# Log $K_i$ , $\Delta H^{\circ}_i$ , and $\Delta S^{\circ}_i$ Values for the Interaction of Glycinate lon with H+, Mn<sup>2+</sup>, Fe<sup>2+</sup>, Co<sup>2+</sup>, Ni<sup>2+</sup>, Cu<sup>2+</sup>, Zn<sup>2+</sup>, and Cd<sup>2+</sup> at 10, 25, and 40°

By Reed M. Izatt, H. Dee Johnson, and James J. Christensen,\* Departments of Chemistry and Chemical Engineering and No. 11 from the Center for Thermochemical Studies, Brigham Young University, Provo, Utah 84601

Values of log  $K_{t}$ ,  $\Delta H^{*}_{t}$ , and  $\Delta S^{*}_{t}$  valid at zero ionic strength in aqueous solution are reported for the reaction  $MG_{i}^{2-i} + G^{-} = MG_{i+1}^{1-i}$  where G = glycine and M = Mn(i = 0), Fe(i = 0), Co(i = 0.1, 2), Ni(i = 0, 1, 2), Cu(i = 0, 1), Cu(i = 0, 1), Cu(i = 0, 1) Zn(i = 0,1,2), and Cd(i = 0,1,2) at 10, 25, and 40°. The  $\Delta C_{pi}^{\circ}$  values calculated from the temperature dependence of  $\Delta H^{\circ}_{i}$  indicate that solvent effects for the various metal complexes are similar. Values of pK,  $\Delta H^{\circ}$ , and  $\Delta S^{\circ}$  valid at zero ionic strength are determined or summarized from the literature for proton ionization from glycine at 10, 25, and 40° and a value of  $\Delta C_{p}^{\circ}$  is calculated from the temperature variation of the  $\Delta H^{\circ}$  values.

particular transition-metal ions are indispensable in the proper functioning of many protein and enzyme systems,

GLYCINE is an integral unit of protein structure. Since it is important to know the interaction energies of these metal ions both with the macro-molecular compounds and with the individual amino-acid units. In the present study  $K_i$ ,  $\Delta H^{\circ}_i$ , and  $\Delta S^{\circ}_i$  values valid at zero ionic strength,  $\mu$ , have been determined for reactions (1) and (2) at 10, 25, and  $40^{\circ}$  where G = glycine and

$$HG = H^+ + G^- \tag{1}$$

$$MG_{i}^{2-i} + G^{-} = MG_{i+1}^{1-i}$$
 (2)

M = Mn, Fe, Co, Ni, Cu, Zn, and Cd. Values of  $\Delta C^{\circ}_{pi}$ are calculated from the variation of corresponding  $\Delta H^{\circ}_{i}$  values with temperature.

Numerous thermodynamic studies, mainly involving the determination of  $K_i$  values, have been reported for the interaction of  $G^-$  with  $H^+$  and with the metal ions at the same conditions as studied here and the results from these studies are summarized together with the results reported here in Tables 1 and 2.\* Recently,  $\Delta H_i$  values have been determined for reactions (1) and (2) both from calorimetric and variation of  $K_i$  with temperature data. Calculation of  $\Delta H_i$  values from  $K_i$  vs. 1/T data usually involves the assumption that  $\Delta H_i$  is constant over the temperature range involved. The recent determination of  $\Delta H_i$  values as a function of temperature has shown that this assumption is often unfounded, *i.e.*  $\Delta C_p$  values for proton ionization and metal-complex formation reactions are frequently large.<sup>1-5</sup> Furthermore, errors in  $\Delta H_i$  values cannot be estimated from the corresponding  $\log K_i$  values alone. Most of the previously reported calorimetric data have been determined at high ionic strengths or where the stoicheiometry of the reactions was uncertain. It seemed desirable, therefore, to study reactions (1) and (2) calorimetrically making the measurements in dilute solutions in order that the resulting  $\Delta H^{\circ}_{i}$  values might be combined with the corresponding  $K_i$  values to provide a consistent set of thermodynamic data for each system.

#### EXPERIMENTAL

Materials.-The NaOH (Baker Analysed) and HClO4 (Baker and Adamson Reagent) solutions used in this study were standardized against potassium hydrogen phthalate (National Bureau of Standards) and tris(hydroxymethyl)aminomethane (Fisher Certified Reagent), respectively, and against each other. The sodium glycinate and glycine solutions were prepared from glycine (Calibiochem A grade) and NaOH solutions.

The  $M(ClO_4)_2$  solutions were prepared as follows.

 $Mn(ClO_4)_2$ .  $Mn(OH)_2$  was precipitated from a  $MnCl_2$ (Baker Analysed) solution under oxygen-free conditions

\* The results of other thermodynamic studies for the interaction of G<sup>-</sup> with H<sup>+</sup> and with the metal ions studied here, but not under the same conditions, are given in expanded versions of Tables 1 and 2 which are deposited with the N.L.L. as Supplementary Publication No. 20353, 21 pp., 1 microfiche (see note concerning Supplementary Publications in Notice to Authors No. 7, J. Chem. Soc. (A), Issue No. 20, 1970).

<sup>1</sup> R. M. Izatt, H. D. Johnston, D. J. Eatough, J. W. Hansen, and J. J. Christensen, *Thermochim. Acta*, 1971, **2**, 77. <sup>2</sup> J. J. Christensen, M. D. Slade, D. E. Smith, R. M. Izatt, and J. Tsang, *J. Amer. Chem. Soc.*, 1970, **92**, 4164.

J. J. Christensen, J. H. Rytting, and R. M. Izatt, J. Chem.

Soc. (B), 1970, 1643.
 <sup>4</sup> J. J. Christensen, J. H. Rytting, and R. M. Izatt, Bio-chemistry, 1970, 9, 4907.

and the supernatant liquid was removed by centrifugation. The Mn(OH)<sub>2</sub> was then dissolved in a known excess of  $HClO_4$  and the solution was filtered to remove any  $MnO_2$ .

 $Fe(ClO_4)_2$ . Fe wire (Baker Analysed) was dissolved in a known excess of HClO<sub>4</sub>.

 $Co(ClO_4)_2$  and  $Ni(ClO_4)_2$ .  $CoCO_3$  (Baker Analysed) and NiCO<sub>3</sub> (Baker Analysed), respectively, were refluxed with solutions containing known amounts of HClO<sub>4</sub> until the pH values of the solutions were greater than 6. The solutions were cooled, excess of metal carbonate was filtered off, and a known amount of HClO<sub>4</sub> was added to suppress hydrolysis.

 $Cu(ClO_4)_2$ ,  $Zn(ClO_4)_2$ , and  $Cd(ClO_4)_2$ . Known amounts of CuO wire (Baker Analysed), ZnO (Merck Reagent), and CdO (Matheson, Coleman, and Bell Reagent Powder), respectively, were dissolved in known excesses of HClO<sub>4</sub>.

The metal perchlorate solutions, except  $Fe(ClO_4)_2$ , were standardized for metal-ion concentration using EDTA (Baker Analysed) with either Erichrome Black T or Xylenol Orange as indicator. The Fe(ClO<sub>4</sub>)<sub>2</sub> solution was standardized by a thermometric titration of the Fe<sup>II</sup> solution with acidic dichromate.<sup>6</sup> The results of the Fe<sup>II</sup> determinations gave reproducibility of  $\pm 0.1\%$  using Fe<sup>II</sup> concentrations as low as  $8 \times 10^{-3}$  M.

Proton Ionization from HG and  $H_2G^+$ .—Values of  $\Delta H^\circ$ for the reaction  $HG = H^+ + G^-$  were determined at 10, 25, and 40° in the following manner using a calorimetric titration procedure.7 Five duplicate glycine solutions (100 ml,  $1.100 \times 10^{-2}$ M-HG) were titrated with 0.2087M-NaOH solutions at each temperature and the resulting heat changes, Q, were corrected for heat losses from the calorimeter, heats of dilution, and heats of stirring. Corrections at 10, 25, and 40° for the formation of H<sub>2</sub>G<sup>+</sup> were made using literature  $pK^{8}$  and  $\Delta H^{\circ 9}$  values for the reaction  $H_{2}G^{+} = HG + H^{+}$ . The pK<sup>8</sup> values at 10, 25, and 40° for the reaction  $HG = H^+ + G^-$  were used to evaluate the mmoles of HG reacted. From the corrected Q values and mmoles of HG reacted,  $\Delta H$  values were calculated at each temperature, and combined with heat of ionization of water values, i.e. 14.22 (ref. 10), 13.34 (ref. 11), and 12.70 (ref. 10) kcal/mol at 10, 25, and 40°, respectively, to give heat of ionization values for HG at these temperatures. Values of  $\Delta H^{\circ}$  were calculated in each case by correcting the  $\Delta H$ value for the effect of diluting the reactants from a finite concentration to  $\mu = 0$ . The correction used to extrapolate the  $\Delta H$  value to  $\mu = 0$  was the same as that used to correct the heat of ionization of water to  $\mu = 0.10, 11$ 

The heats of dilution of the NaOH titrant were taken from the literature <sup>12</sup> at 25° and were measured <sup>13</sup> at 10 and 40°.

<sup>5</sup> J. J. Christensen, J. H. Rytting, and R. M. Izatt, J. Chem.

<sup>6</sup> L. D. Hansen, J. J. Christensen, and R. M. Izatt, J. Chem.
<sup>6</sup> L. D. Hansen, J. J. Christensen, and R. M. Izatt, 'Applications of Thermometric Titrimetry to Analytical Chemistry in New Developments in Titrimetry,' ed. J. Jordan, Marcel Dekker, in the press.

<sup>7</sup> J. J. Christensen, R. M. Izatt, and L. D. Hansen, Rev. Sci. Instr., 1965, **36**, 779.

<sup>8</sup> E. J. King, J. Amer. Chem. Soc., 1951, **73**, 155.
 <sup>9</sup> J. J. Christensen, J. L. Oscarson, and R. M. Izatt, J. Amer. Chem. Soc., 1968, **90**, 5949.

<sup>10</sup> J. J. Christensen, G. L. Kimball, H. D. Johnston, and R. M. Izatt, *Thermochim. Acta*, in the press. <sup>11</sup> J. D. Hale, R. M. Izatt, and J. J. Christensen, J. Phys.

Chem., 1963, 67, 2605. <sup>12</sup> C. E. Vanderzee and J. A. Swanson, J. Phys. Chem., 1963,

67, 2608. <sup>13</sup> H. D. Johnston, Ph.D. Dissertation, Brigham Young

University, Provo, Utah, 1968 (Diss. Abs., 1969, 29, 4128B).

M<sup>2+</sup>-G<sup>-</sup> Interaction.—Equilibrium Constant Determinations.--All equilibrium constant determinations were performed with the aid of a Beckman Research pH meter (model 1019) or an Orion Ionalyser (model 801). Both pH meters were fitted with Corning Glass and Beckman saturated-calomel reference electrodes. Each temperature at which the equilibrium constants were determined was controlled to  $\pm 0.1^{\circ}$ .

For experimental purposes, the metal ions were divided into two groups: (a)  $Mn^{2+}$  and  $Fe^{2+}$ ; and (b)  $Co^{2+}$ ,  $Ni^{2+}$ , Cu<sup>2+</sup>, Zn<sup>2+</sup>, and Cd<sup>2+</sup>.

Equilibrium constants for the interaction of  $Mn^{2+}$  and Fe<sup>2+</sup> with G<sup>-</sup> were calculated from pH titration curves obtained at 10, 25, and 40° by the titration in each case of a solution of appropriate HG and M(ClO<sub>4</sub>)<sub>2</sub> concentrations with a 0.2087M-NaOH solution. Concentrations of HG and  $M(ClO_4)_2$  ranged from  $1.7 \times 10^{-2}$  to  $2.6 \times 10^{-2}M$  and  $5.9 \times 10^{-3}$  to  $4.2 \times 10^{-3}$  m, respectively. Between 20 and 25 titration curves were obtained for each system at each of the three temperatures studied. A precipitate (presumably MnO<sub>2</sub>) formed in the case of Mn<sup>2+</sup> before sufficient of the MnG<sub>2</sub> species was formed to allow calculation of its formation constant. A precipitate also occurred in titrations involving the Fe<sup>2+</sup> solutions because of the oxidation of Fe<sup>2+</sup> with subsequent precipitation of iron(III) hydroxide. Use of a pure nitrogen atmosphere made it possible to obtain  $\bar{n}$  (average number of bound ligands per metal ion) values of ca. 1.2 before precipitation of iron(III) hydroxide occurred, but this was not considered a large enough  $\bar{n}$  value to calculate accurate constants for the formation of  $FeG_2$ . The agreement of the calculated log K values and the observed stabilities of the systems in the regions where MnG<sup>+</sup> and FeG<sup>+</sup> were predominant was taken as evidence that oxidation had not occurred in these regions. Thus,  $K_i$  values for the formation of FeG<sup>+</sup> and MnG<sup>+</sup>, but not  $\operatorname{FeG}_2$  and  $\operatorname{MnG}_2$  are reported for these systems.

The  $K_i$  values for the interaction of  $G^-$  with the metal ions of group (b) were determined from 20 to 25 sets of pH titration data obtained by titrating each  $M(ClO_4)_2$  solution with a sodium glycinate solution. Typical ranges of concentrations of metal ion and glycinate ion in solution were  $M^{2+} = 8.0 \times 10^{-3} - 9.0 \times 10^{-4} M$ ,  $G^- = 0.390 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.$ 0.400m. In each case, except Cu<sup>2+</sup>, three complexes, *i.e.*  $MG^+$ ,  $MG_2(aq)$ , and  $MG_3^-$ , were observed. In the case of  $Cu^{2+}$ , only  $CuG^+$  and  $CuG_2(aq)$  were found for  $G^-: Cu^{2+}$ ratios less than 4. Difficulty was encountered in the measurement of the equilibrium constant for the formation of the  $ZnG_3^{-}$  species. This difficulty is reflected in the large deviations observed in the calculated K values which suggest either that the species was more complex than the simple stoicheiometry predicted, or that some experimental parameter was in error. When  $Zn(ClO_4)_2$  solutions were titrated with  $G^-$  solutions beyond a ratio of 2  $G^-$  per  $Zn^{2+}$ , an apparent poisoning of the glass electrode was observed which could be reversed by immersing the electrode in HCl solutions. It is therefore believed that the third species was formed and that the difficulty of determining  $K_3$  was due to the poisoning of the glass electrode.

Heat Determinations .- Heats of complex formation for metal ions in group (a)  $(Mn^{2+} \text{ and } Fe^{2+})$  were determined by calorimetric titrations of metal perchlorate solutions containing an excess of glycine with NaOH solutions.

Typical concentrations used were: titrate =  $7.840 \times 10^{-3}$  M- $Mn[ClO_4]_2$  and  $5.210 \times 10^{-3}M-HClO_4$ ; titrant = 0.2086M-HG and 0.0195M-NaOH. Five runs were made for each metal ion. The resulting heat changes were then corrected for heats of dilution and the heat effects resulting from the formation of water 10, 11 and proton ionization from HG 8, 13 and  $H_2G^{+,9}$  This procedure allowed the reaction in the calorimeter to proceed without the formation of precipitates.

The heats of complex formation for metal ions in group (b)  $(Co^{2+}, Ni^{2+}, Cu^{2+}, Zn^{2+}, and Cd^{2+})$  were obtained from data measured by titrating the metal perchlorate solutions with sodium glycinate solutions. Typical concentrations used were: titrate =  $7.639 \times 10^{-3}$  M-Cu(ClO<sub>4</sub>)<sub>2</sub> and  $6.583 \times$  $10^{-3}$ M-HClO<sub>4</sub>; titrant = 0.3986M-HG and 0.3909M-NaOH. Five runs were made for each metal ion.

Calculations.---The equilibrium constants were calculated by a procedure that has been previously described <sup>14</sup> and later improved.<sup>15</sup> Equation (3) was used to convert all

$$\log \gamma = \frac{-Az^2 \mu^{0.5}}{1 + B^{\circ} a \mu^{0.5}} + C z^2 \mu$$
(3)

concentrations to activities and pH values to concentrations. All activity coefficients were determined using values of 4.4 Å and 0.3 for a and C, respectively, because

| TABLE 1                                                       |      |     |  |  |
|---------------------------------------------------------------|------|-----|--|--|
| Thermodynamic quantities for the ionization of glycine in     |      |     |  |  |
| aqueous solution, $^{a}$ HG = H <sup>+</sup> + G <sup>-</sup> |      |     |  |  |
|                                                               | 4 60 | 100 |  |  |

|         |                      | A 770              | $\Delta S^{\circ}$ | $\Delta C^{\circ}_{\mathbf{p}}$ |
|---------|----------------------|--------------------|--------------------|---------------------------------|
|         | . 77                 | $\Delta H^{\circ}$ | (cal/              | (cal)                           |
| t (°C)  | $\mathbf{p}K$        | (kcal/mol)         | deg/mol)           | deg/mol)                        |
| 10      | $(10.193)^{b}$       | $10.85 \pm 0.03$   | -8.32              |                                 |
|         |                      | $(10.73)^{b}$      |                    |                                 |
|         |                      | (11.57) °          |                    |                                 |
|         |                      | $(10.73)^{d}$      |                    |                                 |
|         |                      | . ,                |                    |                                 |
| 25      | (9·780) <sup>b</sup> | $10.55\pm0.03$     | -9.36              |                                 |
|         |                      | $(10.55)^{b}$      |                    | $(-12)^{b}$                     |
|         |                      | (10·76) °          |                    |                                 |
|         |                      | $(10.57)^{d-f}$    |                    | $(-11)^{d}$                     |
| 40      | (0 419) 3            | ( )                | 0.01               | (/                              |
| 40      | (9·412) <sup>b</sup> | $10.38 \pm 0.03$   | -9.91              |                                 |
|         |                      | $(10.37)^{b}$      |                    |                                 |
|         |                      | (10·22) °          |                    |                                 |
|         |                      | $(10.40)^{d}$      |                    |                                 |
| 10 - 40 |                      |                    |                    | -16 + 4                         |

 $-16 \pm 4$ 

<sup>a</sup> The  $\Delta H^{\circ}$  values reported are the averages of several runs in each case with the uncertainties expressed as standard deviations among runs,  $\mu = 0$ . The uncertainty of the  $\Delta C_p^{\circ}$ value is estimated to be twice that which results when  $\Delta C_p^{\circ}$ values are calculated from  $\Delta H^{\circ}$  values at the extremes of their uncertainties. For a complete literature survey of earlier pK values see R. M. Izatt and J. J. Christensen in 'Handbook of Biochemistry and Selected Data for Molecular Biology,' Chem. Rubber Pub. Co., Cleveland, 2nd edn., 1970, pp. J-58—173. All data are valid at  $\mu = 0$  except those from c ( $\mu = 0.01$ ). The  $\Delta H^{\circ}$  values in c, e, and f were determined calorimetrically; those in b and d were calculated from the variation of pK with temperature. <sup>b</sup> Ref. 8. <sup>e</sup> Ref. 20. <sup>d</sup> S. P. Datta and A. K. Grzybowski, *Trans. Faraday Soc.*, 1958, **54**, 1188, values at 10 and 40° are interpolated from reported values at 5 and 15°, and 35 and 45°, respectively. "J. A. Partridge, J. J. Christen-sen, and R. M. Izatt, J. Amer. Chem. Soc., 1966, 88, 1649. J. Sturtevant, J. Amer. Chem. Soc., 1941, 63, 88.

equilibrium constants independent of  $\mu$  were calculated when these parameters were used. The ion product of water was taken from the literature.<sup>16</sup>

 L. D. Hansen, J. A. Partridge, R. M. Izatt, and J. J. Christensen, *Inorg. Chem.*, 1966, 5, 569.
 H. S. Harned and B. B. Owen, 'The Physical Chemistry of Electrolytic Solutions,' 3rd edn., Reinhold Publishing Corp., New York, 1958, p. 754.

<sup>14</sup> F. J. C. Rossotti and H. Rossotti, ' The Determination of Stability Constants,' McGraw-Hill Book Co., New York, 1961, ch. 5.

TABLE 2 Thermodynamic quantities  $^a$  for the reaction of glycinate ion with selected metal ions in aqueous solution ( $\mu = 0$ )

| Reaction<br>$Mn^{2+} + G^- = MnG^+$                                               | t (°C)<br>10                               | Method<br>pot, C                  | $egin{array}{c} { m Log} \ K \ { m 3.23} \pm 0.02 \end{array}$    | $\Delta H^{ m o} \ ({ m kcal/mol}) \ - 0.4 \pm 0.02$ | $\Delta S^\circ \ ({ m cal/deg/mol}) \ 13$ | $\Delta C^{\circ}_{p}$ (cal/deg/mol) |
|-----------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------|-------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------|--------------------------------------|
| $\min + \alpha = \min \alpha$                                                     | 10                                         | pot, C<br>pot, T                  | 3·23 ± 0·02<br>(3·18) Þ                                           | $(-0.50)^{b}$                                        | 15                                         |                                      |
|                                                                                   | 25                                         | pot, C                            | $3\cdot21\pm0\cdot02$                                             | $-0.3\pm0.1$                                         | 14                                         |                                      |
|                                                                                   |                                            | pot T<br>sol                      | $(3 \cdot 17) \circ (3 \cdot 44) a$                               | (−0·29) ¢                                            | (13·5) °                                   | (16) °                               |
|                                                                                   | 40                                         | pot, C                            | $3.15\pm0.02$                                                     | $-0.04\pm0.13$                                       | 14                                         |                                      |
|                                                                                   | 10 10                                      | pot, T                            | (3·16) <sup>b</sup>                                               | (-0·03) »                                            |                                            | 12 1 10                              |
|                                                                                   | 1040                                       | С                                 |                                                                   |                                                      |                                            | $12 \pm 10$                          |
| $\mathrm{Fe}^{2+} + \mathrm{G}^{-} = \mathrm{Fe}\mathrm{G}^{+}$                   | $10 \\ 25$                                 | pot, C<br>pot, C                  | ${f 4\cdot 36\pm 0\cdot 03\over 4\cdot 31\pm 0\cdot 02}$          | ${-3.7 \pm 0.2 \atop -3.64 \pm 0.15}$                | $6.8 \\ 7.5$                               |                                      |
|                                                                                   | 40                                         | pot, C<br>pot, C                  | $4\cdot 28\pm 0.02$                                               | $-3.55 \pm 0.16$                                     | 8.2                                        |                                      |
|                                                                                   | 10 - 40                                    | Ċ                                 | _                                                                 | _                                                    |                                            | $7 \pm 10$                           |
| $\mathrm{Co}^{2+} + \mathrm{G}^- = \mathrm{Co}\mathrm{G}^+$                       | 10                                         | pot, C                            | $5.16 \pm 0.01$                                                   | $-3.00\pm0.05$                                       | 13.0                                       |                                      |
|                                                                                   | 25                                         | pot, T<br>pot, C                  | $egin{array}{c} (5\cdot18) & b \ 5\cdot07\pm0\cdot01 \end{array}$ | (-3.09) <sup>b</sup><br>$-2.86 \pm 0.06$             | 13.6                                       |                                      |
|                                                                                   | 20                                         | pot, T                            | (5·07) °                                                          | $(-2.82)^{\circ}$                                    | (13·7) °                                   | (22) °                               |
|                                                                                   |                                            | sol                               | $(5.23)^{d}$                                                      | ι <i>γ</i>                                           | . ,                                        | <b>,</b>                             |
|                                                                                   |                                            | $\operatorname{Pot}_{\mathrm{C}}$ | (5·016) <sup>e</sup>                                              | $(-2.48)^{f}$                                        |                                            |                                      |
|                                                                                   | 40                                         | pot, C                            | $4.98\pm0.01$                                                     | $-2.15 \pm 0.03$                                     | 15.9                                       |                                      |
|                                                                                   |                                            | pot, T                            | (4·98) b                                                          | (-2·44) <sup>b</sup>                                 |                                            |                                      |
|                                                                                   | 10-40                                      | С                                 |                                                                   |                                                      |                                            | $28\pm3$                             |
| $CoG^+ + G^- = CoG_2(aq)$                                                         | 10                                         | pot, C<br>pot, T                  | $rac{4\cdot07\pm0\cdot01}{(4\cdot12)}$ b                         | $-4.00 \pm 0.02 \ (-3.85)^{b}$                       | $4 \cdot 5$                                |                                      |
|                                                                                   | 25                                         | pot, C                            | $4.02 \pm 0.01$                                                   | $-3.54 \pm 0.03$                                     | 6.5                                        |                                      |
|                                                                                   |                                            | -                                 | (3·97) °                                                          | (−3·55) °                                            | (6·3) °                                    | (24) °                               |
|                                                                                   |                                            | sol<br>pot                        | (4·02) ª<br>(3·971) °                                             |                                                      |                                            |                                      |
|                                                                                   |                                            | C                                 | (5.971)                                                           | $(-2.55)^{f}$                                        |                                            |                                      |
|                                                                                   | 40                                         | pot, C                            | $3.91 \pm 0.01$                                                   | $-3.41 \pm 0.02$                                     | $7 \cdot 0$                                |                                      |
|                                                                                   | 1040                                       | pot, T<br>C                       | (3·86) <sup>b</sup>                                               | (3·13) <sup>b</sup>                                  |                                            | $20~{\pm}~2$                         |
| $\operatorname{CoG}_2(\operatorname{aq}) + \mathrm{G}^- = \operatorname{CoG}_3^-$ | 10 - 40                                    | pot, C                            | $2 \cdot 67 \pm 0 \cdot 06$                                       | $-3.63\pm0.02$                                       | -0.6                                       | -•                                   |
| $\cos_2(aq) + \sigma = \cos_3$                                                    | $25^{10}$                                  | pot, C                            | $2.54 \pm 0.04$                                                   | $-3.41\pm0.02$                                       | 0.2                                        |                                      |
|                                                                                   | 40                                         | pot, C                            | $2{\cdot}45 \stackrel{-}{\pm} 0{\cdot}05$                         | $-3.01 \pm 0.04$                                     | 1.6                                        | 21 1 2                               |
|                                                                                   | 1040                                       | С                                 |                                                                   |                                                      |                                            | $21~{\pm}~3$                         |
| $Ni^{2+} - G^- = NiG^+$                                                           | 10                                         | pot, C<br>pot                     | $rac{6\cdot 28\pm 0\cdot 01}{(6\cdot 34)}$                       | $-4{\cdot}63\pm 0{\cdot}11\ (-4{\cdot}27)^{\ b}$     | 12.4                                       |                                      |
|                                                                                   |                                            | pot, C                            | $(6.36)^{g}$                                                      | $(-5.2)^{g}$                                         | (10·7) g                                   |                                      |
|                                                                                   | 25                                         | pot, C                            | $6 \cdot 13 \pm 0 \cdot 01$                                       | $-4.38\pm0.05$                                       | (13.4)                                     |                                      |
|                                                                                   |                                            | pot<br>sol                        | $(6.18)^{c}$<br>$(6.18)^{d}$                                      | (−4·09) °                                            | (14·5) ¢                                   | (18)'                                |
|                                                                                   |                                            | C                                 | (010)                                                             | $(-4.14)^{f}$                                        |                                            |                                      |
|                                                                                   | 10                                         | pot, C                            | (6·18) <sup>g</sup>                                               | $(-4\cdot9)^{\prime g}$                              | $(11.9)^{g}$                               |                                      |
|                                                                                   | 40                                         | pot, C<br>pot                     | $rac{6\cdot 00\pm 0\cdot 01}{(6\cdot 04)^{\ b}}$                 | $-3.77 \pm 0.12 \ (-3.73)^{b}$                       | 15.4                                       |                                      |
|                                                                                   |                                            | pot, C                            | (6·09) g                                                          | $(-4\cdot3)^{g}$                                     | (14·2) g                                   |                                      |
|                                                                                   | 10 - 40                                    | C C                               | . ,                                                               |                                                      |                                            | $28\pm 6$                            |
| $NiG^+ + G^- = NiG_2(aq)$                                                         | 10                                         | pot, C                            | $5.14 \pm 0.01$                                                   | $-5.30 \pm 0.04$                                     | 4.8                                        |                                      |
|                                                                                   |                                            | pot<br>pot, C                     | $(5.14) \ {}^{b}$<br>$(5.29) \ {}^{g}$                            | $(-5.03)^{b}$<br>$(-5.8)^{g}$                        | (3·7) g                                    |                                      |
|                                                                                   | <b>25</b>                                  | pot, C                            | $4{\cdot}92\pm0{\cdot}01$                                         | $-4.97\pm0.05$                                       | 5.8                                        |                                      |
|                                                                                   |                                            | pot                               | $(4.95)^{\circ}$                                                  | (−4·69) °                                            | (6·9) °                                    | (28) °                               |
|                                                                                   |                                            | sol<br>pot, C                     | $(4 \cdot 96) \stackrel{d}{=} (5 \cdot 07) \stackrel{g}{=}$       | (-4.7)                                               | (7·6) g                                    |                                      |
|                                                                                   | 40                                         | pot, C                            | $4.76\pm0.01$                                                     | $-4.60\pm0.06$                                       | 7.1                                        |                                      |
|                                                                                   |                                            | pot                               | $(4.79)^{b}$                                                      | $(-4.19)^{b}$                                        | ( <b>7</b> A) a                            |                                      |
|                                                                                   | 10-40                                      | pot, C<br>C                       | (4·92) g                                                          | $(-4.7)^{g}$                                         | (7·4) g                                    | $23\pm3$                             |
| $NiG_2(aq) + G^- = NiG_3^-$                                                       | 10                                         | pot, C                            | $3.51\pm0.03$                                                     | $-5.64\pm0.05$                                       | -3.9                                       |                                      |
| 4 1/ / 3                                                                          | 25                                         | pot, C                            | $3 \cdot 18 \pm 0 \cdot 03$                                       | $-5.55\pm0.03$                                       | -4.1                                       |                                      |
|                                                                                   | $\begin{array}{c} 40 \\ 10 40 \end{array}$ | pot, C<br>C                       | $3.00\pm0.03$                                                     | $-5.50\pm0.07$                                       | -3.8                                       | $5\pm5$                              |
| $Cu^{2+} + G^- = CuG^+$                                                           | 10-40                                      | pot, C                            | $8.85\pm0.02$                                                     | $-6.23 \pm 0.06$                                     | 16.9                                       |                                      |
|                                                                                   | 10                                         | pot, C<br>pot, C                  | $(8.85) \pm 0.02$<br>$(8.85)^{h}$                                 | $(-7.28)^{h}$                                        | $(14.8)^{h}$                               |                                      |
|                                                                                   | 25                                         | pot, C                            | $8.57 \pm 0.02$                                                   | $-5.82\pm0.09$                                       | 19.7                                       |                                      |
|                                                                                   |                                            | pot, C<br>sol                     | $(8.58)^{h}$<br>$(8.62)^{d}$                                      | $(-6.22)^{h}$                                        | $(18.4)^{h}$                               |                                      |
|                                                                                   |                                            | С                                 | (0.02)                                                            | $(-6.0)^{i}$                                         | (19) i                                     |                                      |
|                                                                                   |                                            | С                                 | (0.00) ;                                                          | $(-6.76)^{f}$                                        | . ,                                        |                                      |
|                                                                                   | 40                                         | pot<br>pot, C                     | ${(8\cdot 29)}{}^{j} \\ 8\cdot 33 \pm 0\cdot 02$                  | $-5.47\pm0.08$                                       | 20.6                                       |                                      |
|                                                                                   |                                            | pot, C                            | $(8.42)^{h}$                                                      | $(-5.75)^{h}$                                        | $(20.2)^{h}$                               |                                      |
|                                                                                   | 10 - 40                                    | С                                 |                                                                   |                                                      |                                            | $25\pm4$                             |
|                                                                                   |                                            |                                   |                                                                   |                                                      |                                            |                                      |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            | Tabi             | .E 2 (Continued)                                                                                                                              | $\Delta H^{\circ}$                       | ΔS°                               |                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------|--------------------------------------|
| Reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | t (°C)                                     | Method           | Log K                                                                                                                                         | (kcal/mol)                               | $\Delta S^{2}$ (cal/deg/mol)      | $\Delta C_{p}^{\circ}$ (cal/deg/mol) |
| $CuG^+ + G^- = CuG_2(aq)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                                         | pot, C           | $7.52 \pm 0.02$                                                                                                                               | $-7.20\pm0.11$                           | 9.0                               |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25                                         | pot, C           | $(7\cdot 36)$ <sup>h</sup><br>$7\cdot 26 + 0\cdot 02$                                                                                         | $(-6.92)^{h}$<br>-6.93 $\pm$ 0.07        | (9·2) *<br>10·0                   |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25                                         | pot, C<br>pot, C | (7·09) <sup>A</sup>                                                                                                                           | $(-6.96)^{h}$                            | $(9.1)^{h}$                       |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            | sol              | $(6.97)^{a}$                                                                                                                                  | , <i>,</i>                               |                                   |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            | pot<br>C         | (7.61) 3                                                                                                                                      | $(-6.89)^{f}$                            |                                   |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            | С                |                                                                                                                                               | $(-6.4)^{'}$                             | (11) *                            |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40                                         | pot, C<br>pot, C | $7.00 \pm 0.02$<br>(6.85) <sup>h</sup>                                                                                                        | $-6.59 \pm 0.05$<br>(-7.33) <sup>h</sup> | $\frac{11.0}{(7.9)}$ <sup>h</sup> |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            | pot              | (7.04) *                                                                                                                                      | (                                        | (1.0)                             |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10-40                                      | C                |                                                                                                                                               |                                          |                                   | $20~\pm~5$                           |
| $Zn^{2+} + G^{-} = ZnG^{+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                                         | pot, C           | $5.50 \pm 0.02$                                                                                                                               | $-3.14 \pm 0.07$                         | $14 \cdot 2 \\ 15 \cdot 4$        |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25                                         | pot, C<br>sol    | $5\cdot 38 \pm 0\cdot 02 \ (5\cdot 52)^{-d}$                                                                                                  | $-2.76\pm0.05$                           | 19.4                              |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            | С                | . ,                                                                                                                                           | $(-3.39)^{f}$                            |                                   |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 40\\ 10-40\end{array}$   | pot, C<br>C      | $5\cdot 29 \pm 0\cdot 02$                                                                                                                     | $-2.22\pm0.07$                           | 17.1                              | $31\pm4$                             |
| $ZnG^+ + G^- = ZnG_2(aq)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                                         | pot, C           | $4.57 \pm 0.02$                                                                                                                               | $-3.73\pm0.03$                           | 7.7                               | *                                    |
| $\sum_{i=1}^{n} \frac{1}{2} = \sum_{i=1}^{n} \frac{1}{2} $ | 25                                         | pot, C           | $f 4{\cdot}f 43 \stackrel{\frown}{\pm} 0{\cdot}02$                                                                                            | $-3.22\pm0.04$                           | 9.5                               |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40                                         | sol<br>pot, C    | $\begin{array}{c} (\textbf{4}{\cdot}\textbf{44}) \overset{\textbf{d}}{} \\ \textbf{4}{\cdot}29 \overset{\textbf{d}}{} 0{\cdot}01 \end{array}$ | -2.90 + 0.03                             | 10.4                              |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10-40                                      | C C              | $425\pm0.01$                                                                                                                                  |                                          | 10 1                              | $28 \pm 2$                           |
| $ZnG_2(aq) + G^- = ZnG_3^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                                         | pot, C           | $2 \cdot 63 \pm 0 \cdot 15$                                                                                                                   | $-3.53\pm0.03$                           | -0.4                              |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25                                         | pot, C           | $2.52 \pm 0.15$                                                                                                                               | $-3.56\pm0.03$                           | -0.4                              |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 40\\ 10-40\end{array}$   | pot, C<br>C      | $2{\cdot}40\pm0{\cdot}15$                                                                                                                     | $-3.64\pm0.07$                           | 0.6                               | $-4\pm3$                             |
| $Cd^{2+} + G^- = CdG^+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                                         | pot, C           | $\textbf{4.73} \pm \textbf{0.02}$                                                                                                             | -2.26 + 0.04                             | 13.7                              |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\hat{25}$                                 | pot, C           | $4{\cdot}69\pm0{\cdot}01$                                                                                                                     | $-2.12 \pm 0.05$                         | 14.4                              |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40                                         | pot<br>pot. C    | $(4 \cdot 80)$ *<br>$4 \cdot 60 + 0 \cdot 02$                                                                                                 | $-1.95 \pm 0.10$                         | 14.8                              |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10-40                                      | C C              | 400 ± 002                                                                                                                                     | 1 30 1, 0 10                             | 14.0                              | $10 \pm 4$                           |
| $CdG^+ + G^- = CdG_2(aq)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                                         | pot, C           | $3\cdot 76\pm 0\cdot 02$                                                                                                                      | -3.74 + 0.05                             | 4.0                               |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25                                         | pot, C           | $3.71 \pm 0.01$                                                                                                                               | $-3.24 \pm 0.05$                         | $6 \cdot 1$                       |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40                                         | pot<br>pot, C    | $(4{\cdot}03)$ °<br>$3{\cdot}60$ $+$ $0{\cdot}02$                                                                                             | -2.95 + 0.06                             | 7.0                               |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10-40                                      | C C              |                                                                                                                                               |                                          |                                   | $26~\pm~3$                           |
| $CdG_2(aq) + G^- = CdG_3^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                                         | pot, C           | $2{\cdot}53\pm0{\cdot}05$                                                                                                                     | $-2.84 \pm 0.11$                         | $1 \cdot 5$                       |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25                                         | pot, C           | $2{\cdot}28\pm0{\cdot}05$                                                                                                                     | $-3.21 \pm 0.06$                         | -0.3                              |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{r} 40 \\ 10-40 \end{array}$ | pot, C<br>C      | $2{\cdot}00\pm0{\cdot}05$                                                                                                                     | $-3.39\pm0.17$                           | 1.7                               | $-18\pm7$                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |                  |                                                                                                                                               | -                                        |                                   |                                      |

<sup>o</sup> Uncertainties of log  $K_i$  and  $\Delta H^{\circ}_i$  values are given as the standard deviation among runs. The uncertainties of the  $\Delta S^{\circ}_i$  values are estimated to be  $\pm 0.1$  to  $\pm 0.4 \Delta S^{\circ}$  unit. The uncertainties of the  $\Delta C^{\circ}_{pi}$  values are estimated to be twice the uncertainty which results when  $\Delta C_{pi}$  values are calculated from  $\Delta H^{\circ}_i$  values at the extremes of their stated uncertainties. The abbreviations and symbols used in the method column have the following meaning with respect to how log K and  $\Delta H$  were measured: pot = potentiometry;  $\mathbf{C}$  = calorimetry;  $\mathbf{T}$  = temperature variations; and sol = solubility. <sup>b</sup> Data calculated from results in reference cited in footnote c. <sup>c</sup> J. R. Brannan, H. S. Dunsmore, and G. H. Nancollas, J. Chem. Soc., 1964, **304**. <sup>d</sup> C. B. Monk, Trans. Faraday Soc., 1955, **51**, 1244. <sup>f</sup> S. Boyd, J. R. Brannan, H. S. Dunsmore, and G. H. Nancollas, Faraday Soc., 1955, **51**, 1244. <sup>f</sup> S. Boyd, J. R. Brannan, H. S. Dunsmore, and G. H. Nancollas, J. Chem. And Eng. Data, 1967, **12**, 601. <sup>g</sup> K. P. Anderson, W. O. Greenhalgh, and E. A. Butler, Inorg. Chem., 1967, **6**, 1056. <sup>b</sup> Ref. 20. <sup>f</sup> R. M. Izatt, J. J. Christensen, and V. Kothari, Inorg. Chem., 1964, **3**, 1565. <sup>j</sup> R. M. Keefer, J. Amer. Chem. Soc., 1948, **70**, 476.

The method used to calculate  $\Delta H_i$  values from the calorimetric titration data has been described,<sup>17,18</sup> including modifications.<sup>13</sup> Since the  $\mu$  values were low ( $\mu < 0.03$ ) in all cases, the  $\Delta H$  values were taken to be  $\Delta H^{\circ}$  values valid at  $\mu = 0$ .

The  $\Delta C^{\circ}_{pi}$  values were calculated by fitting the  $\Delta H^{\circ}_{i}$  values to a quadratic function of temperature and differentiating with respect to temperature. A non-linear function was chosen because from a similar calorimetric study as a function of temperature of the reaction  $H^+ + OH^- = H_2O$ , Ackermann <sup>19</sup> found  $\Delta C_p$  to be a non-linear function (probably quadratic) of temperature and indicated that other reactions might be expected to behave in a similar fashion.

<sup>17</sup> L. D. Hansen, Ph.D. Dissertation, Brigham Young University, Provo, Utah, 1965 (*Diss. Abs.*, 1966, **26**, 5000).

RESULTS

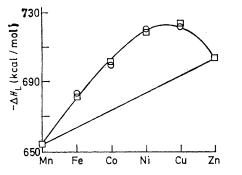
Values of log  $K_i$  (pK in the case of HG)  $\Delta H^{\circ}_i$ ,  $\Delta S^{\circ}_i$ , and  $\Delta C^{\circ}_{pi}$  valid at  $\mu = 0$  for reactions (1) and (2) are summarized in Tables 1 and 2 together with comparative literature values. The calorimetric titration and pH titration data from which the values in Tables 1 and 2 were calculated are available.<sup>13</sup>

#### DISCUSSION

The pK, log  $K_i$ ,  $\Delta H^{\circ}_i$ , and  $\Delta C^{\circ}_{pi}$  values determined in this study are generally in good agreement with those determined previously at or near  $\mu = 0$ .

<sup>18</sup> J. J. Christensen, R. M. Izatt, L. D. Hansen, and J. A. Partridge, J. Phys. Chem., 1966, **70**, 2003.

<sup>19</sup> T. Ackerman, Z. Elektrochem., 1958, **62**, 411.


<sup>20</sup> K. P. Anderson, W. O. Greenhalgh, and R. M. Izatt, Inorg. Chem., 1966, 5, 2106.

## 1972

The variations in log  $K_i$ ,  $\Delta H^{\circ}_i$ , and  $\Delta S^{\circ}_i$  with atomic number for the  $M^{n+}-G^-$  complexes studied here have been discussed.<sup>21</sup> Lack of reliable  $\Delta H$  data for metal complex formation reactions has caused others to assume that  $\Delta G$  is proportional to  $\Delta H$  when making comparisons of ligand-field effects on the various metal ions. Since this study contains a consistent set of reliable, measured  $\Delta H$  values, a comparison was made between these values and the predicted stabilization energies calculated by George and McClure <sup>22</sup> using  $\Delta G$  as a reference state. The ligand stabilization for glycine complexes is seen in the Figure where  $\Delta H_L$ , calculated as shown in equation (4), is plotted vs. M<sup>2+</sup> for the elements Mn through Zn.

$$M^{2+}(g) + G^{-}(aq) = MG^{+}(aq) \Delta H_{L} = \Delta H_{hydration} + \Delta H_{complex formation}$$
 (4)

Values for  $\Delta H_{\rm hydration}$  are taken from NBS Circular 500<sup>23</sup> and Brewer, *et al.*,<sup>24</sup> and those for  $\Delta H_{\rm complex \ formation}$  are taken from Table 2. The values reported by George



Plot of  $\Delta H_{\text{L}} vs. M^{2+}$  (Mn–Zn) for the reaction  $M^{2+}$  (g) + G<sup>-</sup> (aq) = MG<sup>+</sup> (aq). Data are taken from Table 2,  $\bigcirc$ , and George and McClure <sup>22</sup>  $\Box$ 

and McClure have been adjusted to correspond to the same  $\Delta H_{\rm L}$  values for  ${\rm Mn}^{2+}$  as those reported in this study (*i.e.* George and McClure reported relative values only) and are also plotted in the Figure. The agreement of the two sets of values is excellent, being about  $\pm 1.5$  kcal/mol in each case.

A value for the ligand-field stabilization energy was computed for each metal ion studied by taking the difference between the  $\Delta H_{\rm L}$  value determined experimentally for each  $M^{n+}$  and that which it would have in the absence of any ligand-field stabilization. The latter quantity was estimated from the straight line in the Figure by assuming that the increase in  $\Delta H_{\rm L}$  with atomic number between  $Mn^{2+}$  and  $Zn^{2+}$  (which have no stabilization energies associated with their ground states) would be linear in the absence of ligand-field effects.<sup>22</sup> The calculated stabilization energies are 19.5, 25.7, 36.7, and 28.8 kcal/mol for the FeG<sup>+</sup>, CoG<sup>+</sup>, NiG<sup>+</sup>, and CuG<sup>+</sup> systems, respectively. If all the ligand-field effects are considered to be directed in a symmetrical octahedral field, values for the splitting parameter,  $\Delta$ , are calculated to be 58, 32, 30, and 48 kcal/mol for the FeG<sup>+</sup>, CoG<sup>+</sup>, NiG<sup>+</sup>, and CuG<sup>+</sup> systems, respectively.

A simple electrostatic model <sup>25</sup> has been used to attempt to explain proton ionization in solution. The model predicts for ion-ion interaction that  $\Delta G$  is proportional to  $\Delta S$  for all reactions of similar charge types and that  $\Delta C_p = 0$  for reaction (5). The proportionality

$$MG_2 + G^- = MG_3^-$$
 (5)

for  $\Delta G$  vs.  $\Delta S$  is not observed for the metal glycinates nor was it observed for the metal cyanide complexes of Zn<sup>2+</sup>, Ni<sup>2+</sup>, Cd<sup>2+</sup>, and Hg<sup>2+.1</sup> Also,  $\Delta C_{p}^{\circ}$  values for reaction (5) are 20, 5, -4, and -18 in the cases of Co<sup>2+</sup>, Ni<sup>2+</sup>, Zn<sup>2+</sup>, and Cd<sup>2+</sup>, respectively, which are the only cases where data for the MG<sub>3</sub><sup>-</sup> species are available. The electrostatic model does not, therefore, predict metal glycinate behaviour.

Comparisons of  $\Delta C_p$  values have the advantage over  $\Delta S$  comparisons that there is no cratic or statistical term contributing to the magnitude of  $\Delta C_p$ . This means that  $\Delta C_p$  provides a more direct measure of the solute-solvent interaction. The M<sup>2+</sup>-G<sup>-</sup> systems studied have similar  $\Delta C_p$  values which indicates that in these metal glycinate systems, the metal and metal-complex interaction with the solvent is quite similar for each of the metal ions. Thus direct comparison of  $\Delta H$  values corrected for ligand-field effects should correlate relative bond strengths of metal-ligand bonds.

Because  $\Delta C_p$  values vary considerably for stepwise metal-ligand co-ordination (e.g. Ni<sup>2+</sup>-G<sup>-</sup>,  $\Delta C^{\circ}_{p_1} = 28$ ,  $\Delta C^{\circ}_{p_2} = 23$ ,  $\Delta C^{\circ}_{p_3} = 5$ ), relative magnitudes of  $\Delta G$ and  $\Delta H$  values at temperatures far from 25° may be quite different than those reported here. It would then follow that many data correlations made at a single temperature, and interpretations based on such correlations, may not be valid in other temperature regions.

We thank the National Institutes of Health for financial support and for Public Health Service Research Career Development Awards (to R. M. I. and J. J. C.).

### [1/2397 Received, 13th December, 1971]

<sup>23</sup> 'Selected Values of Chemical Thermodynamic Properties,' Nat. Bur. of Stand. (U.S.) Cir. 500, U.S. Government Printing Office, Washington, D.C., 1952.

<sup>24</sup> L. Brewer, L. A. Bromley, P. W. Gilles, and N. L. Lofgren, in L. L. Quill, ed., 'Chemistry and Metallurgy of Miscellaneous Meterials: Thermodynamics,' McGraw-Hill, New York, 1950, p. 76.

p. 76. <sup>25</sup> E. J. King, 'Acid Base Equilibria,' The Macmillan Co., New York, 1965.

 <sup>&</sup>lt;sup>21</sup> S. J. Ashcroft and C. T. Mortimer, 'Thermochemistry of Transition Metal Complexes,' Academic Press, New York, 1970, pp. 97-111.
 <sup>22</sup> P. George and D. S. McClure in 'Progress in Inorganic

<sup>&</sup>lt;sup>22</sup> P. George and D. S. McClure in 'Progress in Inorganic Chemistry,' vol. 1 (ed. F. A. Cotton), Interscience, New York, 1959, p. 428.