Crystal and Molecular Structure of μ-Oxo-bis[oxobis-(NN-diethyldithiocarbamato)rhenium(v)]; A Complex with a Linear O-Re-O-Re-O System

By S. R. Fletcher and A. C. Skapski,* Chemical Crystallography Laboratory, Imperial College, London SW7 2AY

Abstract

The crystal and molecular structure of the title compound have been determined from single-crystal X-ray diffractometer data. The crystals are monoclinic with unit-cell dimensions: $a=16 \cdot 343, b=14 \cdot 128, c=15 \cdot 346 \AA$, $\beta=93^{\circ} 56^{\prime}$; space-group $P 2_{1} / n$, and $Z=4$. The structure was solved by Patterson and Fourier methods, and least-squares refinement, using 3523 independent reflections, has reached $R 0.037$. The molecule contains a linear $\mathrm{O}-\mathrm{Re}-\mathrm{O}-\mathrm{Re}-\mathrm{O}$ system. Each rhenium atom is also bonded to two bidentate $N N$-diethyldithiocarbamato-ligands (dtc) to give a slightly distorted octahedral co-ordination. The dtc ligands attached to the two rhenium atoms are staggered ca. 40° relative to each other. The eight $\mathrm{Re}-\mathrm{S}$ distances have a mean value of $2.438 \AA$, while the mean $\mathrm{Re}-\mathrm{O}$ (bridging) and $\mathrm{Re}-\mathrm{O}$ (terminal) distances are 1.910 and $1.722 \AA$ respectively. Bonding in the $\mathrm{O}-\mathrm{Re}-\mathrm{O}-\mathrm{Re}-\mathrm{O}$ system is discussed.

Until recently the only known dithiocarbamate complexes of rhenium in any oxidation state were of the type $\mathrm{ReCl}_{2}\left(\mathrm{~S}_{2} \mathrm{CNR}_{2}\right) .{ }^{1}$ The crystal structures of these compounds were not determined, but from spectroscopic evidence the dithiocarbamato-ligands were deduced to be bidentate and the co-ordination about rhenium tetrahedral. Rowbottom and Wilkinson ${ }^{2,3}$ have now prepared a series of oxo-, nitrido-, and imidocomplexes of rhenium with dialkyldithiocarbamatoligands. One of these was prepared by the reaction between $\mathrm{ReOCl}_{3}\left(\mathrm{PPh}_{3}\right)_{2}$ and sodium diethyldithiocarbamate monohydrate in acetone. While there was little doubt that the diethyldithiocarbamato-ligands (dtc) in this complex were bidentate, there was some uncertainty about the amount of oxygen in the complex. An X-ray structure determination has shown that the formula of the complex is $\mathrm{Re}_{2} \mathrm{O}_{3}\left(\mathrm{~S}_{2} \mathrm{CNEt}_{2}\right)_{4}$ and that the molecule contains a novel linear $\mathrm{O}^{-} \mathrm{Re}^{-} \mathrm{O}-\mathrm{Re}-\mathrm{O}$ system.

A preliminary account of this work has already been published ${ }^{3}$ and an independent preliminary communication has subsequently confirmed the result. ${ }^{4}$

EXPERIMENTAL

μ-Oxo-bis[oxobis-($N N$-diethyldithiocarbamato)rhenium(v)] crystallises from acetone as dark brown polyhedra.

Crystal Data.- $\mathrm{C}_{20} \mathrm{H}_{40} \mathrm{~S}_{8} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Re}_{2}, \quad M=1013 \cdot 5$, Monoclinic, $a=16.343, b=14 \cdot 128, c=15.346 \AA, \beta=93^{\circ} 56^{\prime}$,* $U=3534.9 \AA^{3}, D_{\mathrm{m}}=1.90$ (by flotation), $Z=4, D_{\mathrm{c}}=$ $1.91 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=1960$. Space-group $P 2_{1} / n$ (No. 14)

[^0]from systematic absences: $h 0 l, h+l=2 n+1 ; 0 k 0$, $k=2 n+1 . \quad \mathrm{Cu}-K_{\alpha} \quad X$-radiation, $\lambda=1.5418 \AA ; \quad \mu(\mathrm{Cu}-$ $\left.K_{\alpha}\right)=172 \cdot 2 \mathrm{~cm}^{-1}$.
The crystal chosen for intensity-data collection was a polyhedron with opposite faces $0.35-0.6 \mathrm{~mm}$ apart. Data were measured on a Siemens off-line automatic fourcircle diffractometer, with $\mathrm{Cu}-K_{\alpha}$ radiation at a take-off angle of $4 \cdot 5^{\circ}$, a nickel β filter and a $\mathrm{Na}(\mathrm{Tl}) \mathrm{I}$ scintillation counter. A total of 3531 independent reflections (to $\theta=50^{\circ}$) were measured by use of the $\theta-2 \theta$ scan technique with a 'five-value' measuring procedure. ${ }^{5 a}$ Of these, 198 reflections were judged to be unobserved. ${ }^{5 a}$ The net count of the 507 reflection, measured as a reference every 50 reflections, did not vary significantly during the data collection (ca. 6 days). The data were scaled using the reference reflection and the Lorentz and polarisation corrections were applied.

Solution and Refinement of the Structure.-The Crystal Structure Calculations System ' X-ray ' 63 ', was used to solve and refine the structure. ${ }^{5 b}$ The calculations were carried out on the Imperial College IBM 7094 and the University of London CDC 6600 computers.

A three-dimensional Patterson synthesis revealed the positions of the two independent rhenium atoms, refinement of which gave $R \quad 0.31$. The eight sulphur atoms were located from the resulting difference Fourier to reduce R to $0 \cdot 174$. Successive difference Fouriers showed the positions of all remaining non-hydrogen atoms, and blockdiagonal least-squares refinement with isotropic thermal parameters gave $R=0 \cdot 109$. When all atoms were refined with anisotropic thermal parameters R dropped to 0.079 ,

[^1]but for several atoms the thermal parameters became ' non-positive definite'. An absorption correction was now applied since, although the crystal was not particularly anisotropic in shape, it was fairly large and its linear absorption coefficient was quite high. The correction was made according to the method of Busing and Levy ${ }^{6}$ using a $12 \times 12 \times 12$ grid, with crystal path-lengths determined by the vector-analysis procedure of Coppens et al. ${ }^{7}$

Refinement as previously reduced R to 0.043 and all atoms now had reasonable thermal parameters. A

Table 1
Fractional co-ordinates with estimated standard deviations in parentheses

Atom	x	y	z
$\mathrm{Re}(1)$	0.35759(2)	$0.22594(3)$	0.08114(2)
$\mathrm{Re}(2)$	0.19123(2)	$0 \cdot 11252(3)$	-0.07160(3)
$\mathrm{O}(1)$	0-4329(4)	0.2769(5)	$0 \cdot 1499$ (5)
$\mathrm{O}(2)$	$0 \cdot 2709(3)$	$0 \cdot 1718(4)$	$0 \cdot 0066(3)$
$\mathrm{O}(3)$	0.1279(4)	$0 \cdot 0550$ (5)	-0.1487(5)
S(11)	$0 \cdot 43012$ (15)	0.07988 (17)	$0 \cdot 05927$ (15)
$\mathrm{S}(12)$	$0 \cdot 32074$ (15)	$0 \cdot 11321$ (17)	$0 \cdot 19344(17)$
S(21)	$0 \cdot 26799(16)$	$0 \cdot 36461$ (18)	$0 \cdot 08460$ (16)
S(22)	$0 \cdot 38633(15)$	$0 \cdot 32928(16)$	-0.04022(15)
$\mathrm{S}(31)$	$0 \cdot 10068(16)$	$0 \cdot 10550$ (18)	$0.04573(19)$
S(32)	0.22037(15)	-0.03408(16)	$0 \cdot 00990$ (15)
S(41)	$0 \cdot 29315(15)$	$0 \cdot 13568(16)$	-0.18116(15)
S(42)	$0 \cdot 16783(16)$	$0 \cdot 26646$ (16)	-0.13814(16)
C(11)	$0 \cdot 3885$ (5)	$0 \cdot 0358(7)$	$0 \cdot 1516$ (6)
$\mathrm{C}(21)$	$0 \cdot 3139(6)$	0.4071(6)	-0.0044(6)
C(31)	$0 \cdot 1438$ (6)	-0.0029(7)	0.0774 (6)
C(41)	$0 \cdot 2453(6)$	$0 \cdot 2412$ (6)	-0.2050(6)
$\mathrm{N}(12)$	$0.4073(5)$	-0.0491(6)	$0 \cdot 1848$ (5)
$\mathrm{N}(22)$	$0 \cdot 2980$ (5)	0.4894 (6)	-0.0421(5)
$\mathrm{N}(32)$	$0 \cdot 1215(5)$	-0.0535(6)	$0 \cdot 1413$ (5)
$\mathrm{N}(42)$	$0 \cdot 2629$ (5)	0.2953 (5)	-0.2707(5)
C(13)	$0 \cdot 3788$ (7)	-0.0772(9)	$0 \cdot 2681$ (8)
$\mathrm{C}(14)$	$0 \cdot 4390$ (10)	-0.0628(16)	0.4313 (9)
C(15)	$0 \cdot 4637(8)$	-0.1148(8)	0-1425(8)
$\mathrm{C}(16)$	0.4186(10)	-0.1936(10)	$0.0991(10)$
C(23)	$0 \cdot 2351$ (8)	$0.5555(8)$	-0.0057(8)
$\mathrm{C}(24)$	$0 \cdot 1517(8)$	$0 \cdot 5333(9)$	-0.0518(10)
$\mathrm{C}(25)$	$0 \cdot 3395$ (8)	0.5243(8)	-0.1184(7)
$\mathrm{C}(26)$	0.4097(9)	$0.5887(11)$	-0.0921(11)
$\mathrm{C}(33)$	0.0577 (7)	-0.0210(10)	0-1978(8)
$\mathrm{C}(34)$	$0 \cdot 0927(9)$	$0.0393(10)$	$0 \cdot 2719(8)$
$\mathrm{C}(35)$	$0 \cdot 1542(8)$	-0.1508(8)	$0 \cdot 1606(7)$
$\mathrm{C}(36)$	0-1017(14)	-0.2219(11)	$0 \cdot 1142(11)$
$\mathrm{C}(43)$	$0.3254(8)$	$0 \cdot 2725$ (7)	$-0.3324(7)$
C(44)	0.4076 (8)	$0 \cdot 3166$ (9)	$-0.3039(9)$
$\mathrm{C}(45)$	$0 \cdot 2177(7)$	$0.3888(6)$	$-0.2877(7)$
$\mathrm{C}(46)$	$0 \cdot 1443(9)$	$0 \cdot 3765(10)$	$-0.3464(9)$

The diethyldithiocarbamato-ligands are composed of atoms with suffixes of the type ($m n$), where m is constant within the same ligand.
difference Fourier now showed the positions of all 40 hydrogen atoms, and these were assigned the isotropic temperature factors of their parent atoms. When these were included in least-squares refinement as a 'fixed contribution' R was reduced to $0 \cdot 042$. At this point, eight strong reflections thought to be suffering from extinction were removed from refinement which converged to give $R=0.037$. In the final stages of refinement a weighting scheme of the type suggested by Hughes ${ }^{8}$ was used, where $w=1$ for $F<F^{*}, \sqrt{ } w=F^{*} / F$ for $F \geqslant F^{*}$, with $F^{*}=70$ found to be optimum. Application of the weighting scheme left R unchanged at 0.037 but the standard deviations were reduced by $c a .20 \%$. The function

* For details of Supplementary Publications see Notice to Authors No. 7 in J. Chem. Soc. (A), 1970, Issue No. 20 (items less than 10 pp . are supplied as full size copies).
minimised in the least-squares refinement was $\Sigma w\left(F_{\mathbf{o}}-\right.$ $\left.F_{\mathrm{c}}\right)^{2}$. The atomic scattering factors were taken from ref. 9 and the real and imaginary parts of the anomalous dispersion correction for rhenium from ref. 10. A final difference Fourier was featureless except for a few peaks of $c a .0 .6-0.7 \mathrm{e}^{-3}$ in the immediate vicinity of the rhenium atoms.

Tables 1 and 2 list the final co-ordinates of the nonhydrogen atoms and the coefficients for the anisotropic temperature factors. The standard deviations have been estimated from block-diagonal matrix refinement and are, therefore, a slight underestimate of the true deviations. The co-ordinates of the hydrogen atoms are given in

Table 2
Anisotropic thermal parameters *

Atom	$10^{5} \beta_{11}$	$10^{5} \beta_{22}$	$10^{5} \beta_{33}$	$10^{5} \beta_{12}$	$10^{5} \beta_{13}$	$10^{5} \beta_{23}$
$\mathrm{Re}(1)$	255(2)	317(2)	224(2)	$-5(1)$	7(1)	-37(2)
$\operatorname{Re}(2)$	265(2)	269(2)	273(2)	-32(1)	$-23(2)$	28(2)
	$10^{4} \beta_{11}$	$10^{4} \beta_{22}$	$10^{4} \beta_{33}$	$10^{4} \beta_{12}$	$10^{4} \beta_{13}$	$10^{9} \beta_{23}$
$\mathrm{O}(1)$	42(3)	$51(4)$	44(4)	-8(3)	$-17(3)$	$-5(3)$
$\mathrm{O}(2)$	26(3)	41 (4)	23(3)	$-12(2)$	-10(2)	$-5(3)$
$\mathrm{O}(3)$	43(3)	62(5)	47(4)	$-17(3)$	$-13(3)$	-4(3)
S(11)	29(1)	39(1)	29(1)	9(1)	$11(1)$	3(1)
S(12)	$29(1)$	42(1)	23(1)	5(1)	7(1)	0(1)
S(21)	40(1)	36(1)	32(1)	6(1)	8(1)	-3(1)
S(22)	29(1)	32(1)	$31(1)$	-1(1)	5(1)	2(1)
S(31)	$31(1)$	43(2)	$51(1)$	6(1)	12(1)	17(1)
S(32)	37(1)	26(1)	29(1)	0 (1)	$5(1)$	4(1)
S(41)	37(1)	$25(1)$	26(1)	3(1)	1(1)	3(1)
S(42)	32(1)	31(1)	36(1)	3(1)	1(1)	9(1)
C(11)	26(4)	43(5)	28(4)	1(4)	-1(3)	3(4)
C(21)	34(4)	25(5)	41(5)	-2(4)	-2(4)	-8(4)
C(31)	28(4)	52(6)	32(5)	1(4)	0 (3)	$2(4)$
C(41)	36(4)	19(5)	32(4)	-6(4)	-3(3)	4(4)
N(12)	41 (4)	48(5)	32(4)	7(4)	14(3)	8(4)
$\mathrm{N}(22)$	38(4)	36(5)	38(4)	-4(3)	3(3)	3(4)
N(32)	38(4)	41 (5)	42(4)	$-9(3)$	6(3)	16(4)
N(42)	42(4)	30(4)	36(4)	$-4(3)$	$5(3)$	$5(3)$
C(13)	53 (6)	66(8)	50(6)	12(5)	$-1(5)$	20 (6)
C(14)	62(8)	195(19)	48(7)	-3(10)	2(6)	$15(10)$
$\mathrm{C}(15)$	49(6)	53(7)	70(7)	19(5)	18(5)	$19(6)$
$\mathrm{C}(16)$	83(9)	$65(8)$	78(9)	25(7)	16(7)	$-18(7)$
C(23)	58(6)	56(7)	64(7)	-18(5)	7(5)	$-18(6)$
$\mathrm{C}(24)$	47(6)	63(8)	93(9)	$-15(6)$	8(6)	$-6(7)$
C(25)	60(6)	52(7)	43(6)	1 (5)	$-5(5)$	$-14(5)$
C(26)	$65(8)$	82(10)	101(11)	27(7)	12(7)	$-1(8)$
C(33)	40(6)	$95(10)$	64(7)	3(6)	26(5)	23(7)
C(34)	62(7)	95(10)	$52(7)$	27(7)	20 (5)	-8(7)
C(35)	56(6)	59(7)	45(6)	16(5)	4(5)	$15(5)$
C(36)	147(15)	69(10)	76(10)	-45(10)	-31(10)	27(8)
$\mathrm{C}(43)$	62(6)	41 (6)	43(6)	3(5)	16(5)	$12(5)$
$\mathrm{C}(44)$	49(6)	62(8)	$79(8)$	6(5)	12(5)	$4(6)$
$\mathrm{C}(45)$	46(5)	29(5)	45(6)	3(4)	$-13(4)$	$5(4)$
$\mathrm{C}(46)$	59(7)	79(9)	70(8)	15(6)	-3(6)	36(7)

* In the form: $f_{0} \exp \left[-\left(\beta_{11} h^{2}+\beta_{22} h^{2}+\beta_{33}{ }^{2}+2 \beta_{12} h k+\right.\right.$ $\left.2 \beta_{13} h l+2 \beta_{23} k l\right]$.

Table 3. The observed and calculated structure-amplitudes are listed in Supplementary Publication No. SUP 20341 (6 pp ., 1 microfiche).*

DESCRIPTION OF THE STRUCTURE AND DISCUSSION

The molecular structure, of which a novel feature is a linear $\mathrm{O}-\mathrm{Re}-\mathrm{O}-\mathrm{Re}-\mathrm{O}$ system, is shown in Figure 1. The two rhenium atoms have a distorted octahedral ${ }^{6}$ W. R. Busing and H. A. Levy, Acta Cryst., 1957, 10, 180.
${ }_{7}$ P. Coppens, L. Leiserowitz, and D. Rabinovich, Acta Cryst., 1965, 18, 1035.
${ }^{8}$ E. W. Hughes, J. Amer. Chem. Soc., 1941, 63, 1737.
9 D. T. Cromer and J. T. Waber, Acta Cryst., 1965, 18, 104.
${ }^{10}$ D. T. Cromer, Acta Cryst., 1965, 18, 17.
co-ordination, each being bonded to sulphur atoms of two bidentate dtc ligands as well as to one terminal and one bridging oxygen atom. The most significant bond lengths and bond angles are given in Tables 4 and 5 respectively.

Table 3
Fractional co-ordinates of the hydrogen atoms

Atom	x	y	z
H(131)	$0 \cdot 320$	-0.043	$0 \cdot 280$
$\mathrm{H}(132)$	$0 \cdot 364$	-0.155	0.266
$\mathrm{H}(141)$	$0 \cdot 500$	-0.069	$0 \cdot 340$
$\mathrm{H}(142)$	0.435	0.013	$0 \cdot 360$
$\mathrm{H}(143)$	$0 \cdot 425$	-0.103	0.398
H(151)	$0 \cdot 498$	-0.077	0.093
$\mathrm{H}(152)$	0.510	-0.144	$0 \cdot 190$
$\mathrm{H}(161)$	0.448	-0.250	0.067
$\mathrm{H}(162)$	$0 \cdot 385$	-0.227	$0 \cdot 145$
$\mathrm{H}(163)$	$0 \cdot 379$	-0.164	0.047
$\mathrm{H}(231)$	$0 \cdot 271$	0.587	-0.052
$\mathrm{H}(232)$	$0 \cdot 262$	$0 \cdot 487$	0.015
$\mathrm{H}(241)$	$0 \cdot 115$	0.570	-0.005
$\mathrm{H}(242)$	$0 \cdot 145$	$0 \cdot 561$	-0.115
$\mathrm{H}(243)$	$0 \cdot 138$	$0 \cdot 452$	-0.051
$\mathrm{H}(251)$	0.355	$0 \cdot 448$	-0.113
$\mathrm{H}(252)$	$0 \cdot 305$	$0 \cdot 537$	-0.179
$\mathrm{H}(261)$	$0 \cdot 448$	$0 \cdot 522$	-0.065
$\mathrm{H}(262)$	$0 \cdot 387$	$0 \cdot 659$	-0.077
$\mathrm{H}(263)$	0.445	$0 \cdot 563$	-0.035
$\mathrm{H}(331)$	0.010	0.018	0.155
H(332)	$0 \cdot 025$	-0.084	$0 \cdot 220$
$\mathrm{H}(341)$	$0 \cdot 155$	0.005	$0 \cdot 300$
$\mathrm{H}(342)$	$0 \cdot 106$	$0 \cdot 109$	$0 \cdot 248$
$\mathrm{H}(343)$	0.053	0.043	0.323
H(351)	$0 \cdot 218$	-0.151	$0 \cdot 141$
$\mathrm{H}(352)$	$0 \cdot 158$	-0.161	$0 \cdot 231$
$\mathrm{H}(361)$	$0 \cdot 104$	-0.203	0.043
$\mathrm{H}(362)$	0.073	-0.217	0.049
$\mathrm{H}(363)$	0.093	-0.295	$0 \cdot 136$
H(431)	$0 \cdot 277$	0.312	-0.306
$\mathrm{H}(432)$	$0 \cdot 324$	$0 \cdot 200$	-0.309
H(441)	$0 \cdot 408$	$0 \cdot 336$	-0.375
H(442)	0.405	$0 \cdot 378$	-0.262
$\mathrm{H}(443)$	0.454	$0 \cdot 269$	-0.277
$\mathrm{H}(451)$	$0 \cdot 240$	$0 \cdot 332$	-0.244
H (452)	$0 \cdot 231$	0.455	-0.255
$\mathrm{H}(461)$	$0 \cdot 106$	$0 \cdot 339$	-0.302
$\mathrm{H}(462)$	$0 \cdot 114$	$0 \cdot 440$	-0.369
$\mathrm{H}(463)$	$0 \cdot 151$	0.332	. -0.405

Table 4
Selected bond lengths (\AA) with standard deviations in parentheses

$\mathrm{Re}(1)-\mathrm{S}(11)$	$2 \cdot 415(3)$	$\mathrm{Re}(2)-\mathrm{S}(31)$	2.410(3)
$\mathrm{Re}(1)-\mathrm{S}(12)$	$2.452(2)$	$\mathrm{Re}(2)-\mathrm{S}(32)$	$2 \cdot 449$ (2)
$\mathrm{Re}(1)-\mathrm{S}(21)$	$2 \cdot 449$ (3)	Re(2)-S(41)	2.468(3)
$\mathrm{Re}(1)-\mathrm{S}(22)$	$\begin{aligned} & 2 \cdot 437(2) \\ & \quad \text { Mean Re-S } \end{aligned}$	$\begin{aligned} & \operatorname{Re}(2)-\mathrm{S}(42) \\ & 2 \cdot 438 \end{aligned}$	2.422(2)
$\mathrm{Re}(1)-\mathrm{O}(1)$	1.723(7)	$\mathrm{Re}(2)-\mathrm{O}(3)$	1.721(7)
$\mathrm{Re}(1)-\mathrm{O}(2)$	1.917(5)	$\mathrm{Re}(2)-\mathrm{O}(2)$	1.903(5)
$\mathrm{C}(11)-\mathrm{S}(11)$	$1.729(9)$	C(31)-S(31)	1.740 (10)
$\mathrm{C}(11)-\mathrm{S}(12)$	$1.713(10)$	$\mathrm{C}(31)-\mathrm{S}(32)$	$1.736(10)$
$\mathrm{C}(21)-\mathrm{S}(21)$	1.712(10)	$\mathrm{C}(41)-\mathrm{S}(41)$	$1 \cdot 712(9)$
$\mathrm{C}(21)-\mathrm{S}(22)$	1-732(10)	$\mathrm{C}(41)-\mathrm{S}(42)$	$1 \cdot 720(10)$
	Mean C-S	1.724	
	Mean C-N	1-313(12)	
	Mean $\mathrm{N}-\mathrm{CH}_{2}$	$1 \cdot 488(15)$	
	Mean $\mathrm{CH}_{2}-\mathrm{CH}_{3}$	1-488(19)	

The main distortion in the octahedral co-ordination of the metal atoms arises from the necessarily acute $\mathrm{S}-\mathrm{Re}-\mathrm{S}$ angles of $c a .72^{\circ}$ within the same ligand caused by the small ' bite' of the dtc entity. A further dis-
tortion is that the dtc ligands tend to incline slightly away from the terminal oxygen atoms and towards the bridging one, such that the mean O (terminal) $-\mathrm{Re}^{-} \mathrm{S}$

Figure 1 The molecular structure of $\mathrm{Re}_{2} \mathrm{O}_{3}\left(\mathrm{~S}_{2} \mathrm{CNEt}\right)_{4}$

Figure 2 A schematic view down the Re...Re vector showing the degree of staggering of the diethyldithiocarbamatoligands

Table 5
Selected bond angles $\left(^{\circ}\right)$ with standard deviations in parentheses

angle is $\mathbf{9 3 \cdot 4 ^ { \circ }}$. Within each molecule the dtc ligands attached to the two metal atoms are staggered by $c a$. 40° relative to each other (Figure 2).

The eight Re^{-S} distances range between $2 \cdot 410$ and $2 \cdot 468 \AA$, and are what would be predicted for a single bond in an octahedral Re^{V} complex. Structural data for similar bonds are not available, but an expected value may be derived using Pauling's covalent radius ${ }^{11}$ for sulphur of $1.04 \AA$, and that for rhenium(v) which was evaluated as $1.38 \AA$ from the structure of ($\mathrm{Ph}_{4} \mathrm{As}$)$\mathrm{ReBr}_{4} \mathrm{O}(\mathrm{MeCN}) .^{12}$ This gives an $\mathrm{Re}^{-\mathrm{S}}$ distance of $2 \cdot 42 \AA$, which is very close to the mean value of $2 \cdot 438$ \AA found in this structure. As would be expected, this
$\mathrm{Re}(2)-\mathrm{O}(3)$ are $177 \cdot 9,175 \cdot 5$, and $173 \cdot 8^{\circ}$ respectively ($\sigma 0.3^{\circ}$). Although the departure from linearity is small, in its cumulative effect it is almost certainly real. This view is reinforced by the fact that the distances between $\operatorname{dtc}(2 n)$ and $\operatorname{dtc}(4 n)$ atoms are in general shorter than those between equivalent atoms of $\operatorname{dtc}(1 n)$ and $\operatorname{dtc}(3 n)$, which is consistent with the direction of bending. This effect is magnified for the ethyl groups, for instance the distance $\mathrm{C}(25) \cdots \mathrm{C}(45)$ is appreciably shorter than the equivalent one $\mathrm{C}(\mathbf{1 3}) \cdots$ $\mathrm{C}(35)$ (see Table 6). The slight bending probably arises not for electronic reasons but because of steric pressure of a neighbouring molecule $\mathrm{C}(33)$ atom on the

Figure 3 A stereoscopic view showing the packing of $\mathrm{Re}_{2} \mathrm{O}_{3}\left(\mathrm{~S}_{2} \mathrm{CNEt}_{2}\right)_{4}$ molecules
is slightly longer (by ca. $0.05 \AA$) than the average Re-S distance of $2.388 \AA$ found in the five-co-ordinate complex $\operatorname{ReN}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)_{2}{ }^{\mathbf{3}, 13}$

The small differences in the $\mathrm{Re}-\mathrm{S}$ distances in the oxo-complex would appear to be real, even if one takes account of the fact that the standard deviations of the bond lengths are slightly underestimated. This variation is not unusual in dithiocarbamato-complexes; for instance in $\mathrm{Cu}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)_{2}{ }^{14}$ a similar variation (ca. 20б) is observed. Possibly the departure from octahedral co-ordination at the rhenium atoms may result in slightly varying degrees of overlap with the sulphur orbitals, although it is difficult to rationalise such small differences in bond length.

The mode of packing of the molecules in the unit cell is shown by the stereoscopic ${ }^{15}$ pair of illustrations in Figure 3. The packing is such that the dtc ligands protrude into spaces between adjacent molecules. Some of the shorter non-bonded inter- and intramolecular distances are quoted in Table 6. One should perhaps now consider the linearity of the $\mathrm{O}-\mathrm{Re}-\mathrm{O}-\mathrm{Re}-\mathrm{O}$ system in the light of these distances. The three angles $\mathrm{O}(1)-\operatorname{Re}(1)-\mathrm{O}(2), \operatorname{Re}(1)-\mathrm{O}(2)-\operatorname{Re}(2)$, and $\mathrm{O}(2)--$

[^2]terminal $O(3)$ atom, at which end of the molecule the distortion is most marked.

Table 6
Selected non-bonded distances (\AA)
(a) Intramolecular

$\mathrm{S}(12) \cdots \mathrm{S}(32)$	3.78	$\mathrm{S}(32) \cdots \mathrm{C}(11)$	3.53
S(22) $\cdot \cdots \mathrm{S}(41)$	$3 \cdot 75$	$\mathrm{S}(42) \cdot \cdots \mathrm{C}(21)$	$\mathbf{3} \cdot 63$
$\mathrm{S}(12) \cdots \mathrm{C}(31)$	$3 \cdot 67$	$\mathrm{C}(25) \cdots \mathrm{C}(45)$	$3 \cdot 70$
S(22) \cdots C(41)	3.53	$\mathrm{C}(13) \cdots \mathrm{C}(35)$	$4 \cdot 06$
(b) Intermolecular			
$\mathrm{O}(3) \cdots \mathrm{C}\left(33^{1}\right)$	$3 \cdot 11$	$\mathrm{H}(163) \cdots \mathrm{H}\left(463{ }^{\text {II }}\right.$)	$2 \cdot 22$
$\mathrm{O}(3) \cdots \mathrm{C}\left(44^{\mathrm{II}}\right)$	$3 \cdot 49$	$\mathrm{H}(152) \cdots \mathrm{H}\left(443^{\text {IV }}\right)$	$2 \cdot 28$
$\mathrm{O}(1) \cdots \mathrm{C}\left(35^{\text {III }}\right)$	$3 \cdot 48$	$\mathrm{H}(242) \cdots \mathrm{H}\left(432{ }^{\text {V }}\right.$)	$2 \cdot 36$
$\mathrm{S}(21) \cdots \mathrm{C}\left(13^{\mathrm{II}}\right)$	3.51		

Superscripts refer to atoms in the following positions:

$$
\begin{array}{ll}
\text { I }-x,-y,-z & \text { IV } 1-x,-y,-z \\
\text { II } \frac{1}{2}-x, y-\frac{1}{2},-\frac{1}{2}-z & \text { V } \frac{1}{2}-x, \frac{1}{2}+y,-\frac{1}{2}-z
\end{array}
$$

The bond lengths and angles found in the dtc ligands show good agreement with those found in many such complexes and also with the free-ion value determined for sodium diethyldithiocarbamate. ${ }^{16}$ The ligands are essentially planar, apart from the terminal methyl groups which adopt the anti-configuration found in
${ }^{15}$ C. K. Johnson, ORTEP, thermal ellipsoid plotting program, Oak Ridge National Laboratory Report, 1965, ORNL 3794.
${ }^{16}$ M. Colapietro, A. Domenicano, and A. Vaciago, Chem. Comm., 1968, 572.
most dtc complexes. The planarity of the ligands is summarised in Table 7. It can be seen that for two of the ligands, $\operatorname{dtc}(1 n)$ and $\operatorname{dtc}(3 n)$, the departure from planarity is rather more than would be expected in view of the standard deviations of the atomic parameters. This slight buckling may well be the result of packing forces. The Table also shows the planarity of the four sulphur atoms about each metal atom, and the fact that in both cases the latter is $c a .0 \cdot 15 \AA$ out of plane towards the terminal oxygen.

Bonding in the $\mathrm{O}-\mathrm{Re}-\mathrm{O}-\mathrm{Re}^{-} \mathrm{O}$ System.-There have been no X-ray structural data reported on a linear $\mathrm{O}-\mathrm{M}-\mathrm{O}-\mathrm{M}-\mathrm{O}$ system, although the complex $\mathrm{Re}_{2} \mathrm{O}_{3} \mathrm{Cl}_{4}-$ $(\mathrm{py})_{4}(\mathrm{py}=$ pyridine), which may contain this unit,

A number of dioxo-complexes of rhenium(v) have also been prepared, and the crystal structure of $\mathrm{K}_{3} \mathrm{ReO}_{2}(\mathrm{CN})_{4}$ has recently been redetermined. ${ }^{21,22}$ The two oxoligands in the anion are mutually trans, and $\mathrm{Re}-\mathrm{O}$ is $1.773 \AA$. It had been suggested ${ }^{21}$ that these must be double bonds, but it now seems likely that some further multiple-bond character is present.

The only crystal-structure data available for a linear $\mathrm{Re}-\mathrm{O}-\mathrm{Re}$ system is that of the $\left(\mathrm{Re}_{2} \mathrm{OCl}_{10}\right)^{4-}$ ion. ${ }^{23}$ In contrast to the title structure, the chloride ligands bonded to different rhenium atoms are eclipsed, which suggests that the two $\mathrm{Re}^{-} \mathrm{O}$ bridging bonds are double bonds, with $\mathrm{Re}-\mathrm{O} 1 \cdot 86 \AA$.

A non-linear $\mathrm{Re}^{-} \mathrm{O}^{-} \mathrm{Re}$ bridge has been reported in

Table 7
Planarity of groups of atoms within the molecule and distances from least-squares planes

| Atoms defining plane | Mean \|devn.| of
 atoms in plane (\AA) |
| :---: | :---: |
| $\mathrm{S}(11), \mathrm{S}(12), \mathrm{S}(21), \mathrm{S}(22)$ | 0.042 |
| $\mathrm{~S}(31), \mathrm{S}(32), \mathrm{S}(41), \mathrm{S}(42)$ | 0.011 |
| $\mathrm{~S}(11), \mathrm{S}(12), \mathrm{C}(11), \mathrm{N}(12), \mathrm{C}(13), \mathrm{C}(15)$ | 0.047 |
| $\mathrm{~S}(21), \mathrm{S}(22), \mathrm{C}(21), \mathrm{N}(22), \mathrm{C}(23), \mathrm{C}(25)$ | 0.007 |
| $\mathrm{~S}(31), \mathrm{S}(32), \mathrm{C}(31), \mathrm{N}(32), \mathrm{C}(33), \mathrm{C}(35)$ | 0.038 |
| $\mathrm{~S}(41), \mathrm{S}(42), \mathrm{C}(41), \mathrm{N}(42), \mathrm{C}(43), \mathrm{C}(45)$ | 0.022 |

| Maximum \|devn.| of
 atoms in plane (\AA) | Atom out of
 the plane | Perp. distance from
 from the plane (\AA) |
| :---: | :---: | :---: |
| 0.043 | $\mathrm{Re}(1)$ | 0.153 |
| 0.012 | $\operatorname{Re}(2)$ | 0.133 |
| 0.082 | $\mathrm{Re}(1)$ | 0.215 |
| | $\mathrm{C}(14)$ | 1.43 |
| | $\mathrm{C}(16)$ | 1.38 |
| 0.011 | $\mathrm{Re}(1)$ | 0.115 |
| | $\mathrm{C}(24)$ | 1.43 |
| | $\mathrm{C}(26)$ | 1.38 |
| | $\mathrm{Re}(2)$ | 0.078 |
| | $\mathrm{C}(34)$ | 1.44 |
| | $\mathrm{C}(36)$ | 1.47 |
| | $\mathrm{Re}(2)$ | 0.256 |
| | $\mathrm{C}(44)$ | 1.37 |
| | $\mathrm{C}(46)$ | 1.33 |

has been isolated. ${ }^{17}$ A molybdenum dithiocarbamate complex of similar stoicheiometry to the title compound, $\mathrm{Mo}_{2} \mathrm{O}_{3}\left(\mathrm{~S}_{2} \mathrm{CNEt}_{2}\right)_{4}$, has been prepared but, although its crystal structure has not been determined, the corresponding dithiocarbonate has the terminal and bridging Mo-O bonds in cis-positions. ${ }^{18}$

There have been many attempts to correlate $\mathrm{Re}^{\mathrm{V}}-\mathrm{O}$ bond lengths with bond order. In the structure of $\mathrm{ReOCl}_{3}\left(\mathrm{PPhEt}_{2}\right)_{2}$ Ehrlich and Owston ${ }^{19}$ found an $\mathrm{Re}-\mathrm{O}$ distance of $1.60 \AA$, the shortest reported. Cotton and Lippard subsequently investigated compounds containing anions of the type $\left(\mathrm{ReOBr}_{4} \mathrm{~L}\right)^{-}$, L being a donor ligand. In $\left(\mathrm{Ph}_{4} \mathrm{As}\right) \mathrm{ReOBr}_{4}(\mathrm{MeCN})^{12}$ the $\mathrm{Re}-\mathrm{O}$ distance is $1.73 \AA$ and in $\left(\mathrm{Et}_{4} \mathrm{~N}\right) \mathrm{ReOBr}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)^{20}$ it is $1.71 \AA$. These bonds were all suggested to be of the triple-bond variety. The accuracy of the $\mathrm{Re}-\mathrm{O}$ distance in $\mathrm{ReOCl}_{3}\left(\mathrm{PPhEt}_{2}\right)_{2}$ is rather suspect since only twodimensional visually estimated data were used, refinement was largely isotropic and no absorption correction was applied. For comparison, in the present investigation the terminal $\mathrm{Re}^{-\mathrm{O}}$ bond distances were 1.61 before anisotropic refinement, $1 \cdot 65$ before the absorption correction was applied, while the final value was $1.722 \AA$.

[^3]$\mathrm{Re}_{2} \mathrm{OCl}_{3}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{EtCO}_{2}\right)_{2}{ }^{24}$ where the two rhenium atoms are bridged by an oxygen, a chlorine, and two bidentate propionato-ligands. Here the $\mathrm{Re}-\mathrm{O}$ distance of $1.916 \AA$ is in excellent agreement with the value in the title compound, but a degree of $\mathrm{Re}^{-\mathrm{Re}}$ bonding has been suggested.

There are no compounds yet reported in which an $\mathrm{Re}-\mathrm{O}$ single bond has been shown to exist. The expected length of such a bond can, however, be predicted by use of Pauling's covalent radius for oxygen, and Cotton and Lippard's value ($1.38 \AA$) for the octahedral covalent radius of rhenium(v). On this basis it seems that an ideal $\mathrm{Re}^{-\mathrm{O}}$ single-bond length should be $c a$. $2.04 \AA$.

In the title compound the $\mathrm{Re}-\mathrm{O}$ terminal bonds, mean $1.722 \AA$, appear therefore to be normal triple bonds, agreeing well with other reported values. The triple bonding may be justified on the following grounds. Assuming that rhenium uses its six valence orbitals, $5 d_{2^{2}}, 5 d_{x^{2}-y^{2}}, 6 s, 6 p_{x}, 6 p_{y}$, and $6 p_{z}$ to form σ-bonds with the six ligands, empty $d_{y z}$ and $d_{x z}$ orbitals are then available to overlap with p_{y} and p_{x} orbitals on the terminal oxygen to form an effective triple bond. This leaves

[^4]the $d_{x y}$ orbital free to accommodate the remaining two d electrons, thus explaining the diamagnetism of the compound.

One should now consider why the title compund has a linear $\mathrm{M}_{2} \mathrm{O}_{3}$ system, whereas all similar known molybdenum(v) complexes have the bridging and terminal oxygen atoms mutually cis. These include $\mathrm{Mo}_{2} \mathrm{O}_{3}{ }^{-}$ $\left(\mathrm{S}_{2} \mathrm{COEt}\right)_{4},{ }^{18,25} \mathrm{~K}_{2}\left[\mathrm{Mo}_{2} \mathrm{O}_{5} \mathrm{OX}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right],{ }^{26}$ and almost certainly $\mathrm{Mo}_{2} \mathrm{O}_{3}\left(\mathrm{~S}_{2} \mathrm{CNEt}_{2}\right)_{4}{ }^{18}$ In all these a similar bonding scheme can take place. However, the triple bond is completed by $d_{x y}-p_{y}$ and $d_{x z}-p_{z}$ overlap, leaving the $d_{y x}$ orbital to accommodate the one d electron of Mo^{∇}. These orbitals on the two molybdenum atoms can then combine with the p_{y} orbital on the bridging oxygen to form a three-centre π-bond. It might be expected that such a structure would be preferable in the rhenium compound, avoiding steric interactions between the diethyldithiocarbamato-ligands. However, since Re^{∇} has a d^{2} configuration, the $d_{y z}$ orbitals would be filled and would therefore present an antibonding arrangement. In the linear system found, however, no such unfavourable orbital interactions exist.

It is interesting to consider the various configurations which the dtc ligands might possibly adopt in this compound. If the ligands bonded to different rhenium atoms were exactly eclipsed, the $\mathrm{S} \cdot \mathrm{S}$ distances would be very short at ca. $3 \cdot 5 \AA$. In addition, the separations between methyl and methylene carbon atoms on different ligands [e.g. $\mathrm{C}(24) \cdots \mathrm{C}(45)]$ would be impossibly small if the anti-configuration was retained. Also in this situation the rhenium $d_{y z}$ and $d_{x z}$ orbitals would be suitably placed to accept π-electrons from the p orbitals of the bridging oxygen atom to give double bonding with a concomitant shortening of the $\mathrm{Re}-\mathrm{O}$ (bridging) bonds and an even smaller $\mathrm{S} \cdots \mathrm{S}$ separation. Another possibility might be for the dtc ligands to be completely staggered at 90° to each other. Here there would be no steric interactions involving the terminal ethyl groups and the rhenium and oxygen orbitals would again be suitably placed for full overlap. The $\mathrm{S} \cdot \mathrm{S}$ distances, however, would again be too short as in the previous case.

Since the actual structure has the dtc ligands staggered ca. 40° relative to each other it seems that there is a strong tendency for the $S \cdots S$ separations between ligands bonded to different rhenium atoms to have the maximum possible values. In this equilibrium position the $\mathrm{S} \cdots \mathrm{S}$ separations are comfortable at $>3.75 \AA$, despite the fact that the terminal triple-bonded oxygens repel the dtc ligands to give mean O (terminal)- $\mathrm{Re}^{-} \mathrm{S}$ angles of $93 \cdot 4^{\circ}$. Although fairly short $\mathrm{S} \cdots \mathrm{C}$ distances of ca. $3 \cdot 5 \AA$ result from this arrangement one would expect electrostatic repulsion between residual nega-

25 A. B. Blake, F. A. Cotton, and J. S. Wood, J. Amer. Chem. Soc., 1964, 86, 3024.
tive charges to be less than for $\mathrm{S} \cdot \mathrm{S}$. In addition the 40° staggering allows the terminal ethyl groups to arrange themselves so that intramolecular steric interactions are negligible.

As a result of this staggering the $d_{y z}$ and $d_{x z}$ orbitals of the two rhenium atoms are clearly placed at 40° relative to each other, so that ideal overlap with the bridging oxygen p-orbitals is not possible. The $\mathrm{Re}-\mathrm{O}$

Figure 4 (a) A schematic representation of the orbitals used in π-bonding between rhenium atoms and both the bridging and the terminal oxygen atoms. (b) Staggering of the rhenium $d_{y z}$ and oxygen $p_{y} \pi$-bonding orbitals in the $\mathrm{Re}-\mathrm{O}-\mathrm{Re}$ bridge. For sake of clarity the lobes pointing towards the terminal oxygens have been omitted, together with the $d_{x z}$ and p_{x} orbitals
bond distance of $1.910 \AA$, however, suggests a bond order >1 and <2. It seems likely, therefore, that a small amount of overlap may still occur between these orbitals. The p_{x} and p_{y} orbitals may arrange themselves so that each is staggered 20° to the relevant orbitals of the two rhenium atoms. This amount of twisting probably results in the formation of weak π-bonds between the bridging oxygen and the rhenium atoms [Figure $4(a)$ and (b)].

We thank J. F. Rowbottom and Professor G. Wilkinson for providing the crystals, Drs. W. P. Griffith and J. S. Avery for discussions, Professor D. Rogers for the use of a diffractometer, and the S.R.C. for a Research Studentship (to S. R. F.).
[1/2080 Received, 8th November, 1971]

[^5]
[^0]: * The β value was incorrectly printed in the preliminary account ${ }^{3}$ as $96^{\circ} 56^{\prime}$.
 ${ }_{1}$ R. Colton, R. Levitus, and G. Wilkinson, J. Chem. Soc., 1960, 5275.
 ${ }_{2}{ }^{2}$ J. F. Rowbottom and G. Wilkinson, J.C.S. Dalton, 1972, 826.

[^1]: ${ }^{3}$ S. R. Fletcher, J. F. Rowbottom, A. C. Skapski, and G. Wilkinson, Chem. Comm., 1970, 1572.
 ${ }^{4}$ D. G. Tisley, R. A. Walton, and D. L. Wills, Inorg. Nuclear Chem. Letters, 1971, 7, 523.
 ${ }^{5}$ (a) A. C. Skapski and P. G. H. Troughton, Acta Cryst., 1970, B26, 716; (b) ' X-Ray '63' system of programs, J. M. Stewart, University of Maryland Technical Report TR-64-6.

[^2]: ${ }^{11}$ L. Pauling, 'The Nature of the Chemical Bond,' Cornell University Press, Ithaca, New York, 3rd edn., 1960, p. 246.
 ${ }_{12}$ F. A. Cotton and S. J. Lippard, Inorg. Chem., 1966, 5, 416.
 ${ }^{13}$ S. R. Fletcher and A. C. Skapski, following paper.
 ${ }^{14}$ M. Bonamico, G. Dessy, A. Mugnoli, A. Vaciago, and L. Zambonelli, Acta Cryst., 1965, 19, 886.

[^3]: ${ }^{17}$ N. P. Johnson, F. I. M. Taha, and G. Wilkinson, J. Chem. Soc., 1964, 2614.
 ${ }_{18}{ }^{18}$ R. N. Jowitt and P. C. H. Mitchell, J. Chem. Soc. (A), 1970, 1702.
 ${ }^{10}$ H. W. W. Ehrlich and P. G. Owston, J. Chem. Soc., 1963, 4368.
 ${ }_{20}$ F. A. Cotton and S. J. Lippard, Inorg. Chem., 1965, 4, 1621.

[^4]: ${ }^{21}$ K. Lukaszewicz and T. Glowiak, Bull. Acad. polon. Sci., Sér. Sci. chim., 1961, 9, 613.
 ${ }_{22}$ R. H. Fenn, A. J. Graham, and N. P. Johnson, J. Chem. Soc. (A), 1971, 2880.
 ${ }^{23}$ J. C. Morrow, Acta Cryst., 1962, 15, 851.
 ${ }^{24}$ F. A. Cotton, R. Eiss, and B. M. Foxman, Inorg. Chem., $1969,8,950$.

[^5]: ${ }^{26}$ F. A. Cotton, S. M. Morehouse, and J. S. Wood, Inorg. Chem., 1964, 3, 1603.

