Crystal and Molecular Structure of Octacarbonyl- μ-(1,2,3,4-tetraphenyl-but-2-ene-1,1,4,4-tetrayl)-triangulo-triosmium $\left(\mathrm{Ph}_{4} \mathrm{C}_{4}\right) \mathrm{Os}_{3}(\mathrm{CO})_{8}$

By Giovanni Ferraris,* Istituto di Mineralogia dell'Università via S. Massimo 24, 10123 Torino, Italy Giuliana Gervasio, Istituto di Chimica Generale ed Inorganica dell'Università, corso Massimo d'Azeglio 48, 10125 Torino, Italy

The title compound crystallizes in the monoclinic system, space-group $P 2_{1} / n, Z=4, a_{0}=9 \cdot 36(2), b_{0}=33 \cdot 77(6)$, $c_{0}=10.76(2) A, \beta=98^{\circ} 47^{\prime}\left(5^{\prime}\right)$. An X-ray crystal-structure analysis has been made by use of 2178 non-zero reflexions collected with an automatic diffractometer; the structure was solved by Patterson and Fourier methods and refined by least-squares techniques to $R 0 \cdot 12$. The molecule is built up by a cluster of three osmium atoms, at the corners of an almost equilateral triangle, and by the organic ligand; the osmium atoms are linked with two [$\mathrm{Os}(1)$] or three $[\mathrm{Os}(2)$ and $\mathrm{Os}(3)$] carbonyl groups. The chelation between the two parts of the molecule is partially attained through μ-bonds; the possible existence of a three-centre $\mathrm{C} \cdots \mathrm{H} \cdots$ Os bond or of an Os-H hydride bond is discussed.

During research on metal carbonyls, especially acetylenic derivatives of $\mathrm{Os}_{3}(\mathrm{CO})_{12},{ }^{1-3}$ we carried out an X-ray study of $\left(\mathrm{Ph}_{4} \mathrm{C}_{4}\right) \mathrm{Os}_{3}(\mathrm{CO})_{8}$. So far, for similar osmium complexes, there is only one complete X-ray analysis of $\mathrm{Os}_{3}(\mathrm{CO})_{12}{ }^{4}$ and incomplete analyses of $\left(\mathrm{C}_{6} \mathrm{H}_{8}\right) \mathrm{Os}_{2}(\mathrm{CO})_{6}{ }^{5}$ and of $\left(\mathrm{Ph}_{4} \mathrm{C}_{4}\right) \mathrm{Os}_{3}(\mathrm{CO})_{9}{ }^{2}$

EXPERIMENTAL

The compound was prepared as described in ref. land recrystallized from n-heptane as yellow lamellar $\{010\}$ crystals, slightly elongated in the z direction, and suitable for X-ray study. No pleochroism or cleavage was detected.

Crystal Data.- $\mathrm{C}_{36} \mathrm{H}_{20} \mathrm{O}_{8} \mathrm{Os}_{3}, M=1151 \cdot 13$, Monoclinic prismatic, $a_{0}=9 \cdot 36(2), \quad b_{0}=33.77(6), \quad c_{0}=10.76(2) ~ \AA$, $\beta=98^{\circ} \quad 47^{\prime} \quad\left(5^{\prime}\right) \quad\left[\right.$ extrapolated $v s$. $\quad 1 / 2\left\{\left(\cos ^{2} \theta / \sin \theta\right)+\right.$ $\left.\left.\left(\cos ^{2} \theta / \theta\right)\right\}\right], \quad U=3364 \cdot 8 \AA^{3}, \quad D_{\mathrm{m}}=2 \cdot 13,{ }^{*} \quad Z=4, \quad D_{\mathrm{c}}=$ $2 \cdot 27, F(000)=2112$. Space-group $P 2_{1} / n$ (No. 14) from systematic absences. $\mathrm{Cu}-K_{\alpha}$ radiation, $\lambda=1.5418 \quad \AA$; $\mu\left(\mathrm{Cu}-K_{\alpha}\right)=216 \mathrm{~cm}^{-1}$.

Unit-cell dimensions were determined from preliminary Weissenberg photographs.

[^0]Intensity Measurements.-Intensities were measured by a General Electric automatic three-circle diffractometer equipped with a $\mathrm{NaCl}(\mathrm{Tl})$ scintillation counter. A crystal of dimensions $0.20 \times 0.02 \times 0.30 \mathrm{~mm}$ was mounted with its z axis coincident with the ϕ axis of the goniostat; integrated intensities were collected by the $\theta-20$ scanning method (scanning speed, $1^{\circ} \mathrm{min}^{-1}$; background, 0.5° on both sides of each peak). Owing to the low diffracting power of the crystal, the measurements were restricted to reflexions with $20 \leqslant 90^{\circ}$; of the 2669 collected reflexions 491 were rejected because of the low magnitude of their intensities.

A standard reflexion (271) was checked every 40 reflexions (ca. every $2 \frac{1}{2} \mathrm{~h}$); its value, on a relative scale, decreased from 5240 to 3200 during the 7 days of the measurements; this was due to the deterioration of the crystal which at the end showed a light brown colour and slightly increased unit-cell parameters: $c a .1 \% a_{0}$ and c_{0}, and $c a .2 \% b_{0}$.

All the reflexions were put on the same relative scale by a plot of the intensity of the standard reflexion vs. time. Because of the low accuracy of the experimental data and of the small dimensions of the crystal, no absorption
${ }^{3}$ O. Gambino, G. A. Vaglio, R. P. Ferrari, and G. Cetini, J. Organometallic Chem., 1971, 30, 381.

4 E. R. Corey and L. F. Dahl, Inorg. Chem., 1962, 1, 521.
5 R. P. Dodge, O. S. Mills, and V. Schomaker, Proc. Chem. Soc., 1963, 380.
correction was made. The calculation of the atomic scattering factors, including, for osmium, the real and imaginary correction for anomalous scattering, was done by linear interpolation of the values from ref. 6.

Solution and Refinement of the Structure.-From a threedimensional Patterson function the co-ordinates of the three independent osmium atoms were obtained. A
osmium atoms are the $B_{i j}$ coefficients of the function:

$$
\exp \left(-\frac{1}{4} \sum_{i=1}^{3} \sum_{j=1}^{3} B_{i j} h_{i} h_{j} a_{i}^{*} * a_{j}^{*}\right)
$$

DISCUSSION

Description of the Structure.--The molecular configuration revealed by the present X-ray study is shown

Table 1
Fractional atomic co-ordinates and vibrational parameters (\AA^{2}), with the estimated standard deviations in parentheses

* Fractional co-ordinates maintained constant during the isotropic refinement.
series of difference syntheses was then calculated phased on the known atoms; the resulting atom positions obtained were refined by least-squares methods. During the process of structure solution a three-dimensional model and calculations of bond and angle values were found very useful.

Owing to the poor accuracy of the light-atom positions, because of the overwhelming contribution to the structurefactors from the three osmium atoms and of the low accuracy of the intensity measurements, only the three heavy atoms were refined anisotropically. The refinement was considered complete when all the shifts of the parameters were smaller than their estimated standard deviations.

A final difference Fourier map showed no abnormality; hydrogen-atom positions were not detectable. The final R value, for the 2178 reflexions used throughout the refinement, is 0.12 ; weighted value $R^{\prime} 0.11$.*

The program used for the least-squares refinement was that of ref. 7 with minor modifications. The weighting scheme was $\left(\left|F_{0}\right| \quad 0.17\right.$ times the absolute value): $w_{h k l}=64 /\left(0.01\left|F_{\mathrm{o}}\right|^{2}+2\left|F_{\mathrm{o}}\right|+20\right) \quad$ for $\quad\left|F_{\mathrm{o}}\right| \geqslant 20 \quad$ and $w_{h k l}=0.00225\left|F_{\mathrm{o}}\right|^{2}+0.1$ for $\left|F_{\mathrm{o}}\right|<20$.

The constants in these expressions were modified during the refinement in order to maintain $\Sigma w \Delta^{2}$ at a satisfactorily constant value for the amplitudes batched in various groups.

The final fractional co-ordinates and the thermal parameters are listed in Table 1; anisotropic parameters for

* $\left|F_{0}\right|$ and F_{c} values are listed in Supplementary Publication No. 20338 (14 pp., 1 microfiche). For details see Notice to Authors No. 7 in J. Chem. Soc. (A), 1970, Issue No. 20.
in Figure 1; it is quite different from that found ${ }^{8}$ for the analogous iron compound. The molecule is built

Figure 1 View of one molecule showing the system of atom labelling used

[^1]up by an organic ligand and a cluster of three osmium atoms at the corners of a nearly equilateral triangle; osmium atoms are linked with two $[\mathrm{Os}(1)]$ or three $[\mathrm{Os}(2)$ and $\mathrm{Os}(3)]$ carbonyl groups. The chelation between the two parts of the molecule is attained through various bonds discussed later.

Whilst the bonds $\mathrm{C}(1)-\mathrm{C}(4)$ and $\mathrm{Os}(1)-\mathrm{Os}(3)$ are roughly mutually perpendicular, the osmium triangle is rotated around $\mathrm{Os}(1)-\mathrm{Os}(3)$ towards phenyl group (I) $[\mathrm{Ph}(\mathrm{I})]$ in such a way that the latter is nearly perpendicular $\left(87^{\circ}\right)$ to the osmium plane and the group $\mathrm{Ph}(\mathrm{I}), \mathrm{C}(4)$,$\mathrm{Os}(2)$ is planar. The equation of this plane (1) is:* $7 \cdot 23 X+0 \cdot 23 Y+5 \cdot 48 Z=0 \cdot 33, \quad \chi^{2}=2 \cdot 9, \quad$ and the distances (\AA) from it of relevant atoms are $\mathrm{C}(4)$ $-0.069(8), \mathrm{C}(5)-0.02(7), \mathrm{C}(6) 0.06(10), \mathrm{C}(7) 0.04(10)$, $\mathrm{C}(8)-0.01(10), \mathrm{C}(9)-0.08(8), \mathrm{C}(10) 0.04(10)$, and $\mathrm{Os}(2) 0.001(2)$.

Table 2
Interatomic distances and angles, with their standard deviations in parentheses, in the osmium co-ordination polyhedra

(a) Distances (\AA)		$\mathrm{C}(4)-\mathrm{Os}(1)-\mathrm{C}(29)$	112(2)
$\mathrm{Os}(1)-\mathrm{Os}(2)$	2.874(2)	$\mathrm{C}(4)-\mathrm{Os}(1)-\mathrm{C}(30)$	158(2)
$\mathrm{Os}(1)-\mathrm{Os}(3)$	$2 \cdot 747(1)$	$\mathrm{C}(29)-\mathrm{Os}(1)-\mathrm{Os}(2)$	119(1)
$\mathrm{Os}(2)-\mathrm{Os}(3)$	2.944(2)	$\mathrm{C}(30)-\mathrm{Os}(1)-\mathrm{Os}(2)$	$93(2)$
$\mathrm{Os}(1)-\mathrm{C}(1)$	2-24(5)	$\mathrm{C}(30)-\mathrm{Os}(1)-\mathrm{Os}(3)$	$108(2)$
$\mathrm{Os}(1)-\mathrm{C}(2)$	$2 \cdot 51$ (5)	$\mathrm{C}(10) \cdots \mathrm{Os}(2)-\mathrm{Os}(1)$	$92(2)$
$\mathrm{Os}(1)-\mathrm{C}(3)$	$2 \cdot 47(8)$	$\mathrm{C}(10) \cdots \mathrm{Os}(2)-\mathrm{Os}(3)$	83(2)
$\mathrm{Os}(1)-\mathrm{C}(4)$	2.23(5)	$\mathrm{C}(10) \cdots \mathrm{Os}(2)-\mathrm{C}(34)$	$169(3)$
$\mathrm{Os}(1)-\mathrm{C}(29)$	$1.79(4)$	$\mathrm{C}(10) \cdots \mathrm{Os}(2)-\mathrm{C}(35)$	95(2)
$\bigcirc \mathrm{Os}(1)-\mathrm{C}(30)$	1.83(6)	$\mathrm{C}(10) \cdots \mathrm{Os}(2)-\mathrm{C}(36)$	$78(3)$
$\mathrm{Os}(2) \cdots \mathrm{C}(10)$	$2 \cdot 18(7)$	$\mathrm{C}(34)-\mathrm{Os}(2)-\mathrm{Os}(1)$	88(2)
$\mathrm{Os}(2)-\mathrm{C}(34)$	$2.08(8)$ $1.78(4)$	$\mathrm{C}(34)-\mathrm{Os}(2)-\mathrm{Os}(3)$ $\mathrm{C}(34)-\mathrm{Os}(2)-\mathrm{C}(35)$	$88(2)$ $96(3)$
$\mathrm{Os}(2)-\mathrm{C}(35)$ $\operatorname{Os}(2)-\mathrm{C}(36)$	$1.78(4)$ $2.06(7)$	$\mathrm{C}(34)-\mathrm{Os}(2)-\mathrm{C}(35)$ $\mathrm{C}(34)-\mathrm{Os}(2)-\mathrm{C}(36)$	$96(3)$ $100(3)$
$\mathrm{Os}(3)-\mathrm{C}(1)$	$2 \cdot 25(5)$	$\mathrm{C}(35)-\mathrm{Os}(2)-\mathrm{Os}(1)$	100(1)
$\mathrm{Os}(3)-\mathrm{C}(4)$	$2 \cdot 16$ (5)	$\mathrm{C}(35)-\mathrm{Os}(2)-\mathrm{Os}(3)$	156(1)
$\mathrm{Os}(3)-\mathrm{C}(31)$	1.68(8)	$\mathrm{C}(35)-\mathrm{Os}(2)-\mathrm{C}(36)$	$92(3)$
) $\mathrm{s}(3)-\mathrm{C}(32)$	$1.57(8)$	$\mathrm{C}(36)-\mathrm{Os}(2)-\mathrm{Os}(1)$	$165(2)$
Os (3)-C(33)	$1.98(4)$	$\mathrm{C}(36)-\mathrm{Os}(2)-\mathrm{Os}(3)$	$111(2)$
$\mathrm{C}(29)$-O(1)	$1 \cdot 20(6)$	$\mathrm{C}(1)-\mathrm{Os}(3)-\mathrm{Os}(1)$	$52(1)$
$\mathrm{C}(30)-\mathrm{O}(2)$	1-12(7)	$\mathrm{C}(1)-\mathrm{Os}(3)-\mathrm{C}(4)$	$74(2)$
$\mathrm{C}(31)-\mathrm{O}(3)$	$1 \cdot 27$ (9)	$\mathrm{C}(1)-\mathrm{Os}(3)-\mathrm{C}(31)$	$87(3)$
$\mathrm{C}(32)-\mathrm{O}(4)$	$1 \cdot 34(9)$	$\mathrm{C}(1)-\mathrm{Os}(3)-\mathrm{C}(32)$	117(4)
$\mathrm{C}(33)-\mathrm{O}(5)$	1-12(6)	$\mathrm{C}(4)-\mathrm{Os}(3)-\mathrm{Os}(1)$	$52(1)$
$\mathrm{C}(34)-\mathrm{O}(6)$	0.99(10)	$\mathrm{C}(4)-\mathrm{Os}(3)-\mathrm{Os}(2)$	$75(1)$
$\mathrm{C}(35)-\mathrm{O}(7)$	$1 \cdot 33(6)$	$\mathrm{C}(4)-\mathrm{Os}(3)-\mathrm{C}(31)$	$100(3)$
$\mathrm{C}(36)-\mathrm{O}(8)$	$1 \cdot 15(8)$	$\mathrm{C}(4)-\mathrm{Os}(3)-\mathrm{C}(32)$	144(4)
(b) Angles (${ }^{\circ}$)		$\mathrm{C}(4)-\mathrm{Os}(3)-\mathrm{C}(33)$ $\mathrm{C}(31)-\mathrm{Os}(3)-\mathrm{C}(32)$	$96(2)$ $117(4)$
$\mathrm{Os}(1)-\mathrm{Os}(3)-\mathrm{Os}(2)$	60.5 (1)	$\mathrm{C}(32)-\mathrm{Os}(3)-\mathrm{Os}(1)$	$105(3)$
$\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{Os}(3)$	56.4(1)	$\mathrm{C}(32)-\mathrm{Os}(3)-\mathrm{Os}(2)$	69(4)
$\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{Os}(3)$	63.1(1)	$\mathrm{C}(33)-\mathrm{Os}(3)-\mathrm{Os}(2)$	$74(1)$
$\mathrm{C}(1)-\mathrm{Os}(1)-\mathrm{Os}(3)$	$52(1)$	$\mathrm{C}(33)-\mathrm{Os}(3)-\mathrm{C}(31)$	85(3)
C(1)-Os(1)-C(2)	38(2)	$\mathrm{C}(33)-\mathrm{Os}(3)-\mathrm{C}(32)$	77(4)
$\mathrm{C}(1)-\mathrm{Os}(1)-\mathrm{C}(3)$	$62(2)$	$\mathrm{Os}(1)-\mathrm{C}(29)-\mathrm{O}(1)$	170(1)
C(1) $-\mathrm{Os}(1)-\mathrm{C}(29)$	126(2)	$\mathrm{Os}(1)-\mathrm{C}(30)-\mathrm{O}(2)$	166(5)
$\mathrm{C}(1)-\mathrm{Os}(1)-\mathrm{C}(30)$	96(2)	$\mathrm{Os}(2)-\mathrm{C}(34)-\mathrm{O}(6)$	166(8)
$\mathrm{C}(2)-\mathrm{Os}(1)-\mathrm{C}(4)$	59(2)	$\mathrm{Os}(2)-\mathrm{C}(35)-\mathrm{O}(7)$	163(4)
(2)-Os(1)-C(29)	96(2)	$\mathrm{Os}(2)-\mathrm{C}(36)-\mathrm{O}(8)$	$160(6)$
(3) $-\mathrm{Os}(1)-\mathrm{C}(4)$	$37(2)$	$\mathrm{Os}(3)-\mathrm{C}(31)-\mathrm{O}(3)$	175(7)
(3)-Os(1)-C(29)	89(2)	$\mathrm{Os}(3)-\mathrm{C}(32)-\mathrm{O}(4)$	160(6)
$\mathrm{C}(4)-\mathrm{Os}(1)-\mathrm{Os}(2)$	75(2)	$\mathrm{Os}(3)-\mathrm{C}(33)-\mathrm{O}(5)$	177(1)
(4) $-\mathrm{Os}(1)-\mathrm{Os}(3)$	50(1)		

The four chelate carbon atoms lie in plane (2) of equation $5 \cdot 95 X-19 \cdot 08 Y+4 \cdot 54 Z=-2 \cdot 09, \chi^{2}=0 \cdot 4$,

[^2]and relevant distances (\AA) from this plane are: $\mathrm{C}(1)$ $-0.02(9), C(2) 0.03(9), C(3)-0.05(10)$, and $C(4) 0.02(8)$.
These four atoms and $\mathrm{Os}(3)$ form a rough pentagonal group [plane (3)] whose equation is $4.59 \mathrm{X}-24 \cdot 03 \mathrm{Y}+$ $4 \cdot 07 Z=-2 \cdot 69, \chi^{2}=17 \cdot 3$; relevant distances (\AA) from it are: $\mathrm{C}(1)-0.21(9), \mathrm{C}(2) 0 \cdot 16(9), \mathrm{C}(3) 0.09(10)$, $\mathrm{C}(4)-0.17(8)$, and $\mathrm{Os}(3) \quad 0.004(2)$. The inclinations of planes (2) and (3) with respect to the plane of the osmium atoms are 68 and 64°.
We can argue the existence of a $\mathrm{Ph}(\mathrm{I}) \cdots \mathrm{Os}(2)$ bond on the basis both of the short contact $\mathrm{C}(10) \cdots \mathrm{Os}(2)$ $[2 \cdot 18(7) \AA]$ and of the planarity of the $\mathrm{Ph}(\mathrm{I}), \mathrm{C}(4),-$ $\mathrm{Os}(2)$ group [plane (1)], however the nature of this bond is not quite clear.

Table 3
Interatomic distances and angles, with their standard deviations in parentheses, in the organic ligand

(a) Distances (\AA)		$\mathrm{Os}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	77(4)
$\mathrm{C}(1)-\mathrm{C}(2)$	1-56(4)	$\mathrm{Os}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	$63(3)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1 \cdot 27(9)$	$\mathrm{Os}(1)-\mathrm{C}(3)-\mathrm{C}(11)$	117(5)
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.51(9)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$114(6)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1 \cdot 69(6)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(11)$	129(7)
$\mathrm{C}(5)-\mathrm{C}(6)$	1-48(7)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(11)$	116(6)
$\mathrm{C}(6)-\mathrm{C}(7)$	$1 \cdot 33$ (8)	$\mathrm{Os}(1)-\mathrm{C}(4)-\mathrm{Os}(3)$	77(2)
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.21(9)$	$\mathrm{Os}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	80(4)
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.31(8)$	$\mathrm{Os}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	123(3)
$\mathrm{C}(9)-\mathrm{C}(10)$	$1 \cdot 52(10)$	$\mathrm{Os}(3)-\mathrm{C}(4)-\mathrm{C}(3)$	117(4)
$\mathrm{C}(10)-\mathrm{C}(5)$	$1 \cdot 43$ (9)	$\mathrm{Os}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	113(3)
$\mathrm{C}(3)-\mathrm{C}(11)$	$1 \cdot 33(10)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	128(5)
$\mathrm{C}(11)-\mathrm{C}(12)$	$1 \cdot 53$ (7)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	123(4)
$\mathrm{C}(12)-\mathrm{C}(13)$	1.41 (9)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)$	$113(4)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$1 \cdot 37(10)$	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(10)$	124(5)
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.41(10)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$112(5)$
$\mathrm{C}(15)-\mathrm{C}(16)$	1.42(10)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	121 (6)
$\mathrm{C}(16)-\mathrm{C}(11)$	$1 \cdot 36(8)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	139(6)
$\mathrm{C}(2)-\mathrm{C}(17)$	$1.51(7)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	110(5)
$\mathrm{C}(17)-\mathrm{C}(18)$	$1 \cdot 27(9)$	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(5)$	$113(5)$
$\mathrm{C}(18)-\mathrm{C}(19)$	1.48(10)	$\mathrm{C}(9)-\mathrm{C}(10) \cdots \mathrm{Os}(2)$	127(4)
$\mathrm{C}(19)-\mathrm{C}(20)$	1.49(10)	$\mathrm{Os}(2) \cdots \mathrm{C}(10)-\mathrm{C}(5)$	$119(4)$
$\mathrm{C}(20)-\mathrm{C}(21)$	1.41(10)	$\mathrm{C}(3)-\mathrm{C}(11)-\mathrm{C}(12)$	132(5)
$\mathrm{C}(21)-\mathrm{C}(22)$	1.41(10)	$\mathrm{C}(3)-\mathrm{C}(11)-\mathrm{C}(16)$	117(6)
$\mathrm{C}(22)-\mathrm{C}(17)$	1.47(9)	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(16)$	$110(5)$
$\mathrm{C}(1)-\mathrm{C}(23)$	1.42(8)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	117(5)
$\mathrm{C}(23)-\mathrm{C}(24)$	$1.38(8)$	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$123(6)$
$\mathrm{C}(24)-\mathrm{C}(25)$	1.46 (8)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	120(8)
$\mathrm{C}(25)-\mathrm{C}(26)$	$1.51(7)$	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	112(7)
$\mathrm{C}(26)-\mathrm{C}(27)$	1.46 (7)	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(11)$	132(6)
$\mathrm{C}(27)-\mathrm{C}(28)$	$1 \cdot 44(8)$	$\mathrm{C}(2)-\mathrm{C}(17)-\mathrm{C}(18)$	$109(5)$
$\mathrm{C}(28)-\mathrm{C}(23)$	$1 \cdot 45(7)$	$\mathrm{C}(2)-\mathrm{C}(17)-\mathrm{C}(22)$	$122(5)$
(b) Angles (${ }^{\circ}$)		$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	$115(6)$
$\mathrm{Os}(1)-\mathrm{C}(1)-\mathrm{Os}(3)$	76(2)	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	117(7)
$\mathrm{Os}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	81(3)	$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	127(7)
$\mathrm{Os}(1)-\mathrm{C}(1)-\mathrm{C}(23)$	124(4)	$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	109(7)
$\mathrm{Os}(3)-\mathrm{C}(1)-\mathrm{C}(2)$	110(3)	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(17)$	$124(6)$
$\mathrm{Os}(3)-\mathrm{C}(1)-\mathrm{C}(23)$	120(4)	$\mathrm{C}(1)-\mathrm{C}(23)-\mathrm{C}(24)$	$122(5)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(23)$	128(5)	$\mathrm{C}(1)-\mathrm{C}(23)-\mathrm{C}(28)$	$117(5)$
$\mathrm{Os}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	62(3)	$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(28)$	$120(5)$
$\mathrm{Os}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	74(4)	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	121 (5)
$\mathrm{Os}(1)-\mathrm{C}(2)-\mathrm{C}(17)$	122(3)	$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	123(5)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	119(5)	$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)$	$111(4)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(17)$	107(4)	$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(28)$	126(5)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(17)$	131 (6)	$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(23)$	119(5)

If we suppose that $\mathrm{Ph}(\mathrm{I})$ is a normal phenyl group, plane (1) and the values of the angles $\mathrm{C}(9)-\mathrm{C}(10) \cdots \mathrm{Os}(2)$ $\left[127(4)^{\circ}\right]$ and $\mathrm{C}(5)-\mathrm{C}(10) \cdots \mathrm{Os}(2) \quad\left[119(4)^{\circ}\right]$ require that the hydrogen atom bound to $\mathrm{C}(10)$ is on the
${ }^{9}$ V. Schomaker, J. Waser, R. E. Marsch, and G. Bergman, Acta Cryst., 1959, 12, 600.
${ }_{10}$ D. W. J. Cruickshank and A. P. Robertson, Acta Cryst., $1953,6,698$.
$\mathrm{C}(10) \cdots \mathrm{Os}(2)$ direction; this seems an unlikely situation since La Placa et al. ${ }^{11}$ have found $\mathrm{Mn}-\mathrm{H}$ to be $1 \cdot 60(2) \AA$ and, considering the $\mathrm{Os}-\mathrm{CO}$ and $\mathrm{Mn}-\mathrm{CO}$ bond lengths, we must expect an $\mathrm{Os}-\mathrm{H}$ bond not shorter than $1.6 \AA$. To remove this difficulty we could suppose $\mathrm{C}(10)$ being in resonance between an $s p^{3}$ and $s p^{2}$ configuration with its hydrogen atom no longer on the $\mathrm{C}(10) \cdots \mathrm{Os}(2)$ direction; this hypothesis would be in

Both steric hindrance and the requirement of a bond between $\mathrm{Ph}(\mathrm{I})$ and $\mathrm{Os}(2)$ are responsible for remarkable angles of twist for the phenyl groups; in fact the angles of planes $(4)-(8)$ with the plane of the chelate carbon atoms [plane (2)] are $38,59,60,57$, and 62°.

Since the standard deviations for the bonds and angles of the light atoms are quite large, a thorough discussion of the molecular structure on the basis of

Figure 2 Clinographic projection, along the x axis, of the content of one unit cell.
agreement with the distribution of the bond and angle values in $\mathrm{Ph}(\mathrm{I})$ (Tables 2 and 3). A third possibility is that the hydrogen atom is directly bound to $\mathrm{Os}(2)$ and $\mathrm{C}(10) \cdots \mathrm{Os}(2)$ is a σ bond. Unfortunately, both the two cases of a three-centre bond ${ }^{12}$ (first two hypotheses) and that of a hydride bond (third hypothesis) are in agreement with the absorption at $\tau 25.5$ in the n.m.r. spectrum. ${ }^{13}$

The equations of the planes of the phenyl groups, including their extra carbon atoms are:

Plane (4): $\mathrm{Ph}(\mathrm{I})$

$$
\begin{gathered}
7 \cdot 16 X+1 \cdot 38 Y+5 \cdot 75 Z=0 \cdot 43 \\
\chi^{2}=1 \cdot 2 \\
9 \cdot 08 X-4 \cdot 64 Y-3 \cdot 71 Z=-0 \cdot 82 \\
\chi^{2}=2 \cdot 7 \\
-3 \cdot 86 X+25 \cdot 89 Y+5 \cdot 91 Z=3 \cdot 54 \\
\chi^{2}=11 \cdot 0
\end{gathered}
$$

Plane (6): $\mathrm{Ph}(\mathrm{III})$

$$
\begin{array}{cc}
\text { Plane }(7): \mathrm{Ph}(\mathrm{IV}) \quad & 2 \cdot 06 X+32 \cdot 79 Y-1 \cdot 38 Z=4 \cdot 08 \\
\gamma^{2}=2 \cdot 1
\end{array}
$$

The deviations from planarity are not significant, except for plane (6); however, if we exclude $\mathrm{C}(2)$, the corresponding equation is:
Plane (8) :

$$
\begin{aligned}
& -4 \cdot 63 X+23 \cdot 30 Y+6 \cdot 43 Z=3 \cdot 76 \\
& \chi^{2}=0 \cdot 2
\end{aligned}
$$

bond order is not easily feasible. Anyway, in order to settle the bond configuration around $\mathrm{Os}(1)$, we can suppose that while $\mathrm{Os}(1)-\mathrm{C}(1), \mathrm{Os}(1)-\mathrm{C}(4), \mathrm{Os}(3)-\mathrm{C}(1)$, $\mathrm{Os}(3)-\mathrm{C}(4), \mathrm{C}(1)-\mathrm{C}(2)$, and $\mathrm{C}(3)-\mathrm{C}(4)$ are single bonds, $\mathrm{C}(2)-\mathrm{C}(3)$ is a double bond (Tables 2 and 3); owing to the short contacts of $\mathrm{Os}(1)$ with $\mathrm{C}(2)$ and $\mathrm{C}(3)$ the existence of a μ-bond ${ }^{\mathbf{1 4}}$ between $\mathrm{C}(2)=\mathrm{C}(3)$ and $\mathrm{Os}(1)$ seems plausible. It would result, therefore, that $\mathrm{Os}(1)$ has a seven-fold co-ordination according to a very distorted octahedron with a face centred by such a bond.

On the other hand, emphasizing the role of the values of the bond angles with respect to those of the bond distances (Tables 2 and 3), we cannot exclude for $\mathrm{Os}(1)$ a co-ordination number of six, in such a way that two corners of the resulting octahedron are towards the middle of the two (now double) bonds $\mathrm{C}(1)=\mathrm{C}(2)$ and $C(3)=C(4)$; the other four corners would be occupied by $\mathrm{Os}(2), \mathrm{Os}(3), \mathrm{C}(29)$, and $\mathrm{C}(30)$.

[^3]On the hypothesis of a three-centre bond, around $\mathrm{Os}(2)$ there are, octahedrally distributed, three carbonyls, two osmium atoms, and $\mathrm{C}(10)$; if instead there is a hydride $\mathrm{Os}-\mathrm{H}$ bond, we should find seven atoms around Os(2) (Table 2).
$\mathrm{Os}(3)$ is seven-co-ordinated according to a distorted pentagonal bipyramid where $C(4)$ and $C(32)$ are the vertices facing the pentagonal section (Table 2).

Table 4

Principal intramolecular contacts $(\leqslant 3 \cdot 2 \AA)$

	$3 \cdot 16(5)$	$\mathrm{C}(1) \cdots \mathrm{C}(31)$	$2 \cdot 73(9)$
$\mathrm{Os}(2) \cdots \mathrm{C}(4)$	$3 \cdot 16(4)$	$\mathrm{C}(1) \cdots \mathrm{C}(32)$	$3 \cdot 10(9)$
$\mathrm{Os}(2) \cdots \mathrm{C}(3)$	$3 \cdot 13(4)$	$\mathrm{C}(4) \cdots \mathrm{C}(31)$	$2 \cdot 96(9)$
$\mathrm{Os}(2) \cdots \mathrm{C}(32)$	$3 \cdot 20(8)$	$\mathrm{C}(4) \cdots \mathrm{C}(33)$	$3 \cdot 07(7)$
$\mathrm{Os}(2) \cdots \mathrm{C}(33)$	$3 \cdot 06(5)$		
$\operatorname{Os}(3) \cdots \mathrm{C}(23)$	$3 \cdot 20(6)$		

Whatever the true co-ordination for $\mathrm{Os}(1)$ and $\mathrm{Os}(2)$ might be, the resulting molecular structure is in agreement with the measured diamagnetic properties ${ }^{13}$ of the compound. The molecule is very overcrowded and there are several short contacts concerning the phenyl groups, or phenyl and carbonyl groups; the values for the intramolecular contacts $<3 \cdot 2 \AA$ are reported in Table 4.

Figure 2 shows, in clinographic projection along the x axis, the packing of the molecules in a unit cell. Among the molecules there are several notable contacts and those $<3.3 \AA$ are listed in Table 5 . Through some of these contacts, the molecules form chains twisting

Table 5
Principal intermolecular contacts $(\leqslant 3 \cdot 3 \AA)$

$\mathrm{C}(8) \cdots \mathrm{O}\left(\mathbf{1}^{\mathrm{I}}\right)$	3-21(7)	$\mathrm{O}(\mathbf{1}) \cdots \mathrm{O}\left(\mathbf{6}^{\mathbf{v}}\right)$	3-26(6)
$\mathrm{C}(9) \cdots \mathrm{O}\left(1^{\mathrm{I}}\right)$	3-33(6)	$\mathrm{O}(2) \cdots \mathrm{O}\left(7^{\text {II }}\right)$	$2 \cdot 99$ (6)
$\mathrm{C}(26) \cdots \mathrm{O}\left(6^{\mathrm{II}}\right)$	3-11(7)	$\mathrm{O}(2) \cdots \mathrm{O}\left(8^{\text {II }}\right)$	3-27(6)
$\mathrm{C}(27) \cdots \mathrm{O}\left(6^{\text {II }}\right.$)	$3 \cdot 29(8)$	$\mathrm{O}(4) \cdots \mathrm{O}\left(7^{\mathrm{III}}\right)$	$3 \cdot 11$ (6)
$\mathrm{C}(32) \cdots \mathrm{O}\left(7^{\mathrm{III}}\right)$	3-12(8)	$\mathrm{O}(4) \cdots \mathrm{O}\left(8^{\text {II }}\right)$	$3 \cdot 12(6)$
$\mathrm{C}(33) \cdots \mathrm{O}\left(7^{111}\right)$	3-12(7)	$\mathrm{O}(5) \cdots \mathrm{O}\left(7^{\mathrm{III}}\right)$	$2 \cdot 95$ (6)
$\mathrm{C}(36) \cdots \mathrm{O}\left(2^{\text {IV }}\right)$	3-16(9)	$\mathrm{O}(7) \cdots \mathrm{O}\left(8^{\mathbf{v}}\right)$	$3 \cdot 14(6)$

Roman numerals as superscripts refer to the following equivalent positions relative to the reference molecule at x, y, z :

$$
\begin{array}{rr}
\text { I } 1+x, y, z & \text { IV } \frac{1}{2}+x, \frac{1}{2}-y, z-\frac{1}{2} \\
\text { II } x-\frac{1}{2}, \frac{1}{2}-y, \frac{1}{2}+z & \mathrm{~V} \frac{1}{x}-\frac{1}{2}, \frac{1}{2}-y, z-\frac{1}{2} \\
\text { III } \frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z
\end{array}
$$

along the z axis, and these chains are linked along the x axis to produce layers parallel to (010); between these layers there are no contacts $<3 \cdot 3 \AA$.
[1/1299 Received, 26th July', 1971]

[^0]: * D_{m} was obtained by flotation and the low value is attributed to the poor (lamellar) quality of the sample used.
 ${ }^{1}$ G. Cetini, O. Gambino, G. A. Vaglio, and R. P. Ferrari, Atti Accad. Sci. Tovino, 1969, 103, 495.
 ${ }^{2}$ G. Ferraris and G. Gervasio, Atti Accad. Sci. Torino, 1971, 105, 303.

[^1]: 6 ' International Tables for X-Ray Crystallography,' vol. III, Kynoch Press, Birmingham, 1962.

 7 W. R. Busing, K. O. Martin, and H. A. Levy, ORFLS, A Fortran Crystallographic Least-Squares Program, ORNL TM 305, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1962.
 ${ }^{8}$ R. P. Dodge and V. Schomaker, J. Organometallic Chem., 1965, 3, 274.

[^2]: * All the equations of planes, in fractional co-ordinates and referred to the cell axes, have been computed by the method of ref. 9. $\boldsymbol{x}^{2}=\Sigma(d / \sigma)^{2}$ and gives the statistical significance of the planarity. ${ }^{10}$

[^3]: ${ }^{11}$ S. J. La Placa, W. C. Hamilton, J. A. Ibers, and A. Davison, Inorg. Chem., 1969, 8, 1928.

 12 R. E. Rundle, J. Phys. Chem., 1957, 61, 45.
 ${ }^{13}$ R. P. Ferrari, G. A. Vaglio, O. Gambino, M. Valle, and G. Cetini, to be published.

 14 P. L. Pauson, Proc. Chem. Soc., 1960, 297.

