Crystal and Molecular Structure of Tetramethylformamidiniumphosphonate, $\left[\mathrm{Me}_{2} \mathrm{~N}\right]_{2} \mathrm{CPO}_{3} \mathrm{H}$

By J. J. Daly, Monsanto Research S.A., Eggbühlstrasse 36, CH-8050 Zürich, Switzerland

Crystals of the title compound, an inner salt $\left[\mathrm{Me}_{2} \mathrm{~N}\right]_{2} \mathrm{CPO}_{3} \mathrm{H}$, are monoclinic, space-group $P 2_{1} / c$ with $a=8.415$ $b=7.719, c=12.719 \AA, \beta=91.5^{\circ}, Z=4$. The structure was solved by direct methods from diffractometer data for 1414 planes, and refined by least squares to a final R of 0.047 . The $\left(\mathrm{PO}_{3} \mathrm{H}\right)$ - group is linked to the central carbon atom of the $\left(\mathrm{Me}_{2} \mathrm{~N}: \mathrm{C} \cdot \mathrm{NMe}_{2}\right)^{+}$group by a $\mathrm{P}-\mathrm{C}$ bond of $1 \cdot 890(2) \AA$. The central carbon atom and the two nitrogen atoms of the formamidinium group all adopt planar configurations.

BIRUM ${ }^{1}$ has shown that tetramethylformamidiniumphosphonate (I) may be synthesised according to equation (1). This novel compound is related to the

$+\left(\mathrm{Me}_{2} \mathrm{~N}\right)_{2} \mathrm{CO}+6 \mathrm{RCl}$
to find the effect of the environment on the $\mathrm{P}-\mathrm{C}$ bond length and to extend the knowledge of formamidinium and phosphonate derivatives.

EXPERIMENTAL
Crystal Data. $-\mathrm{C}_{5} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}, \quad M=180 \cdot 1$, Monoclinic, $a=8.415(5), b=7.719(5), c=12.719(8) \AA, \beta=91.5(2)^{\circ}$, $U=825.9 \AA^{3}, \quad D_{\mathrm{m}}=1445, Z=4, \quad D_{\mathrm{c}}=1449$. Мо- K_{α} radiation, $\quad \lambda=0.71069 \quad \AA ; \quad \mu\left(\mathrm{Mo}-K_{\alpha}\right)=2.94 \quad \mathrm{~cm}^{-1}$. Space-group $P 2_{1} / c$.

Cell dimensions were obtained by a least-square process from precession photographs and standard deviations derived from this process have been doubled to allow for

[^0]systematic errors. Throughout this paper the standard deviations are given in parentheses as units in the last place of decimals.

The intensities were collected round a on a Hilger and Watts linear diffractometer ${ }^{2}$ equipped with strontium carbonate-zirconium oxide balanced filters. The crystal used was $0.6 \times 0.4 \times 0.2 \mathrm{~mm}$ and the 1414 strongest reflections were used for the analysis.

Structure Determination and Refinement.-The positions of all atoms except hydrogen were found from the E map ${ }^{3}$ after an application of direct methods $\mathbf{4 , 5}^{5}$ and this trial structure was then refined, first with isotropic and then

Figure 1 The molecule projected on the least-squares plane through $P, C(1), N(1)$, and $N(2)$
with anisotropic temperature factors. When R had fallen to 0.083 a difference map was calculated which gave the positions of the hydrogen atoms. After further refinement ($R 0.064$) it was found that the scale-factors used for the layers $4-9 k l$ were the squares of the correct values. This error was put right and refinement was continued until convergence at $R \quad 0.044$ and $R^{\prime} 0.0045$ ($R^{\prime}=\Sigma \omega \Delta^{2} / \Sigma \omega F_{o}{ }^{2}$).
Since the anisotropic temperature factors of the hydrogen atoms were unrealistic, they were replaced by isotropic ones 0.01 units of U higher than the atoms to which they are bonded and the final structure-factors so calculated gave $R \quad 0 \cdot 047$. A least-squares block-diagonal $(3 \times 3$ for positional and $\mathbf{1} \times \mathbf{1}$ or $\mathbf{6} \times \mathbf{6}$ for thermal parameters) process was used with $w^{-1}=3.0+\left|F_{o}\right|+0.03 F_{0}{ }^{2}$.

RESULTS AND DISCUSSION

The final observed and calculated structure-factors are listed in Supplementary Publication No. SUP 20344 (10 pp., 1 microfiche).* Table 1 summarises these data as a function of h and of the magnitude of $\left|F_{\mathrm{o}}\right|$; it shows the usual trend found with our diffractometer, that R increases as the magnitude of $\left|F_{\mathrm{o}}\right|$ decreases and so the weaker high layers exhibit less good agreement than the stronger lower layers. Tables 2-4 give the final parameters and the bond lengths and angles. Table 5 lists some important planes in the molecule. Figure 1 shows the molecule projected on the weighted ($w=$ atomic number) plane through

* For details see Notice to Authors No. 7 in J. Chem. Soc. (A), 1970, Issue No. 20.
$\mathrm{P}, \mathrm{C}(1), \mathrm{N}(1)$, and $\mathrm{N}(2)$, and the labelling of the atoms. Figure 2 illustrates the packing and the hydrogen bonding.

The compound (I) forms centrosymmetric hydrogen
Table 1
R as a function of the layer index, h, and of the magnitude of $\left|F_{o}\right|$

7	$\Sigma\left\|F_{0}\right\|$	$\Sigma\left\|F_{\mathrm{c}}\right\|$	$\Sigma\|\Delta\|$	No. planes	R
0	1707.75	1712.38	67.95	114	0.040
1	$3085 \cdot 93$	$3120 \cdot 49$	$147 \cdot 06$	219	$0 \cdot 048$
2	2522.01	$2500 \cdot 54$	$97 \cdot 87$	200	$0 \cdot 039$
3	$1943 \cdot 99$	1921.24	$93 \cdot 11$	196	0.048
4	$1920 \cdot 89$	$1882 \cdot 98$	$87 \cdot 55$	182	0.046
5	$1705 \cdot 21$	$1667 \cdot 94$	$90 \cdot 25$	165	0.053
6	$1309 \cdot 21$	1293.09	$62 \cdot 32$	142	0.048
7	$779 \cdot 71$	$802 \cdot 31$	$41 \cdot 96$	98	$0 \cdot 054$
8	$372 \cdot 34$	367.78	$24 \cdot 66$	63	0.066
9	$198 \cdot 15$	$197 \cdot 75$	$17 \cdot 18$	35	$0 \cdot 087$
$\left\|F_{0}\right\|$ range					
0-2	$29 \cdot 55$	$26 \cdot 69$	$8 \cdot 68$	17	0. 294
2-4	812.83	780.01	$114 \cdot 40$	260	$0 \cdot 141$
4-6	$1248 \cdot 17$	1239.09	$89 \cdot 64$	252	$0 \cdot 072$
6-8	$1390 \cdot 38$	$1390 \cdot 26$	$74 \cdot 70$	200	$0 \cdot 054$
8-10	$1294 \cdot 74$	$1285 \cdot 42$	$58 \cdot 58$	144	$0 \cdot 045$
10-12	$1181 \cdot 19$	$1180 \cdot 58$	$45 \cdot 65$	108	0.039
12-14	$1050 \cdot 43$	$1045 \cdot 12$	$40 \cdot 97$	81	0.039
14-16	1151.49	$1141 \cdot 18$	$43 \cdot 75$	77	0.038
16-18	$885 \cdot 37$	$885 \cdot 21$	31-12	52	0.035
18-64	$6501 \cdot 04$	$6492 \cdot 94$	222.42	223	$0 \cdot 034$
All					
planes	$15545 \cdot 19$	$15466 \cdot 50$	729.91	1414	0.047

Table 2
Final co-ordinates X, Y, Z with standard deviations (\AA)

	X	Y	Z
P	1.5597(7)	$0 \cdot 8931$ (7)	1.2615(6)
O(1)	$0.0802(20)$	1.0959(23)	$1 \cdot 3261$ (20)
$\mathrm{O}(2)$	$1 \cdot 8450(20)$	$0.0401(24)$	$-0.0066(17)$
$\mathrm{O}(3)$	2-4802(26)	$2.0422(24)$	1-3906(24)
$\mathrm{N}(1)$	1-6917(22)	$0 \cdot 0256(23)$	3.9303(20)
$\mathrm{N}(2)$	2.9013(21)	-1.2585(21)	$2 \cdot 4894(21)$
C(1)	2.0863(24)	-0.2265(23)	2.7038(23)
$\mathrm{C}(2)$	$0.5521(38)$	$0 \cdot 8901$ (44)	$4 \cdot 2243(32)$
$\mathrm{C}(3)$	$2 \cdot 4211(31)$	-0.4350(33)	$5 \cdot 1460(25)$
C(4)	3.9297(28)	$-1 \cdot 2474(31)$	1-4865(28)
C(5)	$2 \cdot 9101(32)$	-2.5085(29)	3-2638(32)
H	1-115(41)	-0.408(45)	-0.400(40)
$\mathrm{H}(2 \mathrm{~A})$	$0.972(46)$	$1.602(53)$	4.798(47)
$\mathrm{H}(2 \mathrm{~B})$	$0.028(47)$	1.067(51)	3.569(47)
$\mathrm{H}(2 \mathrm{C})$	$0.006(43)$	$0 \cdot 396(53)$	4.899(45)
$\mathrm{H}(3 \mathrm{~A})$	1.971 (43)	$-1.110(43)$	5.570(46)
H(3B)	$2 \cdot 410(40)$	$0.324(45)$	$5.766(42)$
$\mathrm{H}(3 \mathrm{C})$	$3 \cdot 227(43)$	-0.647(49)	$4.913(41)$
$\mathrm{H}(4 \mathrm{~A})$	3.671(43)	$-1.922(45)$	$0.852(41)$
$\mathrm{H}(4 \mathrm{~B})$	3.914(41)	$-0.398(45)$	$1.043(40)$
$\mathrm{H}(4 \mathrm{C})$	$4 \cdot 822(42)$	$-1.479(45)$	2.011(42)
$\mathrm{H}(5 \mathrm{~A})$	3.726(46)	$-2.560(47)$	3.854(43)
H (5B)	$2.010(44)$	$-2.547(46)$	$3.746(46)$
$\mathrm{H}(5 \mathrm{C})$	2.912 (43)	$-3.224(48)$	2.620(44)

bonded dimers ($\mathrm{O} \cdots$ O $2.57 \AA$) using the hydrogen atom of the phosphonate group. Two phosphonic acids, which both also contain a $\mathrm{P}-\mathrm{C}$ bond and a $\mathrm{PO}_{3} \mathrm{H}^{-}$

[^1]Table 3
Anisotropic temperature factors * and standard deviations for the heavy atoms

	$10^{4} U_{11}$	$10^{4} U_{22}$	$10^{4} U_{33}$	$10^{4} 2 U_{12}$	$10^{2} 2 U_{23}$	$10^{4} 2 U_{13}$	$10^{4} U_{\text {iso }} / \mathrm{A}^{2}$
P	420(4)	351(3)	282(3)	97(5)	63(5)	$-135(5)$	355
$\mathrm{O}(1)$	473 (12)	625(13)	399 (10)	456(20)	$266(18)$	-181(17)	508
$\bigcirc(2)$	440(11)	746(15)	265(8)	201(21)	-108(18)	$-27(15)$	523
$\bigcirc(3)$	811 (16)	469(12)	584(13)	-291(24)	346(21)	$-374(23)$	637
N(1)	422(12)	400(11)	251(9)	11(19)	-12(16)	3(16)	365
$\mathrm{N}(2)$	386(11)	299(10)	346(10)	64(17)	35(17)	-61(17)	346
C(1)	331(12)	277 (11)	281 (10)	0(18)	-5(17)	--97(17)	297
$\mathrm{C}(2)$	$673(22)$	917(28)	381(16)	701(39)	$-156(32)$	89(29)	693
$\mathrm{C}(3)$	593(18)	485(15)	279(12)	-218(27)	--134(22)	-164(22)	471
C (4)	410 (14)	463(14)	406(13)	121(24)	-139(24)	47(22)	427
$\mathrm{C}(5)$	564(18)	319(13)	567(17)	56(25)	149(25)	$-123(27)$	497

* In the form: $\exp -2 \pi^{2}\left(h^{2} a^{* 2} U_{11}+k^{2} b^{* 2} U_{22}+l^{2} c^{* 2} U_{33}+2 h k a^{*} b^{*} U_{12}+2 k l b^{*} c^{*} U_{23}+2 h l a^{*} c^{*} U_{13}\right)$. Isotropic temperature factors, $U_{\text {iso }}$, are defined by $\left[\left(U_{11}{ }^{2}+U_{22}{ }^{2}+U_{33}{ }^{2}\right) / 3\right]$.
group, $\mathrm{H}_{3} \mathrm{~N}^{+}-\mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{PO}_{3} \mathrm{H}^{-6}$ and $\mathrm{HN}^{+}\left(\mathrm{CH}_{2} \cdot \mathrm{PO}_{3} \mathrm{H}_{2}\right)_{2}$ $\left(\mathrm{CH}_{2} \cdot \mathrm{PO}_{3} \mathrm{H}\right)^{-7}$ have a more complex hydrogen-bonding system which involves $\mathrm{NH} \cdot \mathrm{O}$ hydrogen bonds.

Figure 2 The packing arrangement in the (010) projection. Hydrogen bonds are shown as dashed lines

The three phosphinic acids $\mathrm{Me}_{2} \mathrm{PO}_{2} \mathrm{H}^{,}{ }^{8} \mathrm{Pl}_{2} \mathrm{PO}_{2} \mathrm{H},{ }^{9}$ and $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{P}$ (IV) ${ }^{10}$ form infinite chains through hydrogen bonding.

The $O(3)$ oxygen atom, which is not involved in hydrogen bonding, undergoes more thermal motion ($U_{\text {iso }} 0.064 \AA^{2}$) than the other two [$U_{\text {iso }} 0.051$ for $\mathrm{O}(\mathrm{l})$

[^2]and 0.052 for $\mathrm{O}(2)]$ and if the $\mathrm{P}-\mathrm{O}$ bond lengths are corrected for riding thermal motion ${ }^{11}$ with these values for $U_{\text {iso }}$, their values become: $\mathrm{P}-\mathrm{O}(1) 1 \cdot 506, \mathrm{P}-\mathrm{O}(2)$ 1.571 , and $\mathrm{P}-\mathrm{O}(3) 1.495 \AA$. Although the validity of

Table 4
Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ with standard deviations (a) Distances

$\mathrm{P}-\mathrm{O}$			
$\mathrm{P}-\mathrm{O}(1)$	1.496(2)	$\mathrm{P}-\mathrm{O}(3)$	1.476(3)
$1 \mathrm{O}-\mathrm{O}(2)$	$1.561(2)$		
$\mathrm{P}-\mathrm{C}$			
$\mathrm{P}-\mathrm{C}(1)$	$1.890(2)$		
$\mathrm{N}-\mathrm{C}\left(s p^{2}\right)$			
$\mathrm{C}(1)-\mathrm{N}(1)$	$1 \cdot 323(3)$	$\mathrm{C}(1)-\mathrm{N}(2)$	$1 \cdot 336(3)$
Mean	$1 \cdot 330$		
$\mathrm{N}-\mathrm{C}\left(s p^{3}\right)$			
$\mathrm{N}(1)-\mathrm{C}(2)$	$1.466(4)$	$\mathrm{N}(2)-\mathrm{C}(4)$	$1.455(4)$
$\mathrm{N}(1)-\mathrm{C}(3)$	$1 \cdot 475$ (4)	$\mathrm{N}(2)-\mathrm{C}(5)$	1.470 (4)
Mean	1.467		
$\mathrm{O}-\mathrm{H}$			
$\mathrm{O}(2)-\mathrm{HI}$	0.93(4)		
$\mathrm{C}-\mathrm{H}$			
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	$1.00(5)$	$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	0.96(4)
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	0.85 (5)	$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	0.96 (4)
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{C})$	1.01 (5)	$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{C})$	$1.05(4)$
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	0.92 (4)	$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	0.96(5)
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	0.98(4)	$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	1.03(5)
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{C})$	$0 \cdot 87(4)$	$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{C})$	0.96(5)
Mean	0.96		

(b) Angles
$\mathrm{H}-\mathrm{O}-\mathrm{P}$
$\mathrm{H}-\mathrm{O}(2)-\mathrm{P} \quad 1 \mathrm{P}(3)$
$\mathrm{O}-\mathrm{P}-\mathrm{O}$
$\mathrm{O}(1)-\mathrm{P}-\mathrm{O}(2)$
$\mathrm{O}(1)-\mathrm{P}-\mathrm{O}(3)$
$\mathrm{O}(\mathrm{I})-\mathrm{P}-\mathrm{O}$
$\mathrm{O}(1)-\mathrm{P}-\mathrm{C}(1)$
O (2)-P-C(1)
Mean angle at P

Angles at $\mathrm{C}(1)$			
$\mathrm{P}-\mathrm{C}(1)-\mathrm{N}(1)$	$120.73(18)$	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{N}(2)$	$119 \cdot 62(22)$
$\mathrm{P}-\mathrm{C}(1)-\mathrm{N}(2)$	$119 \cdot 62(17)$		
Mean	119.99		
Angles at $\mathrm{N}(1)$			
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(2)$	$123.41(24)$	$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(3)$	$112.89(24)$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(3)$	$123.49(22)$		
Mean	119.93		
Angles at $\mathrm{N}(2)$			
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(4)$	$123 \cdot 36(22)$	$\mathrm{C}(4)-\mathrm{N}(2)-\mathrm{C}(5)$	$112.02(22)$
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(5)$	$124.58(22)$		
Mean	119.99		

Table 4 (Continued)

$\mathrm{H}-\mathrm{C}-\mathrm{H}$			
$\mathrm{H}(2 \mathrm{~A})-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	122(4)	$\mathrm{H}(4 \mathrm{~A})-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	109(4)
$\mathrm{H}(2 \mathrm{~A})-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{C})$	101(4)	$\mathrm{H}(4 \mathrm{~A})-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{C})$	113(4)
$\mathrm{H}(2 \mathrm{~B})-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{C})$	107(4)	$\mathrm{H}(4 \mathrm{~B})-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{C})$	115(3)
$\mathrm{H}(3 \mathrm{~A})-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	105(4)	$\mathrm{H}(5 \mathrm{~A})-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	116(4)
$\mathrm{H}(3 \mathrm{~A})-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{C})$	114(4)	$\mathrm{H}(5 \mathrm{~A})-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{C})$	110(4)
$\mathrm{H}(3 \mathrm{~B})-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{C})$	113(4)	$\mathrm{H}(5 \mathrm{~B})-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{C})$	108(4)
Average	111		
$\mathrm{N}-\mathrm{C}-\mathrm{H}$			
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	103(3)	$\mathrm{N}(2)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	106(3)
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	116(3)	$\mathrm{N}(2)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	109(3)
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{C})$	106(3)	$\mathrm{N}(2)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{C})$	105(2)
$\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	112(3)	$\mathrm{N}(2)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	110 (3)
$\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	$105(3)$	$\mathrm{N}(2)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	107(3)
$\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{C})$	107(3)	$\mathrm{N}(2)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{C})$	106(3)
Average	108		

such a simplified procedure is doubtful, it makes one cautious of saying that the $\mathrm{P}-\mathrm{O}(1)$ and $\mathrm{P}-\mathrm{O}(3)$ bond lengths are quite different. It does, however, seem

(IV)
reasonable to say that the $\mathrm{P}-\mathrm{OH}[\mathrm{P}-\mathrm{O}(2)]$ bond length is longer than the other two $\mathrm{P}-\mathrm{O}$ bond lengths; a similar difference has been observed ${ }^{6,7}$ in phosphonic acids. The angles at the phosphorus atom vary from 103.5°
bond radii ($1.83 \AA$). The corresponding $\mathrm{C}-\mathrm{X}$ bond length in uronium (II) ${ }^{12-17}$ and thiouronium (III) ${ }^{18-20}$ compounds is considerably less than the normal $\mathrm{C}-\mathrm{X}$ length but in these compounds the lone-pair electrons may contribute to the bonding in forms such as $\left(\mathrm{H}_{2} \mathrm{~N}\right)_{2^{-}}$ $\mathrm{C}: \mathrm{X}^{+} \cdot \mathrm{R}$. In thiourea dioxide, $\left(\mathrm{H}_{2} \mathrm{~N}\right)_{2} \mathrm{CSO}_{2}$ also called Manofast, where the sulphur lone-pairs are no longer available for carbon-sulphur bonding, the $\mathrm{C}-\mathrm{S}$ bond length is $1.85 \AA$; the standard ${ }^{21}$ value is $1.82 \AA$.

The tetramethyl formamidinium group exhibits the main features of simple formamidinium compounds. ${ }^{12-20,22,23}$ The valences at the central carbon atom are very nearly coplanar and the $\mathrm{C}(1)-\mathrm{N}$ bond lengths (mean $1.330 \AA$) are close to the conjugated heterocyclic value ${ }^{21}(1.339 \AA)$. The equation of the least-squares plane through $\mathrm{P}, \mathrm{C}(1), \mathrm{N}(1)$, and $\mathrm{N}(2)$ is given in Table 5. The distance of the other heavy atoms from this plane are: $\mathrm{O}(1)-1 \cdot 05, \mathrm{O}(2)-0 \cdot 46$, $\mathrm{O}(3) 1 \cdot 42, \mathrm{C}(2)-0.36, \mathrm{C}(3) 0 \cdot 50, \mathrm{C}(4) 0 \cdot 68, \mathrm{C}(5)-0.60 \AA$. The planes of both NMe_{2} groups pass very close to $\mathrm{C}(1)$ [see planes (B) and (C) in Table 6] and are rotated in opposite senses about their $\mathrm{N}-\mathrm{C}(1)$ bonds relieving nonbonded intramolecular strains. The angle between planes (A) and (B) (Table 5) is 21° and that between planes (A) and (C) is 32°. Despite these rotations the $C(5)$ and $C(3)$ atoms are quite close to one another $(2.85 ~ \AA)$; associated contacts are $\mathrm{H}(3 \mathrm{C}) \cdots \mathrm{H}(5 \mathrm{~A})$ $2 \cdot 25$, and $\mathrm{H}(3 \mathrm{~A}) \cdots \mathrm{H}(5 \mathrm{~B}) 2 \cdot 32 \AA$.

Table 5
The equations of some weighted ($w=$ atomic number) least-squares planes in the molecule, in the form $l X^{\prime}+m Y^{\prime}+n Z^{\prime}+p=0 *$

Plane	Atoms	l	n	n	p	Max. Deviation (\AA)
A	$\mathrm{P}, \mathrm{N}(1), \mathrm{N}(2), \mathrm{C}(1)$	0.79580	0.58083	0.17131	1.9482	$\mathrm{C}(1),-0.013$
B	$\mathrm{C}(1), \mathrm{N}(1), \mathrm{C}(2), \mathrm{C}(3)$	0.58204	0.81315	0.00389	0.9875	$\mathrm{~N}(1),-0.027$
C	$\mathrm{C}(1), \mathrm{N}(2), \mathrm{C}(4), \mathrm{C}(5)$	0.64074	0.38986	0.66141	2.9851	$\mathrm{~N}(2),-0.013$

* X^{\prime}, Y^{\prime}, and Z^{\prime} are orthogonal co-ordinates in \AA related to X, Y, and Z by $X^{\prime}=X+Z \cos \beta, Z^{\prime}=Z \sin \beta$.
$[\mathrm{O}(3)-\mathrm{P}-\mathrm{C}(1)]$ to $120 \cdot 4^{\circ}[\mathrm{O}(1)-\mathrm{P}-\mathrm{O}(3)]$ and the $\mathrm{HO}-\mathrm{P}-\mathrm{C}$ angle $\left(104 \cdot 1^{\circ}\right)$ lies well below the tetrahedral value as it does in β-ciliatine ${ }^{6}$ and in nitrilomethylene triphosphonic acid. ${ }^{7}$

The phosphorus-carbon bond length is slightly longer than those found in two ${ }^{6,7}$ phosphonic acids (1.820 and $1.807 \AA$) and than the sum of the single-

[^3]The van der Waals' contacts are mostly of the $\mathrm{O} \cdot \mathrm{H}$, $\mathrm{C} \cdots \mathrm{H}$, or $\mathrm{H} \cdots \mathrm{H}$ types and the shortest in these categories are $2 \cdot 5,2 \cdot 8$, and $2 \cdot 2 \AA$.

I thank Dr. G. Birum who suggested the problem and prepared the crystals.
[1/2290 Received, 2nd December, 1971]

[^4]
[^0]: ${ }^{1}$ G. H. Birum, personal communication, 1970.

[^1]: ${ }^{2}$ U. W. Arndt and D. C. Phillips, Acta Cryst., 1961, 14, 807.
 ${ }^{3}$ H. Hauptman and J. Karle, 'Solution of the Phase Problem. I. The Centrosymmetric Crystal,' A.C.A. Monograph, No. 3, 1953.
 ${ }^{4}$ W. H. Zachariasen, Acta Cryst., 1952, 5, 68.
 5 D. Sayre, Acta Cryst., 1952, 5, 60.

[^2]: 6 Y. Okaya, Acta Cryst., 1966, 20, 712.
 ${ }^{7}$ J. J. Daly and P. J. Wheatley, J. Chem. Soc. (A), 1967, 212.
 ${ }^{\circ}$ F. Giordano and A. Ripamonti, Acta Cryst., 1967, 22, 678.

 - Tung-Tsai Liang and Kuo-Cheng Chiao, Hua Hsueh Hsueh Pao, 1965, 31, 155 (Chem. Abs., 1967, 66, 6293).
 ${ }^{10}$ P. J. Wheatley, J. Chem. Soc., 1962, 3733.
 ${ }_{11}$ W. R. Busing and H. A. Levy, Acta Cryst., 1964, 17, 142.

[^3]: ${ }^{12}$ J. H. Bryden, Acta Cryst., 1957, 10, 714.
 ${ }^{13}$ R. V. G. Sundera-Rao, J. W. Turley, and R. Pepinsky, Acta Cryst., 1957, 10, 435.
 ${ }_{14}$ W. Wolfram, E. G. Artunian, A. S. Antishkina, and M. A. Porai-Koshits, Bull. Acad. polon. Sci., Sér. Sci. chim., 1967, 15, 83 (Chem. Abs., 1967, 67, 37120).
 ${ }^{15}$ J. E. Worsham, jun., and W. R. Busing, Acta Cryst., 1969, B25, 572.
 ${ }^{16}$ S. Harkema and D. Feil, Acta Cryst., 1969, B25, 589.

[^4]: ${ }^{17}$ J. N. Brown and E. A. Meyers, Acta Cyyst., 1970, B26, 1178.
 18 C. H. Stam, Acta Cryst., 1962, 15, 317.
 ${ }^{19}$ O. Kennard and J. Walker, J. Chem. Soc., 1963, 5513.
 ${ }^{20}$ D. Feil and W. Song Loong, Acta Cryst., 1968, B24, 1334.
 ${ }^{21}$ Chem. Soc. Special Publ., No. 18, 1965.
 ${ }_{22}$ O. Foss, J. Johnsen, and O. Tvedten, Acta Chem. Scand., 1958, 12, 1782.
 ${ }^{23}$ A. Chiesi, G. Grossoni, M. Nardelli, and M. E. Vidoni, Chem. Comm., 1969, 404.

