$, or in R value. The final positional and thermal parameters are given in Tables 2 and 3. Measured and calculated structure factors are listed in Supplementary Publication No. SUP 20265 (5 pp., 1 microfiche).*

DISCUSSION

Figure 1 shows the molecule $\mathrm{P}_{6} \mathrm{~N}_{7} \mathrm{Cl}_{9}$ viewed down b. Bond lengths and angles, with their standard deviations, are given in Tables 4 and 5.

Figure 1 The $\mathrm{P}_{6} \mathrm{~N}_{7} \mathrm{Cl}_{9}$ molecule
Table 4
Bond distances (\AA), with standard deviations in parentheses

$\mathrm{P}(1)-\mathrm{Cl}(1)$	$1.989(3)$	$\mathrm{P}(4)-\mathrm{Cl}(6)$	$2.002(4)$
$\mathrm{P}(1)-\mathrm{Cl}(2)$	$1.971(3)$	$\mathrm{P}(4)-\mathrm{N}(2)$	$1.733(6)$
$\mathrm{P}(1)-\mathrm{N}(1)$	$1.570(5)$	$\mathrm{P}(4)-\mathrm{N}(5)$	$1.540(7)$
$\mathrm{P}(1)-\mathrm{N}(3)$	$1.579(6)$	$\mathrm{P}(4)-\mathrm{N}(6)$	$1.579(6)$
$\mathrm{P}(2)-\mathrm{C}(3)$	$2.002(4)$	$\mathrm{P}(5)-\mathrm{C}(7)$	$1.970(4)$
$\mathrm{P}(2)-\mathrm{N}(1)$	$1.550(7)$	$\mathrm{P}(5)-\mathrm{Cl}(8)$	$1.982(3)$
$\mathrm{P}(2)-\mathrm{N}(2)$	$1.720(6)$	$\mathrm{P}(5)-\mathrm{N}(4)$	$1.581(6)$
$\mathrm{P}(2)-\mathrm{N}(7)$	$1.569(6)$	$\mathrm{P}(5)-\mathrm{N}(5)$	$1.575(6)$
$\mathrm{P}(3)-\mathrm{Cl}(4)$	$1.977(3)$	$\mathrm{P}(6)-\mathrm{Cl}(9)$	$2.009(4)$
$\mathrm{P}(3)-\mathrm{Cl}(5)$	$1.990(3)$	$\mathrm{P}(6)-\mathrm{N}(2)$	$1.716(5)$
$\mathrm{P}(3)-\mathrm{N}(6)$	$1.569(6)$	$\mathrm{P}(6)-\mathrm{N}(3)$	$1.554(7)$
$\mathrm{P}(3)-\mathrm{N}(7)$	$1.558(7)$	$\mathrm{P}(6)-\mathrm{N}(4)$	$1.560(7)$

The $\mathrm{P}_{6} \mathrm{~N}_{7} \mathrm{Cl}_{9}$ molecule shows small but crystallographically significant deviations from $C_{3 v}$ symmetry.
${ }^{5}$ ' International Tables for X-Ray Crystallography, 'vol. III, Kynoch Press, Birmingham, 1962, pp. 202-207.

This may be due to crystal packing forces, since its ${ }^{31} \mathrm{P}$ n.m.r. spectrum in solution (two equal signals at $-20 \cdot 2$ and +3.5 p.p.m. relative to $\mathrm{H}_{3} \mathrm{PO}_{4}$) requires the molecule to have three-fold symmetry.

The central nitrogen atom is nearly coplanar with its neighbours, the deviation of $\mathrm{N}(2)$ from the $\mathrm{P}(2), \mathrm{P}(4), \mathrm{P}(6)$ plane being $0.04 \AA$ (Table 6). The three five-atom

Table 5
Bond angles (deg.) with standard deviations in parentheses

$\mathrm{Cl}(1)-\mathrm{P}(1)-\mathrm{Cl}(2)$	$101 \cdot 5(1)$	$\mathrm{N}(5)-\mathrm{P}(4)-\mathrm{N}(6)$	$113 \cdot 8(4)$
$\mathrm{Cl}(1)-\mathrm{P}(1)-\mathrm{N}(1)$	$110 \cdot 7(3)$	$\mathrm{Cl}(7)-\mathrm{P}(5)-\mathrm{Cl}(8)$	$101 \cdot 9(1)$
$\mathrm{Cl}(1)-\mathrm{P}(1)-\mathrm{N}(3)$	$109 \cdot 3(3)$	$\mathrm{Cl}(7)-\mathrm{P}(5)-\mathrm{N}(4)$	$108 \cdot 3(3)$
$\mathrm{Cl}(2)-\mathrm{P}(1)-\mathrm{N}(1)$	$108 \cdot 7(3)$	$\mathrm{Cl}(7)-\mathrm{P}(5)-\mathrm{N}(5)$	$109 \cdot 7(3)$
$\mathrm{Cl}(2)-\mathrm{P}(1)-\mathrm{N}(3)$	$109 \cdot 0(3)$	$\mathrm{Cl}(8)-\mathrm{P}(5)-\mathrm{N}(4)$	$110 \cdot 2(3)$
$\mathrm{N}(1)-\mathrm{P}(1)-\mathrm{N}(3)$	$116 \cdot 5(3)$	$\mathrm{Cl}(8)-\mathrm{P}(5)-\mathrm{N}(5)$	$109 \cdot 7(3)$
$\mathrm{Cl}(3)-\mathrm{P}(2)-\mathrm{N}(1)$	$108 \cdot 3(3)$	$\mathrm{N}(4)-\mathrm{P}(5)-\mathrm{N}(5)$	$116 \cdot 1(3)$
$\mathrm{Cl}(3)-\mathrm{P}(2)-\mathrm{N}(2)$	$104 \cdot 8(3)$	$\mathrm{Cl}(9)-\mathrm{P}(6)-\mathrm{N}(2)$	$102 \cdot 9(3)$
$\mathrm{Cl}(3)-\mathrm{P}(2)-\mathrm{N}(7)$	$109 \cdot 2(3)$	$\mathrm{Cl}(9)-\mathrm{P}(6)-\mathrm{N}(3)$	$109 \cdot 5(3)$
$\mathrm{N}(1)-\mathrm{P}(2)-\mathrm{N}(2)$	$110 \cdot 3(3)$	$\mathrm{Cl}(9)-\mathrm{P}(6)-\mathrm{N}(4)$	$110 \cdot 0(3)$
$\mathrm{N}(1)-\mathrm{P}(2)-\mathrm{N}(7)$	$113 \cdot 6(4)$	$\mathrm{N}(2)-\mathrm{P}(6)-\mathrm{N}(3)$	$110 \cdot 8(3)$
$\mathrm{N}(2)-\mathrm{P}(2)-\mathrm{N}(7)$	$110 \cdot 2(3)$	$\mathrm{N}(2)-\mathrm{P}(6)-\mathrm{N}(4)$	$111 \cdot 4(3)$
$\mathrm{Cl}(4)-\mathrm{P}(3)-\mathrm{Cl}(5)$	$101 \cdot 3(1)$	$\mathrm{N}(3)-\mathrm{P}(6)-\mathrm{N}(4)$	$111 \cdot 8(4)$
$\mathrm{Cl}(4)-\mathrm{P}(3)-\mathrm{N}(6)$	$107 \cdot 4(3)$	$\mathrm{P}(1)-\mathrm{N}(1)-\mathrm{P}(2)$	$125 \cdot 9(4)$
$\mathrm{Cl}(4)-\mathrm{P}(3)-\mathrm{N}(7)$	$108 \cdot 4(3)$	$\mathrm{P}(2)-\mathrm{N}(2)-\mathrm{P}(4)$	$119 \cdot 0(3)$
$\mathrm{Cl}(5)-\mathrm{P}(3)-\mathrm{N}(6)$	$110 \cdot 5(3)$	$\mathrm{P}(2)-\mathrm{N}(2)-\mathrm{P}(6)$	$119 \cdot 8(3)$
$\mathrm{Cl}(5)-\mathrm{P}(3)-\mathrm{N}(7)$	$109 \cdot 7(3)$	$\mathrm{P}(4)-\mathrm{N}(2)-\mathrm{P}(6)$	$121 \cdot 0(3)$
$\mathrm{N}(6)-\mathrm{P}(3)-\mathrm{N}(7)$	$118 \cdot 1(3)$	$\mathrm{P}(1)-\mathrm{N}(3)-\mathrm{P}(6)$	$124 \cdot 8(4)$
$\mathrm{Cl}(6)-\mathrm{P}(4)-\mathrm{N}(2)$	$104 \cdot 5(3)$	$\mathrm{P}(5)-\mathrm{N}(4)-\mathrm{P}(6)$	$123 \cdot 4(4)$
$\mathrm{Cl}(6)-\mathrm{P}(4)-\mathrm{N}(5)$	$107 \cdot 8(4)$	$\mathrm{P}(4)-\mathrm{N}(5)-\mathrm{P}(5)$	$128 \cdot 6(4)$
$\mathrm{Cl}(6)-\mathrm{P}(4)-\mathrm{N}(6)$	$108 \cdot 7(3)$	$\mathrm{P}(3)-\mathrm{N}(6)-\mathrm{P}(4)$	$123 \cdot 2(4)$
$\mathrm{N}(2)-\mathrm{P}(4)-\mathrm{N}(5)$	$111 \cdot 4(3)$	$\mathrm{P}(2)-\mathrm{N}(7)-\mathrm{P}(3)$	$127 \cdot 3(4)$
$\mathrm{N}(2)-\mathrm{P}(4)-\mathrm{N}(6)$	$110 \cdot 1(3)$		

Table 6
Equations of planes in the form $l X^{\prime}+m Y+n Z^{\prime}=p$, where X^{\prime}, Y, and Z^{\prime} are in \AA referred to axes a, b, and c^{*}, and angles (deg.) between the planes. $\mathrm{N}(2)$ is displaced from plane (1) by $0.04 \AA(5 \sigma)$

Plane	Atoms	l	m	n	p
(1)	$\mathrm{P}(2), \mathrm{P}(4), \mathrm{P}(6)$	$0 \cdot 1080$	0.9936	$0 \cdot 0329$	$3 \cdot 5145$
(2)	$\mathrm{N}(1), \mathrm{P}(2), \mathrm{N}(7)$	-0.1986	0.6979	-0.6881	$0 \cdot 8720$
(3)	$\mathrm{N}(5), \mathrm{P}(4), \mathrm{N}(6)$	-0.5073	0.6982	0.5051	$5 \cdot 2649$
(4)	$\mathrm{N}(3), \mathrm{P}(6), \mathrm{N}(4)$	0.8004	0.5752	$0 \cdot 1778$	$4 \cdot 3698$
		(1)-(2)	49.5		
		(1) -(3)	$49 \cdot 0$		
		(1)-(4)	$48 \cdot 6$		

segments, typically $P(2), N(7), P(3), N(6), P(4)$, are also roughly planar, but the molecule as a whole deviates strongly from planarity, the $\mathrm{N}, \mathrm{P}, \mathrm{N}$ planes at the bridgehead making a mean angle of $49 \cdot 0^{\circ}$ with the central $\mathrm{P}(2), \mathrm{P}(4), \mathrm{P}(6)$ plane (Table 6).

The thermal parameters (Table 3) are largest in the b direction. This may be partly the result of the omission of an absorption correction, but the values suggest that the most significant vibration is that of the molecule as a whole normal to the mean molecular plane. The molecule is not however a rigid body, as the parameters for the outer nitrogen atoms indicate a further intramolecular out-of-plane motion of these atoms; the central nitrogen atom parameters are similar to those of the phosphorus atoms to which it is bonded, so that

[^3]the central region of the molecule appears to be rigid. The chlorine atoms appear to have additional vibrations normal to the $\mathrm{P}-\mathrm{Cl}$ bonds, as might be expected. It is difficult to make a detailed analysis of these complicated motions, but approximate bond length corrections based on a riding model are ca. $0.01-0.02 \AA$ for all bonds except the central PN bonds, where the corrections are zero. Since these corrections are approximate it seems appropriate to base discussion mainly on the uncorrected values.

The non-central PN bonds fall into two classes, the $\mathrm{P}_{\mathrm{A}} \mathrm{N}_{\mathrm{A}}$ type and the $\mathrm{P}_{\mathrm{B}} \mathrm{N}_{\mathrm{A}}$ type (see Figure 1) ; although the differences between individual values are not always significant (Table 4), the mean values of 1.572 and $1.559 \AA$ respectively (corrected means $1 \cdot 58_{2}$ and $1 \cdot 56_{6} \AA$), in comparison with the single-bond length of $1.77 \AA,{ }^{6}$ suggest slightly greater π-character in the $\mathrm{P}_{\mathrm{B}} \mathrm{N}_{\mathrm{A}}$ bonds. This conclusion is unchanged when allowance is made for differences in σ-hybridization. ${ }^{7}$

Probably the most significant feature of the structure is the length of the central PN bonds ($\mathrm{P}_{\mathrm{B}} \mathrm{N}_{\mathrm{B}}$ type), $1.723 \AA$, longer than for any other phosphazene derivative previously reported. In tetrameric ${ }^{8}$ and hexameric ${ }^{9}$ phosphazene dimethylamides, $\left[\mathrm{PN}\left(\mathrm{NMe}_{2}\right)_{2}\right]_{4,6}$, the average exocyclic PN bond lengths are 1.68 and $1.67 \AA$ respectively. Thus the exocyclic $P N$ bond in these molecules is stronger than the $\mathrm{P}_{\mathrm{B}} \mathrm{N}_{\mathrm{B}}$ bond in $\mathrm{P}_{6} \mathrm{~N}_{7} \mathrm{Cl}_{9}$, even though the environments of the nitrogen atoms in the dimethylamides deviate more from planarity. The delocalization of the lone pair on the central nitrogen in $\mathrm{P}_{6} \mathrm{~N}_{7} \mathrm{Cl}_{9}$, suggested by its planar configuration, would seem to be real, since the base strength of this compound in aqueous sulphuric acid is less than that of the monocyclic $\mathrm{N}_{6} \mathrm{P}_{6} \mathrm{Cl}_{12}$. It therefore seems probable that the π-bonding from the central atom is normal. The non-planarity of the molecule and the length of the central bonds has been attributed ${ }^{3}$ to the σ-bonding requirements. In a general sense, such pairs of bonds as $\mathrm{N}(2)-\mathrm{P}(2)-\mathrm{Cl}(3)$ are equivalent to an exocyclic pair such as $\mathrm{Cl}(4)-\mathrm{P}(3)-\mathrm{Cl}(5)$, and the relation between the angles $\mathrm{N}(2)-\mathrm{P}(2)-\mathrm{Cl}(3)$ and $\mathrm{N}(7)-\mathrm{P}(2)-\mathrm{N}(1)$ is close to that expected for two pairs of equivalent orbitals based on an $(s+3 p)$ set, as it is in monocyclic phosphazene derivatives. Detailed geometrical calculation ${ }^{10}$ shows this requirement to be incompatible with a planar configuration of the $\mathrm{P}-\mathrm{N}$ bonds at $\mathrm{P}(2)$; shorter central bonds would be achieved if the configuration were planar, but the bridgehead $\mathrm{P}-\mathrm{Cl}$ bond would then be formed from a pure p-orbital at phosphorus. Some compromise between the σ - and π-requirements is indicated by the small ring-angles at nitrogen (125.5°) and phosphorus (116.9°); in $\mathrm{N}_{5} \mathrm{P}_{5} \mathrm{Cl}_{10}$ their mean values are 148.6 and 118.4° respectively. ${ }^{11}$ The interpretation of the structure of $\mathrm{P}_{6} \mathrm{~N}_{7} \mathrm{Cl}_{9}$ as containing a set of three

[^4]weakened σ-bonds supplemented by π-bonds has been supported by a study of other properties. ${ }^{3}$

The $\mathrm{P}-\mathrm{Cl}$ bonds also show an interesting feature. The $\mathrm{P}_{\mathrm{B}}-\mathrm{Cl}$ type bonds, $2 \cdot 002-2 \cdot 009(4)$, mean $2 \cdot 004(3) \AA$

Figure 2 Projection of the structure of $\mathrm{P}_{6} \mathrm{~N}_{7} \mathrm{Cl}_{6}$ along b
(corrected mean $2 \cdot 02_{5} \AA$), are significantly longer than the $\mathrm{P}_{\mathrm{A}}-\mathrm{Cl}$ type bonds, $1 \cdot 970-1 \cdot 990$, mean $1 \cdot 980 \AA$ (corrected mean $1 \cdot 99_{7} \AA$). These $\mathrm{P}_{\mathrm{A}}-\mathrm{Cl}$ type bonds
${ }^{12}$ R. Hazekamp, T. Migchelsen, and A. Vos, Acta Cryst., 1962, 15, 539.

13 A. J. Wagner and A. Vos, Acta Cryst., 1968, B24, 707.
14 A. Wilson and D. F. Carroll, J. Chem. Soc., 1960, 2548.
appear to be longer than $\mathrm{P}-\mathrm{Cl}$ bonds found in other phosphazenes, cf. $1.989(4) \AA$ for both the 'tub' 12 and 'chair' ${ }^{13}$ conformations of $\mathrm{N}_{4} \mathrm{P}_{4} \mathrm{Cl}_{8}, 1.961(8) \AA$ in $\mathrm{N}_{5} \mathrm{P}_{5} \mathrm{Cl}_{10},{ }^{11}$ and $1.975(10) \AA$ in $\mathrm{N}_{3} \mathrm{P}_{3} \mathrm{Cl}_{6},{ }^{14}$ although recent electron diffraction results ${ }^{15}$ for the latter compound report the $\mathrm{P}-\mathrm{Cl}$ bond lengths as $2 \cdot 006(7) \AA$. A possible explanation for the increased length of the $\mathrm{P}_{\mathrm{B}}-\mathrm{Cl}$ type bonds may be that atoms $\mathrm{P}(2), \mathrm{P}(4)$, and $\mathrm{P}(6)$ are involved in relatively strong π-bonding to three nitrogen atoms with a resultant decrease in the π-bonding in the $\mathrm{P}_{\mathrm{B}}-\mathrm{Cl}$ bond. In the case of $\mathrm{P}_{\mathrm{A}}-\mathrm{Cl}$ bonds, each phosphorus atom is involved in π-bonding with only two nitrogen atoms, thus allowing more extensive π-interaction with the chlorine atoms.

The packing arrangement viewed down the b axis is shown in Figure 2. The closest non-bonded, intermolecular contacts are: $\mathrm{N} \cdots \mathrm{N} 3 \cdot 149, \mathrm{Cl} \cdots \mathrm{Cl} 3 \cdot 354$, $\mathrm{N} \cdots \mathrm{Cl} 3 \cdot 380, \mathrm{~N} \cdots \mathrm{P} 3 \cdot 637$, and $\mathrm{Cl} \cdots \mathrm{P} 3 \cdot 894 \AA$. The $\mathrm{Cl} \cdots \mathrm{Cl}$ distance of $3 \cdot 354 \AA$ is considerably shorter than the van der Waals separation of $3 \cdot 60 \AA$. However this shortening is quite common. ${ }^{16}$

We thank Professor N. L. Paddock and R. T. Oakley for crystals and much helpful discussion, the National Research Council of Canada for financial support, and the staff of the University of British Columbia computing centre for assistance.
[1/1123 Received, 2nd July, 1971]
${ }^{15}$ M. I. Davis and J. W. Paul, Acta Cryst., 1969, A25, Part S3, p. S116.
${ }_{16}$ T. Sakurai, M. Sundaralingam, and G. A. Jeffrey, Acta Cryst., 1963, 16, 354.

[^0]: ${ }^{1}$ N. H. Stokes, Amer. Chem. J., 1897, 19, 782.
 ${ }_{2}^{2}$ R. T. Oakley, M.Sc., Thesis Úniversity of British Columbia, 1970.

[^1]: ${ }^{3}$ W. Harrison, R. T. Oakley, N. L. Paddock, and J. Trotter, Chem. Comm., 1971, 357.
 ${ }^{4}$ R. E. Long, Ph.D. Thesis, University of California, Los Angeles, 1965.

[^2]: * For details of Supplementary Publications, see Notice to Authors No. 7 in J. Chem. Soc. (A), 1970, Issue No. 20 (items less than 10 pp . will be supplied as full size copies).

[^3]: ${ }^{6}$ E. Hobbs, D. E. C. Corbridge, and B. Raistrick, Acta Cryst., 1953, 6, 621; D. W. J. Cruickshank, ibid., 1964, 17, 671.
 ${ }^{7}$ D. P. Craig and N. L. Paddock, ' Non-benzenoid Aromatics,' vol. II, Academic Press, New York, 1971.

[^4]: ${ }^{8}$ G. J. Bullen, J. Chem. Soc., 1962, 3193.

 - A. J. Wagner and A. Vos, Acta Cryst., 1968, B24, 1423.

 10 N. L. Paddock, personal communication.
 11 A. W. Schlueter and R. A. Jacobson, J. Chem. Soc. (A), 1968, 2317.

