Crystal and Molecular Structure of Tetramethylformamidiniumphosphonate, [Me₂N]₂CPO₃H

By J. J. Daly, Monsanto Research S.A., Eggbühlstrasse 36, CH-8050 Zürich, Switzerland

Crystals of the title compound, an inner salt $[Me_2N]_2$ CPO₃H, are monoclinic, space-group $P2_1/c$ with a = 8.415b = 7.719, c = 12.719 Å, $\beta = 91.5^{\circ}$, Z = 4. The structure was solved by direct methods from diffractometer data for 1414 planes, and refined by least squares to a final R of 0.047. The $(PO_3H)^-$ group is linked to the central carbon atom of the (Me₂N:C·NMe₂)+ group by a P-C bond of 1.890(2) Å. The central carbon atom and the two nitrogen atoms of the formamidinium group all adopt planar configurations.

BIRUM¹ has shown that tetramethylformamidinium- to find the effect of the environment on the P-C bond phosphonate (I) may be synthesised according to equation (1). This novel compound is related to the

length and to extend the knowledge of formamidinium and phosphonate derivatives.

$$Me_2N = O$$

$$Me_2N = O_-$$

$$Me_2N = O_-$$

$$Me_2N = O^-$$

$$+(Me_2N)_2CO+6RCI$$

$$Me_2N = O^-$$

$$(1)$$

uronium (II) and thioronium (III) ions but it is an inner salt and has no lone pair of electrons available

on the phosphorus atom to give a form analogous to (IIc) or (IIIc). The structure of (I) has been determined EXPERIMENTAL

Crystal Data.—C₅H₁₃N₂O₃P, M = 180.1, Monoclinic, a = 8.415(5), b = 7.719(5), c = 12.719(8) Å, $\beta = 91.5(2)^{\circ}$, $U = 825 \cdot 9$ Å³, $D_{\rm m} = 1445$, Z = 4, $D_{\rm c} = 1449$. Mo- K_{α} radiation, $\lambda = 0.71069$ Å; μ (Mo- K_{α}) = 2.94 cm⁻¹. Space-group $P2_1/c$.

Cell dimensions were obtained by a least-square process from precession photographs and standard deviations derived from this process have been doubled to allow for

¹ G. H. Birum, personal communication, 1970.

systematic errors. Throughout this paper the standard deviations are given in parentheses as units in the last place of decimals.

The intensities were collected round a on a Hilger and Watts linear diffractometer² equipped with strontium carbonate-zirconium oxide balanced filters. The crystal used was $0.6 \times 0.4 \times 0.2$ mm and the 1414 strongest reflections were used for the analysis.

Structure Determination and Refinement.-The positions of all atoms except hydrogen were found from the E map³ after an application of direct methods 4,5 and this trial structure was then refined, first with isotropic and then

FIGURE 1 The molecule projected on the least-squares plane through P, C(1), N(1), and N(2)

with anisotropic temperature factors. When R had fallen to 0.083 a difference map was calculated which gave the positions of the hydrogen atoms. After further refinement $(R \ 0.064)$ it was found that the scale-factors used for the layers 4-9kl were the squares of the correct values. This error was put right and refinement was continued until convergence at $R \ 0.044$ and $R' \ 0.0045$ $(R' = \Sigma \omega \Delta^2 / \Sigma \omega F_0^2).$

Since the anisotropic temperature factors of the hydrogen atoms were unrealistic, they were replaced by isotropic ones 0.01 units of U higher than the atoms to which they are bonded and the final structure-factors so calculated gave R 0.047. A least-squares block-diagonal (3×3) for positional and 1×1 or 6×6 for thermal parameters) process was used with $w^{-1} = 3.0 + |F_0| + 0.03 F_0^2$.

RESULTS AND DISCUSSION

The final observed and calculated structure-factors are listed in Supplementary Publication No. SUP 20344 (10 pp., 1 microfiche).* Table 1 summarises these data as a function of h and of the magnitude of $|F_{o}|$; it shows the usual trend found with our diffractometer, that R increases as the magnitude of $|F_0|$ decreases and so the weaker high layers exhibit less good agreement than the stronger lower layers. Tables 2-4 give the final parameters and the bond lengths and angles. Table 5 lists some important planes in the molecule. Figure 1 shows the molecule projected on the weighted (w = atomic number) plane through

* For details see Notice to Authors No. 7 in J. Chem. Soc. (A), 1970, Issue No. 20.

P, C(1), N(1), and N(2), and the labelling of the atoms. Figure 2 illustrates the packing and the hydrogen bonding.

The compound (I) forms centrosymmetric hydrogen

TABLE 1

R as a function of the layer index, h, and of the magnitude of $|F_0|$

				No.	
h	$\Sigma[F_{o}]$	$\Sigma F_{c} $	$\Sigma[\Delta]$	planes	R
0	1707.75	1712.38	67.95	114	0.040
1	3085.93	$3120 \cdot 49$	147.06	219	0.048
2	$2522 \cdot 01$	2500.54	97.87	200	0.039
3	1943.99	$1921 \cdot 24$	$93 \cdot 11$	196	0.048
4	$1920 \cdot 89$	$1882 \cdot 98$	87.55	182	0.046
5	$1705 \cdot 21$	1667.94	90.25	165	0.053
6	$1309 \cdot 21$	1293.09	62.32	142	0.048
7	779.71	$802 \cdot 31$	41.96	98	0.054
8	$372 \cdot 34$	367.78	24.66	63	0.066
9	198.15	197.75	17.18	35	0.087
$ F_0 $ ran	ge				
0-2	29.55	26.69	8.68	17	0.294
2-4	$812 \cdot 83$	780.01	114.40	260	0.141
46	$1248 \cdot 17$	1239.09	89.64	252	0.072
68	1390.38	1390.26	74 ·70	200	0.054
810	1294.74	$1285 \cdot 42$	58.58	144	0.045
10 - 12	$1181 \cdot 19$	1180.58	45.65	108	0.039
12 - 14	1050.43	1045.12	40.97	81	0.039
14 - 16	1151.49	1141.18	43.75	77	0.038
16 - 18	885.37	885.21	$31 \cdot 12$	52	0.032
18-64	$6501 \cdot 04$	6492.94	$222 \cdot 42$	223	0.034
All					
planes	$15545 \cdot 19$	$15466 \cdot 50$	729.91	1414	0.047

TABLE 2

Final co-ordinates X, Y, Z with standard deviations (Å)

	X	Y	Ζ
\mathbf{P}	1.5597(7)	0.8931(7)	1.2615(6)
O(1)	0.0802(20)	1.0959(23)	1.3261(20)
O(2)	1.8450(20)	0.0401(24)	-0.0066(17)
O(3)	$2 \cdot 4802(26)$	2.0422(24)	1.3906(24)
N(1)	1.6917(22)	0.0256(23)	3.9303(20)
N(2)	2.9013(21)	-1.2585(21)	$2 \cdot 4894(21)$
C(1)	2.0863(24)	-0.2265(23)	2.7038(23)
C(2)	0.5521(38)	0.8901(44)	$4 \cdot 2243(32)$
C(3)	$2 \cdot 4211(31)$	-0.4350(33)	$5 \cdot 1460(25)$
C(4)	3.9297(28)	-1.2474(31)	$1 \cdot 4865(28)$
C(5)	2.9101(32)	-2.5085(29)	3.2638(32)
H	1.115(41)	-0.408(45)	-0.400(40)
H(2A)	0.972(46)	$1 \cdot 602(53)$	4.798(47)
H(2B)	0.028(47)	1.067(51)	3.569(47)
H(2C)	0.006(43)	0.396(53)	$4 \cdot 899(45)$
H(3A)	1.971(43)	-1.110(43)	5.570(46)
H(3B)	$2 \cdot 410(40)$	0.324(45)	5.766(42)
H(3C)	$3 \cdot 227(43)$	-0.647(49)	4.913(41)
H(4A)	3.671(43)	-1.922(45)	0.852(41)
H(4B)	3.914(41)	-0.398(45)	1.043(40)
H(4C)	4.822(42)	-1.479(45)	2.011(42)
H(5A)	3.726(46)	-2.560(47)	$3 \cdot 854(43)$
H(5B)	2.010(44)	-2.547(46)	3.746(46)
H(5C)	2.912(43)	-3.224(48)	2.620(44)

bonded dimers $(O \cdots O 2.57 \text{ Å})$ using the hydrogen atom of the phosphonate group. Two phosphonic acids, which both also contain a P-C bond and a PO₃H⁻

² U. W. Arndt and D. C. Phillips, Acta Cryst., 1961, 14, 807. ³ H. Hauptman and J. Karle, 'Solution of the Phase Problem. The Centrosymmetric Crystal,' A.C.A. Monograph, No. 3, Ŧ.

1953. ⁴ W. H. Zachariasen, Acta Cryst., 1952, **5**, 68.

⁵ D. Sayre, Acta Cryst., 1952, 5, 60.

		Anisotropic ter	nperature facto	ors * and standard	deviations for	r the heavy atom	S
	$10^4 U_{11}$	$10^4 U_{22}$	$10^{4}U_{33}$	$10^4 2 U_{12}$	$10^{4}2U_{23}$	$10^{4}2U_{13}$	$10^4 U_{ m iso}/{ m \AA}^2$
Р	420(4)	351(3)	282(3)	97(5)	63(5)	-135(5)	355
O(1)	473(12)	625(13)	399(10)	456(20)	-266(18)	-181(17)	508
O(2)	440(11)	746(15)	265(8)	201(21)	-108(18)	-27(15)	523
O(3)	811(16)	469(12)	584(13)	-291(24)	346(21)	-374(23)	637
N(1)	422(12)	400(11)	251(9)	11(19)	-12(16)	3(16)	365
N(2)	386(11)	299(10)	346(10)	64(17)	35(17)	-61(17)	346
C(1)	331(12)	277(11)	281(10)	0(18)	-5(17)	-97(17)	297
C(2)	673(22)	917(28)	381(16)	701(39)	-156(32)	89(29)	693
C(3)	593(18)	485(15)	279(12)	-218(27)	-134(22)	-164(22)	471
C(4)	410(14)	463(14)	406(13)	121(24)	139(24)	47(22)	427
C(5)	564(18)	319(13)	567(17)	56(25)	149(25)	-123(27)	497
* T	n the form · ev	$n = 9 - 2 (h^2 a * 2T)$	_1_ 525+277 _L_ 72	c*211 _1. 9bba*b*T	1. 9515***17	(Obla*c*TI)	Esotropic temperatur

TABLE 3

 $2hla*c*U_{13}$). Isotropic temperature factors, U_{igo} , are defined by $[(U_{11}^2 + U_{22}^2 + U_{33}^2)/3]^4$.

group, H₃N⁺-CH₂·CH₂·PO₃H⁻⁶ and HN⁺(CH₂·PO₃H₂)₂-(CH2•PO3H)- 7 have a more complex hydrogen-bonding system which involves $NH \cdots O$ hydrogen bonds.

FIGURE 2 The packing arrangement in the (010) projection. Hydrogen bonds are shown as dashed lines

The three phosphinic acids Me₂PO₂H,⁸ Ph₂PO₂H,⁹ and C₁₃H₁₁O₂P (IV)¹⁰ form infinite chains through hydrogen bonding.

The O(3) oxygen atom, which is not involved in hydrogen bonding, undergoes more thermal motion $(U_{\rm iso} 0.064 \text{ Å}^2)$ than the other two $[U_{\rm iso} 0.051 \text{ for O}(1)]$

- Y. Okaya, Acta Cryst., 1966, 20, 712.
 J. J. Daly and P. J. Wheatley, J. Chem. Soc. (A), 1967, 212.
 F. Giordano and A. Ripamonti, Acta Cryst., 1967, 22, 678. 7
- ⁹ Tung-Tsai Liang and Kuo-Cheng Chiao, Hua Hoysi, 1967, 22, 616.
 ⁹ Tung-Tsai Liang and Kuo-Cheng Chiao, Hua Hsueh Hsueh Pao, 1965, **31**, 155 (Chem. Abs., 1967, **66**, 6293).
 ¹⁰ P. J. Wheatley, J. Chem. Soc., 1962, 3733.
 ¹¹ W. R. Busing and H. A. Levy, Acta Cryst., 1964, **17**, 142.

and 0.052 for O(2) and if the P-O bond lengths are corrected for riding thermal motion¹¹ with these values for U_{iso} , their values become: P-O(1) 1.506, P-O(2) 1.571, and P-O(3) 1.495 Å. Although the validity of

TABLE 4 Bond lengths (Å) and angles (°) with standard deviations (a) Diate

(a) Distances			
P-O(1) P-O(2)	$1 \cdot 496(2) \\ 1 \cdot 561(2)$	P-O(3)	1.476(3)
P-C(1)	1.890(2)		
$C(1) = C(sp^2)$ C(1) = N(1) Mean	$1 \cdot 323(3) \\ 1 \cdot 330$	C(1)-N(2)	1.336(3)
$N-C(sp^3)$ N(1)-C(2) N(1)-C(3) Mcan	$1 \cdot 466(4)$ $1 \cdot 475(4)$ $1 \cdot 467$	N(2)-C(4) N(2)-C(5)	$1 \cdot 455(4)$ $1 \cdot 470(4)$
О-Н О(2)-Н	0.93(4)		
$\begin{array}{c} C-H\\ C(2)-H(2A)\\ C(2)-H(2B)\\ C(2)-H(2C)\\ C(3)-H(3A)\\ C(3)-H(3B)\\ C(3)-H(3B)\\ C(3)-H(3C)\\ Mean \end{array}$	$\begin{array}{c} 1 \cdot 00(5) \\ 0 \cdot 85(5) \\ 1 \cdot 01(5) \\ 0 \cdot 92(4) \\ 0 \cdot 98(4) \\ 0 \cdot 87(4) \\ 0 \cdot 96 \end{array}$	$\begin{array}{c} C(4)-H(4A) \\ C(4)-H(4B) \\ C(4)-H(4C) \\ C(5)-H(5A) \\ C(5)-H(5B) \\ C(5)-H(5B) \\ C(5)-H(5C) \end{array}$	$\begin{array}{c} 0.96(4) \\ 0.96(4) \\ 1.05(4) \\ 0.96(5) \\ 1.03(5) \\ 0.96(5) \end{array}$
(b) Angles			
H-O-P H-O(2)-P	117(3)		
O-P-O O(1)-P-O(2) O(1)-P-O(3)	$108 \cdot 13(12) \\ 120 \cdot 38(13)$	O(2)-P-O(3)	111.70(13)
O(1)-P-C(1) O(2)-P-C(1) Mean angle at P	107·66(11) 104·07(11) 109·24	O(3)-P-C(1)	103 ·52(12)
Angles at C(1) P-C(1)-N(1) P-C(1)-N(2) Mean	120·73(18) 119·62(17) 119·99	N(1)-C(1)-N(2)	119.62(22)
Angles at N(1) C(1)-N(1)-C(2) C(1)-N(1)-C(3) Mean	123·41(24) 123·49(22) 119·93	C(2)–N(1)–C(3)	112.89(24)
Angles at N(2) C(1)-N(2)-C(4) C(1)-N(2)-C(5) Mean	$\begin{array}{c} 123{\cdot}36(22)\\ 124{\cdot}58(22)\\ 119{\cdot}99 \end{array}$	C(4)-N(2)-C(5)	112.02(22)

	TABLE 4	(Continued)	
Н-С-Н			
H(2A)-C(2)-H(2B)	122(4)	H(4A) - C(4) - H(4B)	109(4)
H(2A) - C(2) - H(2C)	101(4)	H(4A) - C(4) - H(4C)	113(4)
H(2B) - C(2) - H(2C)	107(4)	H(4B) - C(4) - H(4C)	115(3)
H(3A) - C(3) - H(3B)	105(4)	H(5A) - C(5) - H(5B)	116(4)
H(3A) - C(3) - H(3C)	114(4)	H(5A) - C(5) - H(5C)	110(4)
H(3B) - C(3) - H(3C)	113(4)	H(5B)-C(5)-H(5C)	108(4)
Average	111		
N-C-H			
N(1)-C(2)-H(2A)	103(3)	N(2)-C(4)-H(4A)	106(3)
N(1) - C(2) - H(2B)	116(3)	N(2) - C(4) - H(4B)	109(3)
N(1) - C(2) - H(2C)	106(3)	N(2) - C(4) - H(4C)	105(2)
N(1) - C(3) - H(3A)	112(3)	N(2) - C(5) - H(5A)	110(3)
N(1) - C(3) - H(3B)	105(3)	N(2)-C(5)-H(5B)	107(3)
N(1) - C(3) - H(3C)	107(3)	N(2) - C(5) - H(5C)	106(3)
Average	108		

such a simplified procedure is doubtful, it makes one cautious of saying that the P-O(1) and P-O(3) bond lengths are quite different. It does, however, seem

reasonable to say that the P-OH [P-O(2)] bond length is longer than the other two P-O bond lengths; a similar difference has been observed 6,7 in phosphonic acids. The angles at the phosphorus atom vary from 103.5°

bond radii (1.83 Å). The corresponding C-X bond length in uronium (II)¹²⁻¹⁷ and thiouronium (III)¹⁸⁻²⁰ compounds is considerably less than the normal C-X length but in these compounds the lone-pair electrons may contribute to the bonding in forms such as $(H_2N)_2$ -C:X⁺·R. In thiourea dioxide, (H₂N)₂CSO₂ also called Manofast, where the sulphur lone-pairs are no longer available for carbon-sulphur bonding, the C-S bond length is 1.85 Å; the standard ²¹ value is 1.82 Å.

The tetramethyl formamidinium group exhibits the main features of simple formamidinium compounds.12-20,22,23 The valences at the central carbon atom are very nearly coplanar and the C(1)-N bond lengths (mean 1.330 Å) are close to the conjugated heterocyclic value²¹ (1.339 Å). The equation of the least-squares plane through P, C(1), N(1), and N(2) is given in Table 5. The distance of the other heavy atoms from this plane are: O(1) - 1.05, O(2) - 0.46, O(3) 1·42, C(2) = 0.36, C(3) 0·50, C(4) 0·68, C(5) = 0.60 Å. The planes of both NMe_2 groups pass very close to C(1)[see planes (B) and (C) in Table 6] and are rotated in opposite senses about their N-C(1) bonds relieving nonbonded intramolecular strains. The angle between planes (A) and (B) (Table 5) is 21° and that between planes (A) and (C) is 32° . Despite these rotations the C(5) and C(3) atoms are quite close to one another (2.85 Å); associated contacts are $H(3C) \cdots H(5A)$ 2.25, and H(3A) \cdots H(5B) 2.32 Å.

TABLE 5

The equations of some weighted (w = atomic number) least-squares planes in the molecule, in the form lX' + mY' + nZ' + p = 0 *

		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		/ 0		
Plane	Atoms	l	m	п	Þ	Max. Deviation (Å)
Α	P, $N(1)$, $N(2)$, $C(1)$	0.79580	0.58083	0.17131	1.9482	C(1), -0.013
в	C(1), N(1), C(2), C(3)	0.58204	0.81315	0.00389	0.9875	N(1), -0.027
С	C(1), $N(2)$, $C(4)$, $C(5)$	0.64074	0.38986	0.66141	2.9851	N(2), -0.013
	+ 17/ 17/ 1 77/	1	- 8 - 1 - 7	1 37 37 . 1	71 1/	X a bala:

* X', Y', and Z'are orthogonal co-ordinates in Å related to X, Y, and Z by $X' = X + Z \cos \beta$, $Z' = Z \sin \beta$.

[O(3)-P-C(1)] to 120.4° [O(1)-P-O(3)] and the HO-P-C angle $(104 \cdot 1^{\circ})$ lies well below the tetrahedral value as it does in β -ciliatine⁶ and in nitrilomethylene triphosphonic acid.7

The phosphorus-carbon bond length is slightly longer than those found in two^{6,7} phosphonic acids (1.820 and 1.807 Å) and than the sum of the single-

- J. H. Bryden, Acta Cryst., 1957, 10, 714.
 R. V. G. Sundera-Rao, J. W. Turley, and R. Pepinsky, Acta Cryst., 1957, 10, 435.
- ¹⁴ W. Wolfram, E. G. Artunian, A. S. Antishkina, and M. A. Porai-Koshits, Bull. Acad. polon. Sci., Sér. Sci. chim., 1967, 15, 83 (Chem. Abs., 1967, 67, 37120). 15 J. F. Wornhammer, 10000

J. E. Worsham, jun., and W. R. Busing, Acta Cryst., 1969, B25, 572.

The van der Waals' contacts are mostly of the $O \cdots H$, $C \cdots H$, or $H \cdots H$ types and the shortest in these categories are 2.5, 2.8, and 2.2 Å.

I thank Dr. G. Birum who suggested the problem and prepared the crystals.

[1/2290 Received, 2nd December, 1971]

¹⁷ J. N. Brown and E. A. Meyers, *Acta Cryst.*, 1970, **B26**, 1178.
 ¹⁸ C. H. Stam, *Acta Cryst.*, 1962, **15**, 317.

- ¹⁹ O. Kennard and J. Walker, J. Chem. Soc., 1963, 5513.
- ²⁰ D. Feil and W. Song Loong, Acta Cryst., 1968, **B24**, 1334.
 ²¹ Chem. Soc. Special Publ., No. 18, 1965.

²² O. Foss, J. Johnsen, and O. Tvedten, Acta Chem. Scand., 1958, **12**, 1782.

23 A. Chiesi, G. Grossoni, M. Nardelli, and M. E. Vidoni, Chem. Comm., 1969, 404.

S. Harkema and D. Feil, Acta Cryst., 1969, B25, 589.