Ligand-field Calculations for Cobalt(II) Compounds

By L. M. Engelhardt and Michael Green,* Department of Chemistry, University of York, Heslington, York YO1 5DD

g Factors are calculated for tetragonal low-spin d^{7} complexes using a d^{3} hole ligand-field model. It is shown that the unpaired electron lies in the $d_{z^{2}}$ orbital (i.e. that the ground state is Γ_{6} or ${ }^{2} A_{1}$) in all forms of cobalt phthalocyanine, as well as in vitamin $\mathrm{B}_{12 \mathrm{r}}$ and its model compounds.

In spite of a similarity in structure, cobalt phthalocyanines differ from other low-spin tetragonal $\left[\mathrm{CoI}^{11} \mathrm{~N}_{4}\right]$ complexes, such as cobalt corrins and vitamin B_{12}
\dagger Similar abnormal g factors are shown by cobalt tetraphenylporphines. ${ }^{7,8}$ Moreover, although cobalt tetraphenylporphine has been shown to resemble vitamin B_{12} in several respects ${ }^{9}$ it never seems to have been alkylated.
${ }^{1}$ P. Day, H. A. O. Hill, and M. G. Price, J. Chem. Soc. (A), 1968, 90. However, see also R. Taube, H. Dreus, and T. Duc-Hiep, Z. Chem, 1969, 9, 115.
${ }^{2}$ J. H. Weber and D. H. Busch, Inorg. Chem., 1965, 4, 472.
${ }^{3}$ A. B. P. Lever, Adv. Inorg. Chem. Radiochem., 1965, 'y, 61.
${ }^{4}$ E. W. Abel, J. M. Pratt, and R. Whelan, Chem. Comm., 1971, 449.
model compounds in several respects. Cobalt phthalocyanines do not form particularly stable σ cobalt-carbon bonds ${ }^{1}$ and they appear to react with molecular oxygen only at low temperatures. ${ }^{1-4}$ Moreover β-cobalt phthalocyanine has g factors, ${ }^{5,6} g_{\| \|} 1 \cdot 88-1 \cdot 92, g_{\perp} 2 \cdot 87-$ $2 \cdot 94, \dagger$ which are quite distinct from the 'normal'
${ }^{5}$ J. F. Gibson, D. J. E. Ingram, and D. Schonland, Discuss. Faraday Soc., 1958, 26, 72.
${ }^{6}$ J. M. Assour and W. K. Khan, J. Amer. Chem. Soc., 1965, 87, 207.

7 J. M. Assour, J. Chem. Phys., 1965, 43, 2477.
8 F. A. Walker, J. Amer. Chem. Soc., 1970, 92, 4235.
${ }^{9}$ H. W. Whitlock and B. K. Bower, Tetrahedron Letters, 1965, 4827.
values of the other compounds ${ }^{4,6,10-15}$ where $g_{i l} c a .2 \cdot 01$ and $g_{\perp} 2 \cdot 2-2 \cdot 4$ (Table 1). The present calculations

Table 1
g Factors of various cobalt(II) compounds

	$g_{\\|}\left(\right.$or $g_{z z}$)	$g_{\perp}\left(\right.$ or $\left.g_{x x}, g_{y y}\right)$
Cobalamin containing benzimidazoles or adenines a, b	2.003-2.004	$2 \cdot 32-2 \cdot 35$
Cobalamin $+\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{NC}^{\text {c }}$	1.99	$2 \cdot 22$
Cobamide + pyridine ${ }^{\text {b }}$	$2 \cdot 004$	$2 \cdot 32$
Bis(dimethylglyoximato)		
+ pyridine or imidazole ${ }^{\text {c }}$	$2 \cdot 02-2.03$	2.27-2.29
$+\mathrm{MeCN}{ }^{\text {c }}$	$2 \cdot 01$	$2 \cdot 24$
$+\mathrm{H}_{2} \mathrm{O}^{\text {c }}$	1.98	$2 \cdot 20$
$N N^{\prime}$-Ethylenebis(acetylacetoniminato) + pyridine d	$2 \cdot 01$	$2 \cdot 39-2 \cdot 44$
$N N^{\prime}$-Ethylenebis(salicylideneiminato) + pyridine ${ }^{e}$	$2 \cdot 03$	$2 \cdot 26$
$\mathrm{Pc}^{\prime}+N$-Heterocyclic bases ${ }^{\prime}$	$2.01-2.02$	2.26-2.34
Pc in $\alpha-\mathrm{ZnPc}{ }^{h}$	$2 \cdot 01$	$2 \cdot 42$
Tetrasulphonated Pc in DMSO ${ }^{\text {i }}$	$2 \cdot 01$	$2 \cdot 26$
in MeOH^{j}	2.005	$2 \cdot 27$
Pc in $\beta-\mathrm{ZnPc}{ }^{h}$	1.91 ± 0.01	$\begin{aligned} & 2.89 \pm 0.02, \\ & 2.92 \pm 0.02 \end{aligned}$
Pc in $\beta-\mathrm{H}_{2} \mathrm{Pc}{ }^{\boldsymbol{h}}$	1.89 ± 0.01	2.94 ± 0.01
Pc in $\beta-\mathrm{NiPc}^{h}$	1.89 ± 0.01	$2 \cdot 94 \pm 0 \cdot 01$

${ }^{a}$ At pH 0 , where the internal base no longer co-ordinates, the degeneracy of g_{\perp} is removed, a phenomenon which will be discussed separately. b Ref. 10. ${ }^{c}$ Ref. 11. ${ }^{〔}$ Ref. 12. ${ }^{e}$ Ref. 13. ${ }^{\prime} \mathrm{Pc}=$ phthalocyanine. ${ }^{\circ}$ Ref. 14. ${ }^{\text {h }}$ Ref. 6. Ref. 15. ${ }^{j}$ Ref. 4 and personal communication.
were undertaken to see whether these differences could be ascribed to cobalt phthalocyanine having a ground state of unusual symmetry. (Table 2 shows

Table 2

the three most plausible configurations and corresponding ground states a d^{7} system could possess.) Conceptually, it is easiest to associate formation of a $\sigma \mathrm{Co}^{-}-\mathrm{C}$ bond with the ${ }^{2} A_{1}$ state and its singly occupied $d_{z^{2}}$ orbital with its nodes perpendicular to the molecular plane ${ }^{16}(z$ is the axis perpendicular to the plane of the molecule).

Unfortunately a full MO calculation including configurational interaction would be prohibitively long. One-electron ligand-field calculations of g factors suggest that either a ${ }^{2} A_{1}$ or a ${ }^{2} B_{2}$ but not a ${ }^{2} E$ state is compatible with the values quoted for β-cobalt phthalocyanine. ${ }^{17}$ A MO treatment ${ }^{18}$ (without configurational interaction)

[^0]is unrealistic in that the D_{4} symmetry is removed so drastically that calculated g factors are $g_{z z} 2 \cdot 05, g_{y y} 1.99$, and $g_{x x} 2.91$ ($c f$. Table 1). Here g factors and energy levels of excited states are calculated by use of a ligandfield model and all possible configurations of a d^{3} hole system (to which d^{7} is equivalent). An identical approach has recently been used by Gerloch et al. for the d^{8} system in $C_{4 v}$ symmetry. ${ }^{19}$

CALCULATIONS

The calculations were based on perturbation of the d^{7} configuration by the Hamiltonian

$$
\mathscr{H}=H_{\text {electrostatic }}+H_{\text {cubic }}+H_{\text {tetragonal }}+H_{\text {spin-orbit }}
$$

with empirical parameters $F_{2}, F_{4}, D q, D s, D t$, and ζ, having their usual definitions. ${ }^{20}$ The matrix elements of \mathscr{H} were obtained in the $\left|S L J M_{J}\right\rangle$ scheme and the matrix diagonalized with the aid of an Elliott 4130 computer. g Factors and magnetic susceptibilities were calculated from the

Figure 1 Splitting of d orbitals in a square planar ligandfield
eigenvectors, using the magnetic-moment operator ($k L+$ $2 S$), modified with two orbital reduction factors, $k_{\|}$, and k_{\perp}. The equivalence of d^{7} to three d positions was used throughout, so that $D q, D s, D t$, and ζ are negative parameters: hence the use of the modulus in the discussion of their behaviour later. (In fact $D s$ and $D t$ change sign if the axial field becomes greater than the in-plane field, a case not applicable here.)

For square-planar stereochemistry, i.e. a tetragonal crystal field with no axial ligands, the parameters $D q$ and $D s$ are sufficient, as $D t=(4 / 7) D q$. Under these circumstances the splitting of the d orbital degeneracy has already been given by Bethe ${ }^{21}$ (Figure 1). It is clear that with
${ }^{15}$ L. D. Rollmann and R. T. Iwamoto, J. Amer. Chem. Soc., 1968, 90, 1455.
${ }^{16}$ M. Green, J. Smith, and P. A. Tasker, Discuss. Faraday Soc., 1969, 47, 172 .

17 J. S. Griffith, Discuss. Faraday Soc., 1958, 26, 81.
18 G. De Alti, V. Galasso, and A. Bigotto, Inorg. Chim. Acta, 1970, 4, 267.
${ }^{19}$ 'M. Gerloch, J. Lewis, and W. R. Smail, J. Chem. Soc., 1971 2434.
${ }^{20}$ C. J. Ballhausen, ' Introduction to Ligand Field Theory,' McGraw-Hill, New York, 1962.
${ }_{21}$ H. Bethe, Ann. Phys., 1929, 3, 133.
this one-electron model the unpaired cobalt d electron must occupy either a $d_{x^{z}}$ or a $d_{x y}$ orbital (thus an E ground state could only arise by strong configurational interaction). With inclusion of electrostatic repulsion and spin-orbit interaction, the d^{7} configuration is split into sixty Kramer's doublets, transforming either as Γ_{6} or Γ_{7} in the group $D_{4 h}^{\prime}$ (Table 2). ${ }^{21}$

RESULTS AND DISCUSSION

It is impossible to assign precise numbers to parameters for cobalt phthalocyanine. Therefore F_{2}, F_{4}, $D q, D s$, and $D t$ were varied over wide, but not impossible, ranges for low-spin tetragonal cobalt(II) complexes; the resulting g factors are given in the Appendix.* As might be expected the results are more sensitive to changes in the ligand-field parameters, $D q, D s$, and $D t$, than to variation in the electron repulsion terms, F_{2} and F_{4}. In a square-planar complex, $D t=(4 / 7) D q$. Introduction of a field due to axial ligands makes $|D t|$ less than $|(4 / 7) D q|$, reduces $|D s|$, and shifts g factors closer to $2 \cdot 00$. Reduction of ζ below $|-540| \mathrm{cm}^{-1}$, the free-ion value used in most of the results in the Appendix, brings g factors closer to 2.00 , the relationship being almost linear (Figure 2). A similar result is observed on reducing $k_{i 1}$ and k_{\perp} from 1.0 (Figure 2).

Figure 2 (a) Variation of g factors with $\zeta ; k_{\|}=k_{\perp}=1$. (b) Variation of g factors with k; $\zeta=-540 \mathrm{~cm}^{-1}$. $D q-1700$, $F_{2} 1000, F_{4} 50 \mathrm{~cm}^{-1}$ throughout; dashed line $\Gamma_{7}(D s-6600$ cm^{-1}), full line Γ_{6} ($D s-6300 \mathrm{~cm}^{-1}$)

Spin-orbit coupling removes the distinctive symmetry of the ${ }^{2} E$ state. However as the upper Γ_{6} and Γ_{7} states contain more of the ${ }^{2} E$ than the ${ }^{1} A_{1}$ and ${ }^{2} B_{2}$

* The computer output also includes magnetic moments from $20-400 \mathrm{~K}$ and the sixty energy-levels for each set of input parameters. The program has been filed on discs at the Computation Laboratory of the University of York and may be used on request from the Authors.
states, it is not completely meaningless to say that in terms of the (rather crude) single-configuration groundstate model no evidence for $\left(d_{x z, y z}\right)^{3}$ could be found in the compounds considered here.

The parameters F_{2} and F_{4} do not have a large effect in determining the ground state once the system is lowspin (although they are important in bringing about the change from high-spin). Increase of $|D s|$ independently of $D q$ causes a transition from a Γ_{6} to a Γ_{7} ground state (Figure 3). A reverse effect takes place on increasing

Figure 3 Lowest energy-levels and g factors for a d^{7} ion in square-planar fields; $F_{2} 1000, F_{4} 50, D q-1680, \zeta-480 \mathrm{~cm}^{-1}$, $k_{\|}=k_{\perp}=1$
$|D q|$ independently of $D s$. Reduction of $|\zeta|$ lowers the value of $|D s|$ at which the transition occurs (compare Figure 3 and data in the Appendix for $F_{2} 1000, F_{4} 50$, and $D q-1700 \mathrm{~cm}^{-1}$). Naturally $k_{\|}$and k_{\perp} have no effect in determining the ground state.

Considering first cobalt corrins and the other $\left[\mathrm{CoN}_{4}\right]$ complexes with 'normal' g factors, one can see that these values are compatible only with a Γ_{6} ground state, in spite of the large selection of parameters tested. The same follows for the various low-spin $\left[\mathrm{CoN}_{2} \mathrm{O}_{2}\right]$ compounds, which somewhat surprisingly behave as if tetragonal (Table 1) and which resemble vitamin B_{12} in g factors as well as in other properties. In cases where
assignments have been made, these $\left[\mathrm{CoN}_{4}\right]$ and $\left[\mathrm{CoN}_{2} \mathrm{O}_{2}\right]$ compounds were considered ${ }^{10,12-14}$ to have A_{1} or Γ_{6} ground states, chiefly on the basis of the pronounced tendency of the $g_{\|}$resonance to show superhyperfine splitting due to axial ligands, a property the g_{\perp} absorption did not possess. These calculations confirm this conclusion, for they show that while no unique set of parameters will give observed g factors, satisfactory agreement can be reached with several sets all of which result in a Γ_{6} ground state. In this context the assignment ${ }^{22}$ of a ${ }^{2} B_{2}$ or Γ_{7} state to derivatives of $N N^{\prime}-$ ethylenebis(salicylideneiminato)cobalt(iI) [Co(salen)] on the basis of c.d. studies is surprising, when ' normal' g values are shown by the parent compound and its close relatives (Table 2).

In the case of β-cobalt phthalocyanine, the observed g values are obtained exactly with one set of parameters and approximately with several others, all of which lead to a Γ_{6} state. The data in the Appendix show that increases in $|D s|$ causes shifts in g factors towards the values observed in β-cobalt phthalocyanine as long as the ground state is Γ_{6}. When the change to Γ_{7} occurs, g_{\perp} and $g_{\|}$both fall sharply below the observed values (Figure 3). The data show that the observed g factors can only be obtained by use of this model with parameters which inevitably cause a Γ_{6} ground state.

In fact, the g factors in cobalt phthalocyanine are sensitive to environment; for example, in its α-form and in solution in pyridine, more ' normal' values closer to 2.00 are observed ${ }^{6,14}$ (Table 1). Superhyperfine structure ${ }^{14}$ in the latter case indicates the presence of pyridine as axial ligands.* However β-cobalt phthalocyanine probably experiences almost no axial coordination: the shortest intermolecular length involving the metal atom is $\mathrm{Co}-\mathrm{N} 3 \cdot 38 \AA .^{6}$ The significance of the distance of the axial ligands from the cobalt atom can be seen in the calculations from the relationships, $|D s| \propto\left(a^{-3}-b^{-3}\right)$ and $|D t| \propto\left(a^{-5}-b^{-5}\right)$, where a and b (in this context) can be regarded as the equatorial and axial cobalt-ligand distances respectively. Increase in b causes rises in $|D s|$ and $|D t|$, both of which for a Γ_{6} ground state tend to increase g_{\perp} and in general to lower $g_{\|}$. For these reasons the abnormal g factors in β-cobalt phthalocyanine are attributed to an absence of axial co-ordination (and not to an unusual ground state).

Pictorally the relationship between the axial ligands and g factors can be seen as follows. The deviation of g factors from 2.00 is primarily due to admixture, via spin-orbit coupling, of the Γ_{6} or Γ_{7} states arising from ${ }^{2} E$, with the ground state. The $\Gamma_{6}\left({ }^{2} A_{1}\right)$ state is equivalent roughly to the $\left(d_{z^{2}}\right)^{1}$ model. Decrease of $|D s|$ and $|D t|$ corresponds to approach along the z axis of ligands considered as negative point-charges. This raises the

[^1]energy of the $d_{z^{2}}$ orbital relative to the $d_{x z, y z}$ orbitals and hence relative to the $\Gamma_{6}\left({ }^{2} A_{1}\right)$ ground state, the $\Gamma_{6}\left({ }^{2} E\right)$ becomes less stable. Consequently the ground state has less ${ }^{2} E$ character, and the g factors tend to $2 \cdot 00$. (Incidentally, in the Γ_{6} ground state increase of g_{1} above 2.00 is due solely to contributions from low-lying ' high-spin ' states.)

APPENDIX

g Factors calculated from values of $F_{2}, F_{4}, a, D q, D s$, and $D t$, with $\zeta=-540 \mathrm{~cm}^{-1}$, and $k_{\|}=k_{\perp}=1.0$

$\underset{\mathrm{Fm}_{2} /}{\mathrm{cm}^{-1}}$	$\underset{\substack{F_{4} / \\ \mathrm{cm}^{-1}}}{ }$	$\frac{-D q l}{\mathrm{~cm}^{-1}}$	$\underset{\mathrm{cm}^{-1}}{-D s /}$	$\underset{\mathrm{cm}^{-1}}{D t /}$	$g_{\text {il }}$	g_{\perp}	Γ_{8} or Γ_{7} Ground state
700	35	1000	600	(2/7) $D q$	$2 \cdot 068$	$2 \cdot 209$	6
			600	$(4 / 7) D q$	$2 \cdot 212$	$2 \cdot 421$	6
			1800		1.995	$2 \cdot 508$	6
			3000		1.963	$2 \cdot 664$	6
			4140		1.926	2.905	6
			4200		1.326	$2 \cdot 560$	7
			6000		1.569	2-162	7
		1700	1200	(2/7) $D q$	2.003	$2 \cdot 244$	6
			1800	$(4 / 7) D q$	2.001	$2 \cdot 399$	6
			3000		1.988	$2 \cdot 485$	6
			4800		1.974	$2 \cdot 630$	6
			5400		1.967	$2 \cdot 701$	6
			6600		1.735	$2 \cdot 167$	7
			10,200		1.747	2.063	7
		2400	1500		1.997	$2 \cdot 303$	6
			1500	-700	$2 \cdot 000$	$2 \cdot 185$	6
			4500	$(4 / 7) D q$	1.990	$2 \cdot 396$	6
			6300		1.981	$2 \cdot 500$	6
			7500		1.809	$2 \cdot 150$	7
			10,500		1.819	2.068	7
700	54	1000	4200	$(4 / 7) D q$	1.519	$2 \cdot 365$	7
			6000		1.574	2-132	7
			3000		1.946	1.773	$6{ }^{\text {b }}$
		1700	1200	(2/7) $D q$	$2 \cdot 007$	$2 \cdot 235$	6
			1200	$(4 / 7) D q$	2.009	$2 \cdot 395$	6
			3000		1.988	$2 \cdot 489$	6
			4800		1.970	$2 \cdot 651$	6
			6600		1.741	$2 \cdot 136$	7
			10,200		1.747	2.057	7
		2400	1500	-700	2.001	$2 \cdot 185$	6
			1500	$(4 / 7) D q$	1.998	$2 \cdot 305$	6
			4500		1.989	$2 \cdot 406$	6
			7500		1.814	$2 \cdot 124$	7
			10,500		1.820	2.062	7
			14,400		1.821	2.036	7
700	119	1700	3000		1.982	1.522	$6{ }^{\text {b }}$
			4800		1.746	$2 \cdot 139$	7
			6600		1.749	2.080	7
			10,200		1.748	$2 \cdot 042$	7
		2400	1500		2.009	2-167	6
			1500	$(4 / 7) D q$	2.019	$2 \cdot 300$	6
			4500		1.986	2.438	6
			7500		1.820	$2 \cdot 077$	7
			10,200		1.821	$2 \cdot 046$	7
1000	50	1700	1200	(2/7) $D q$	2.012	$2 \cdot 220$	6
			1200	$(4 / 7) D q$	$2 \cdot 023$	$2 \cdot 366$	6
			3000		1.995	2.437	6
			6300		1.969	$2 \cdot 713$	6
			6600		1.689	$2 \cdot 311$	7
		1700	10,200	$(4 / 7) D q$	1.746	2.081	7
		2400	1500	-700	$2 \cdot 002$	$2 \cdot 180$	6
			1500	$(4 / 7) D q$	2.001	$2 \cdot 292$	6
			4500		1.993	$2 \cdot 370$	6
			7500		1.983	2.524	6
			10,500		1.818	2.088	7
	77	1700	1200	$(2 / 7) D q$	$2 \cdot 029$	$2 \cdot 155$	6
			1200	$(4 / 7) D q$	$2 \cdot 100$	$2 \cdot 304$	6
			3000		1.999	$2 \cdot 383$	6
			4800		1.981	2.512	6
			6600		$1 \cdot 730$	$2 \cdot 207$	7
			10,200		$1 \cdot 747$	$2 \cdot 069$	7

$\underset{\mathrm{cm}^{-1}}{F_{2} /}$	$\underset{F_{4} /}{\mathrm{cm}^{-1}}$	$\underset{\mathrm{cm}^{-1}}{-D q 1}$	$\frac{-D s /}{\mathrm{cm}^{-1}}$	$\underset{\mathrm{cm}^{-1}}{D t /}$	$g_{\\|}$	g_{\perp}	Γ_{6} or Γ_{7} Ground state	$\underset{F_{2} /}{\mathrm{cm}^{-1}}$	$\underset{\mathrm{cm}^{-1}}{\mathrm{~F}_{4} l}$	$\frac{-D q 1}{\mathrm{~cm}^{-1}}$	$\begin{gathered} -D s / \\ \mathrm{cm}^{-1} \end{gathered}$	$\underset{\mathrm{cm}^{-1}}{D t l^{-}}$	$g_{\\|}$	g_{\perp}	Γ_{6} or Γ_{7} Ground state
1000	119		4500		1.967	1.698	$6{ }^{\text {b }}$	1300			4500		1.997	$2 \cdot 341$	6
			6600		1.747	$2 \cdot 132$	7				7500		1.986	$2 \cdot 488$	6
			10,200		$1 \cdot 748$	2.056	7				10,050		1.818	2.094	7
	77	2400	1500	-700	$2 \cdot 004$	$2 \cdot 176$	6				14,400		1.820	$2 \cdot 047$	7
			1500	$(4 / 7) D q$	2.007	$2 \cdot 291$	6		119		1500	-700	$2 \cdot 021$	$2 \cdot 125$	6
			4500		1.993	$2 \cdot 378$	6				1500	$(4 / 7) D q$	$2 \cdot 100$	$2 \cdot 233$	6
			7500		1.803	$2 \cdot 181$	7				4500		1.998	$2 \cdot 318$	6
			10,500		1.819	$2 \cdot 075$	7				7500		1.981	$2 \cdot 475$	6
	119		1500	-700	$2 \cdot 013$	$2 \cdot 157$	6				10,500		1.819	2.083	7
			1500	$(4 / 7) D q$	$2 \cdot 040$	$2 \cdot 271$	6				14,400		1.821	2.044	7
			4500		1.993	$2 \cdot 374$	6	1590			1500	-700	2.035	2.071	6
			7500		1.815	$2 \cdot 119$	7				1500	$(4 / 7) D q$	$2 \cdot 448$	$2 \cdot 165$	$6^{\text {b }}$
			10,500		1.820	$2 \cdot 060$	7				4500		$2 \cdot 002$	$2 \cdot 246$	6
1300	65		1500	-700	$2 \cdot 005$	$2 \cdot 173$	6				7500		1.990	$2 \cdot 371$	6
			1500	(4/7) $D q$	$2 \cdot 009$	$2 \cdot 279$	6				10,500		1.816	$2 \cdot 123$	7
			4500		1.996	$2 \cdot 347$	6				14,400		1.820	$2 \cdot 055$	7
			7500		1.988	$2 \cdot 476$	6		'						

a The ' free-ion ' values of F_{2} and F_{4} are 1550 and $119 \mathrm{~cm}^{-1}$ respectively. ${ }^{b}$ These states contain a large contribution from one of the quartet configurations.
[1/232 Received, 9th March, 1971]

[^0]: 10 S. A. Cockle, H. A. O. Hill, J. M. Pratt, and R. J. P. Williams, Biochim. Biophys. Acta, 1969, 1'y', 686; see also J. A. Hamilton, R. L. Blakley, F. D. Looney, and M. E. Winfield, ibid., p. 374, and ref. 11.
 ${ }^{11}$ G. N. Schrauzer and L.-P. Lee, J. Amer. Chem. Soc., 1968, 90, 6541 .

 12 B. M. Hoffman, D. L. Diemente, and F. Basolo, J. Amer. Chem. Soc., 1970, 92, 61.
 ${ }^{13}$ L. M. Engelhardt, J. D. Duncan, and M. Green, unpublished work.

 14 J. M. Assour, J. Amer. Chem. Soc., 1965, 87, 4701.

[^1]: * Very similar behaviour is shown by cobalt tetra(methoxyphenyl) porphine ${ }^{8}$ (see footnote on p. 724).
 ${ }^{22}$ C. J. Hipp and W. A. Baker, J. Amer. Chem. Soc., 1970, 92, 792.

