Crystal and Molecular Structure of Bromobis-(π-cyclopentadienyl)(tribromostannyl)molybdenum(iv)

By T. S. Cameron and C. K. Prout, ${ }^{*}$ Chemical Crystallography Laboratory, South Parks Road, Oxford OX1 30S

The crystal and molecular structure of the title compound has been determined by three-dimensional X-ray methods with intensity measurements from a linear diffractometer (orthorhombic, $a=14.05, b=12 \cdot 30, c=8.82 \mathrm{~A}$, space group Pnma or Pna2 ${ }_{1}, Z=4$), and refined by least squares to $R 0.056$ for 601 independent reflections. The tin atom forms four bonds directed towards the corners of a distorted tetrahedron with $\mathrm{Sn}-\mathrm{Mo} 2 \cdot 691$ and mean $\mathrm{Sn}-\mathrm{Br}$, 2.505 A . The tin co-ordination polyhedron is completed by a much longer bromine contact (3.411 A) to give a very distorted trigonal bipyramid.
The $\mathrm{Sn}-\mathrm{Mo}-\mathrm{Br}$ bond angle is $80 \cdot 2^{\circ}$ and the $\mathrm{Mo}-\mathrm{Br}$ bond length is $2 \cdot 605 \mathrm{~A}$. The π-cyclopentadienyl rings are not well determined.

The preceding paper ${ }^{1}$ describes the preparation and properties of the complexes $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{M}\left(\mathrm{SnX}_{3}\right) \mathrm{X}(\mathrm{M}=$ Mo or $\mathrm{W}, \mathrm{X}=\mathrm{Cl}$ or Br). We have determined the crystal structure of one of these $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) 2 \mathrm{Mo}\left(\mathrm{SnBr}_{3}\right) \mathrm{Br} . \dagger$

EXPERIMENTAL

Crystal Data. $-\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Br}_{4} \mathrm{MoSn}, M=664 \cdot 5$, Orthorhombic, $\quad a=14.05 \pm 0.01, \quad b=12.30 \pm 0.01, \quad c=8.82 \pm$ $0.01 \AA, U=1524 \AA^{3}, D_{\mathrm{m}}=2.85$ (by flotation), $Z=4$, $D_{\mathrm{c}}=2.895$. Mo- K_{α} radiation $\lambda=0.7107 \AA, \mu\left(\right.$ Mo $\left.-K_{\alpha}\right)=$ $117 \mathrm{~cm}^{-1}$. Space group Pnma ($\mathrm{C}_{2 h}^{16}$, No. 62) or Pna2 (C_{2}^{9}, No. 33).

From a crystal of dimensions $0.1 \times 0.1 \times 0.1 \mathrm{~mm}, 601$ independent reflections with $I>3 \sigma$ were measured on a Hilger and Watts linear diffractometer. The measurements were corrected for Lorentz and polarization effects but not for absorption.

The three-dimensional unsharpened Patterson function computed from these data indicated that the molybdenum, tin, and two bromine atoms lie in the mirror plane at $y=\frac{1}{4}$,
\dagger The structure of $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Mo}\left(\mathrm{SnCl}_{3}\right) \mathrm{Cl}$ has also been examined by three dimensional X-ray methods. The molecular structure has no features that are significantly different from the bromide except that the location of the atoms of the ($\pi-\mathrm{C}_{5} \mathrm{H}_{5}$) rings is even more uncertain. It is our intention not to publish the details of the chloro-structure.
\ddagger For details see Notice to Authors No. 7 in J. Chem. Soc. (A), 1970. Issue No. 20 (items less than 10 pp. are sent as full size copies).
of the space group Pnma and that the remaining pair of bromine atoms are at sites related by the mirror plane. An F_{0} synthesis phased on the heavy-atom positions in space group Pnma showed clearly the positions of the remaining carbon atoms. The trial structure was refined by the full-matrix least-squares method, with isotropic temperature factors for all atoms.

After computing four cycles with unit weights, followed by two cycles with the following weighting function applied: $w=\left[1+\left(\left|\left|50 F_{0}\right|-2500\right| \mid\right) / 2000\right]^{-1}$, convergence was reached at $R 0 \cdot 126$. Three further refinement cycles were computed with a full-matrix, anisotropic temperature factors for all atoms and with the weighting function unchanged. The final R value was $0 \cdot 056$.

The observed structure amplitude and structure factors calculated from the atomic parameters in Table 1 are listed in Supplementary Publication No. SUP 20393 (5 pp., 1 microfiche). \ddagger All calculations were carried out on the Oxford University KDF 9 computer with programs developed by Rollett et al. ${ }^{2}$ Atomic scattering amplitudes were those for neutral atoms given in ref. 3. Those of molybdenum (0), $\operatorname{tin}(0)$, and bromine (0) were corrected for the real part of the anomalous dispersion.
${ }^{1}$ M. L. H. Green, A. H. Lynch, and M. G. Swanwick, preceding paper.
${ }^{2}$ J. S. Rollett, O. I. R. Hodder, and G. Ford, unpublished work.

3 ' International Tables for X-Ray Crystallography,' vol. 3, Kynoch Press, Birmingham, 1962, pp. 209 et seq.

RESULTS AND DISCUSSION

The crystals contain isolated $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Mo}\left(\mathrm{SnBr}_{3}\right) \mathrm{Br}$ molecules constrained to lie about the mirror planes of space group Pnma (Figure 1). The mirror plane contains the $\mathrm{Br} \cdot \mathrm{Mo} \cdot \mathrm{SnBr}$ group and relates the remaining pair of bromine atoms and the pair of π-cyclopentadienyl groups.
best plane of a π-cyclopentadienyl group and the interatomic distances and interbond angles are given in Table 2. In the molecule the environment of the tin atom is approximately tetrahedral but with a fifth long contact from $\mathrm{Br}(3)$ (the bromine atom bonded to the molybdenum) to tin, in a direction not inconsistent with a bonding interaction. The environment of the tin

Table 1

Atom	x / a	y / b	z / c	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
$\mathrm{Sn}(1)$	1258(2)	2500	2212(3)	269(1)	381 (1)	251(1)		31 (2)	
$\mathrm{Mo}(1)$	1709(2)	2500	-751(4)	197(2)	280(2)	267(2)		$43(3)$	
$\mathrm{Br}(1)$	2742(4)	2500	3785(7)	430(3)	1609 (6)	405(4)		-283(5)	
$\mathrm{Br}(3)$	-140(4)	2500	-947(8)	223(2)	1922(7)	858(5)		-228(6)	
$\mathrm{Br}(2)$	393(3)	4040(3)	3475(5)	742 (3)	588(2)	680(3)	$-365(4)$	288(4)	377(4)
$\mathrm{C}(1)$	2042(41)	4333(32)	108(51)	2173(52)	357(27)	$915(34)$	382 (44)	-891(69)	$-1545(62)$
$\mathrm{C}(2)$	2810(31)	3851 (37)	-326 (79)	$793(30)$	$665(32)$	1056(67)	$405(25)$	-556(71)	-845(51)
$\mathrm{C}(3)$	2730(28)	3635(23)	-1939(64)	744(26)	80(16)	2012(61)	-615(47)	1882(65)	$-748(35)$
$\mathrm{C}(4)$	1759(34)	3930(27)	-2355(59)	1425(35)	169(18)	1350(41)	1127(51)	106(66)	-479(47)
$\mathrm{C}(5)$	1440(26)	4399 (26)	-918(64)	753(26)	345(20)	1591 (50)	$-950(56)$	1525(57)	255(39)

The anisotropic temperature factors of atoms of the π-cyclopentadienyl group are unsatisfactory. They could be interpreted in terms of a large in-plane libration, but an equally reasonable interpretation would be that either the π-cyclopentadienyl groups are disordered or that the apparent mirror plane is, in fact, not there so that the structure would be better described in space group $P n a 2_{1}$. The present work does not enable us to distinguish between these alternatives. It is necessary, therefore, to treat the detail of the observed dimensions and orientation of the π-cyclopentadienyl groups with some scepticism. The anisotropic temperature factors

Figure 1 The crystal structure projected down the c axis
of the heavy atoms suggest that the proposed model is a good representation of this part of the structure.

In Figure 2 the molecule is shown projected on the

[^0]atom is closely analogous to that found in the $\mathrm{Mo}^{\mathrm{II}}$ complex (bipy) $(\mathrm{OC})_{3} \mathrm{ClMo}\left[\mathrm{Sn}(\mathrm{Me}) \mathrm{Cl}_{2}\right]$ (bipy $=2,2^{\prime}$-bipyridyl) ${ }^{4}$ in which the tin is five-co-ordinate trigonal bipyramidal;

Figure 2 The molecule of $\left(\pi-\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{Mo}\left(\mathrm{SnBr}_{3}\right) \mathrm{Br}$ seen projected on the plane of one of the cyclopentadienyl rings

Table 2
Interatomic distances (\AA) and interbond angles (${ }^{\circ}$)
(a) Distances

$\operatorname{Sn}(1)-\mathrm{Mo}(1)$	$2 \cdot 691(4)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1 \cdot 30(9)$
$\mathrm{Sn}(1)-\operatorname{Br}(1)$	$2 \cdot 503(8)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.44(9)$
$\mathrm{Sn}(1)-\operatorname{Br}(2)$	$2 \cdot 509(5)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.44(7)$
		$\mathrm{C}(4)-\mathrm{C}(5)$	$1 \cdot 47(7)$
$\mathrm{Mo}(1)-\mathrm{Br}(3)$	$2 \cdot 605(9)$	$\mathrm{C}(5)-\mathrm{C}(1)$	$1 \cdot 24(8)$

(b) Angles

$\mathrm{Mo}(1)-\mathrm{Sn}(1)-\mathrm{Br}(1)$	$109 \cdot 9(2)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$109(5)$
$\mathrm{Mo}(1)-\mathrm{Sn}(1)-\mathrm{Br}(2)$	$123 \cdot 0(2)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$105(5)$
$\mathrm{Br}(1)-\mathrm{Sn}(1)-\operatorname{Br}(2)$	$99 \cdot 1(2)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$101(4)$
$\mathrm{Br}(2)-\mathrm{Sn}(1)-\operatorname{Br}\left(2^{\prime}\right)$	$98 \cdot 0(2)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(1)$	$113(5)$
		$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(2)$	$111(5)$
$\mathrm{Sn}(1)-\mathrm{Mo}(1)-\operatorname{Br}(3)$	$80 \cdot 16(2)$		

in this complex $\mathrm{Sn}-\mathrm{Mo}$ is $2.75 \AA, \mathrm{Sn}-\mathrm{Cl}$ (apical) and $\mathrm{Sn}-\mathrm{Cl}$ (equatorial) are 2.43 and $2.35 \AA$ respectively and are significantly different, and $\mathrm{Sn}-\mathrm{Cl}$ (apical, bridging) at $2.81 \AA$ is much larger. In the present work $\mathrm{Mo}-\mathrm{Sn}$ is shorter ($2.69 \AA$) as is to be expected for $\mathrm{Mo}^{\mathrm{IV}}$. Three of the $\mathrm{Sn}-\mathrm{Br}$ bond lengths are equivalent (mean $2 \cdot 505 \AA$) and indicate strong bonds, but the fifth contact to tin
$\mathrm{Sn} \cdots \mathrm{Br}(3)$, is rather long, $3 \cdot 411 \AA$. The $\mathrm{Sn}-\mathrm{Mo}-\mathrm{Br}(3)$ bond angle $\left(80 \cdot 2^{\circ}\right)$ is only slightly smaller than the corresponding angles in the similar complexes ${ }^{5}$ of d^{2} metals $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoCl}_{2} \quad\left(81 \cdot 6^{\circ}\right)$ and $\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{ReBr}_{2}\right]^{+} \mathrm{BF}_{4}-$ $\left(82 \cdot 1^{\circ}\right)$. The bromine atom $\operatorname{Br}(3)$ is $4 \cdot 402 \AA$ away from the mirror-plane-related bromine atoms $\operatorname{Br}(2)$ and $\operatorname{Br}\left(2^{\prime}\right)$. The angles $\mathrm{Mo}^{-} \mathrm{Sn}-\operatorname{Br}(2)$ ($123 \cdot 0^{\circ}$) are enlarged from the expected tetrahedral angles and the angles $\operatorname{Br}(2)-\mathrm{Sn}-\mathrm{Br}(1)\left(99 \cdot 1^{\circ}\right)$, correspondingly reduced. This distortion cannot be reasonably explained in terms of $\operatorname{Br}(2) \cdots \operatorname{Br}(3)$ repulsions because this non-bonded contact is well in excess of the sum of the van der Waals radii, $3.90 \AA$. The angle $\mathrm{Br}(1)-\mathrm{Sn} \cdots \mathrm{Br}(3)$ is 152°. It is therefore reasonable to assume that the long $\mathrm{Sn}-\mathrm{Br}(3)$ contact represents a bonding interaction and that the
bonding at the tin atom is best described in terms of four strong essentially σ bonds plus a fifth much weaker bond in which the tin atom of the $\mathrm{Mo}\left(\mathrm{SnBr}_{3}\right)$ group acts as either a π or possibly σ acceptor to the bromine lone-pair electrons. This fifth contact may be analogous to an $n-\pi^{*}$ interaction in an electron-donor-electron-acceptor molecular complex. The five bonds form a distorted trigonal-bipyramidal co-ordination polyhedron about the tin, Figure 2.

We thank the S.R.C. for financial support (to T. S. C.).
[1/2250 Received, 29th November, 1971]
${ }^{5}$ J. C. Green, M. L. H. Green, and C. K. Prout, J.C.S. Chem. Comm., 1972, 421.

[^0]: ${ }^{4}$ M. Elder, W. A. G. Graham, D. Hall, and R. Kummer, J. Amer. Chem. Soc., 1968, 90, 2186.

