Oxo-complexes of Osmium and Ruthenium with Organic Ligands

By W. P. Griffith* and (Miss) R. Rossetti, Department of Chemistry, Imperial College, London S.W. 7

The stoicheiometries and vibrational spectra of a number of oxo-osmium complexes and an oxoruthenium complex with pyridine, and also of oxo-osmium esters of glycol and pinacol have been studied.

Osmium tetroxide has long been used as a cis-hydroxylating reagent for olefinic double bonds, ${ }^{1}$ and has extensive uses in electron microscopy for tissue staining and fixation. ${ }^{2}$ In both these applications the intermediate formation of a cyclic ester in which an OsO_{2} unit adds across a $\mathrm{C}=\mathrm{C}$ double bond appears to be involved. Criegee et al., ${ }^{3}$ studied the reactions of a wide range of olefins with osmium tetroxide and isolated both monoand di-esters, but neither the stoicheiometries or structures are fully established since only osmium analyses and oxidation state determinations were made. ${ }^{3}$ Here we report analytical data, and studies of the vibrational spectra of the esters formed by ethylene and tetramethylethylene, these olefins being chosen so that the spectra would be as simple as possible to permit structural information to be obtained. We preface this work with a similar examination of the complexes obtained by reaction of osmium tetroxide with pyridine; these were studied because they are likely to have simple ' model' structures, and since osmium tetroxidepyridine solutions are often used to prepare some of the esters. We also report on the nature of the reaction product ${ }^{4}$ of ruthenium tetroxide with pyridine.

Oxo-osmium Pyridine Complexes.-Reaction between osmium tetroxide and pyridine in an inert solvent gives yellow crystals of a complex formulated as $\mathrm{OsO}_{4}, \mathrm{py},{ }^{3}$ and the same reaction when conducted in the presence of ethanol gives green-brown platelets of $\mathrm{OsO}_{3}, \mathrm{Py}_{2}$, both

[^0]regarded as being five-co-ordinate. We have repeated the preparations and found that these formulae are correct; $\mathrm{OsO}_{4}, \mathrm{py}$ is monomeric in benzene, but we were unable to measure the molecular weight of $\mathrm{OsO}_{3}, \mathrm{Py}_{2}$ as it was either insufficiently soluble in, or decomposed by, solvents appropriate for the measurements. Study of the vibrational spectra of the complexes in the 750$1000 \mathrm{~cm}^{-1}$ region (see the Table) should help in establishing their structures since osmium-oxo ($\mathrm{Os}=\mathrm{O}$) stretching modes are found in this range 5,6 but co-ordinated pyridine does not absorb strongly in the region. ${ }^{7}$

In the case of OsO_{4}, py the Raman spectra of the solid and its benzene solutions are very similar, suggesting that the complex retains its five-co-ordination in the solid state. Both the Raman and i.r. spectra show four sharp bands in the $750-1000 \mathrm{~cm}^{-1}$ region which we assign to $\mathrm{Os}=\mathrm{O}$ stretches.

The likely molecular structures for $\mathrm{OsO}_{4}, \mathrm{py}$ are trigonal pyramidal or square-based pyramidal, and in either case the pyridine may occupy an axial or an equatorial position. The skeletal molecular symmetries would then be respectively $C_{3 v}$ or $C_{2 v}$ (trigonal bipyramid) and $C_{4 v}$ or C_{s} (square-based pyramid). The appearance of four Raman and four (coincident) i.r. bands excludes $C_{4 v}$ and $C_{3 v}$ since these would give fewer bands than observed; for $C_{2 v}$ we expect two polarised Raman bands and for C_{s}, three. It appears that three of the Raman bands are polarised, though the $907 \mathrm{~cm}^{-1}$ band is too weak for fully reliable polarisation measurements. On

[^1]Vibrational spectra of oxo-osmium and -ruthenium complexes

	$\mathrm{OsO}_{4}, \mathrm{py}^{*}$		$\underbrace{\mathrm{Os}_{2} \mathrm{O}_{6}, \mathrm{Py}_{4}}$		$\mathrm{RuO}_{2}(\mathrm{OH})_{2} \mathrm{py}_{2} \dagger$		$\mathrm{OsO}_{2}, \mathrm{py}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right)$	
	I.r.	R	I.r.	R	I.r.	R	I.r.	R
M-O modes								
$\nu^{\text {as }}\left(\mathrm{MO}_{2}\right)$	$\begin{array}{r} 885 \mathrm{~m} \\ \text { r92fw } \end{array}$	$\begin{array}{r} 886(1) \\ 889(1) \end{array}$	833 s	830(1)	790 s		824 s	
$v^{3}\left(\mathrm{MO}_{2}\right)$	$\left\{\begin{array}{l}926 \mathrm{w} \\ 915 \mathrm{~s}\end{array}\right.$	$\left\{\begin{array}{l}928(1) \\ 916(6)\end{array}\right.$	875w	875(9)		850w		870(10)
$v\left(\mathrm{MO}_{2}\right)$	$\left\{\begin{array}{l}915 \mathrm{~s} \\ 908 \mathrm{~s}\end{array}\right.$	$\left\{\begin{array}{l}907(1)\end{array}\right.$	875	875 (9)		850w		870 (10)
$\delta\left(\mathrm{MO}_{2}\right)$	$\{360 \mathrm{~m}$	\{378(7)	346 m					
$\delta\left(\mathrm{MO}_{2}\right)$	298w	\{316(3)	300 s	332(3)			292s	
ν (MO)			448 m	$\left\{\begin{array}{l}640(3) \\ 420(3)\end{array}\right.$			$\left\{\begin{array}{l}518 \mathrm{~s} \\ 456 \mathrm{w}\end{array}\right.$	$\left\{\begin{array}{l}519(2)\end{array}\right.$
				420(3)	3300 s		456w	456(1)
Other modes ${ }^{\text {c }}$								
	$\{3040 \mathrm{~s}$		$\{3100 \mathrm{~m}$		$\{3100 \mathrm{~s}$		$\{3050 \mathrm{~m}$	
py	\{3000s		2970s		$\{3000 \mathrm{~s}$		2950s	
eg, tmg							2850s	
py	${ }^{1600 \mathrm{~s}}$		1595 s		1605 s		1595 s	
py, eg, tmg	$\{1470 \mathrm{~m}$		1595s		1605 s		$\{1470 \mathrm{~m}$	
py, eg, tmo	1435s		1440s		1450 s		1445s	
$\begin{aligned} & \text { py } \\ & \text { eg, tmg } \end{aligned}$	1333 m		1333 m		1340 m		1350 s	
							1237w	
	$\int 1204 w$		1202 m		1225 m		1204w	
py, eg, tmg	$\{1150 \mathrm{w}$		1144w		1165 s		1145w	
	1035ัm	1040(2)	1045 m		1080s		1070 m	
	1051m	1015(2)	1015 m	1015(10)	990w	995(6)	$\{1015 \mathrm{~m}$	1018(4)
							935m	
tmg							894 s	
	$\{758 \mathrm{~s}$		775 s		730w		769 s	
py	6997s		690 s		715 m		690 s	
eg, tmg, py	633 s	657(1)	$\left\{\begin{array}{l}606 \mathrm{~s} \\ 591 \mathrm{~s}\end{array}\right.$				\{633s	$\left\{660\left(\frac{1}{2}\right)\right.$
py	266w	$304(6)$	691s	297(2)			(592 s	\{591(3)

	$\mathrm{Cs}_{2}\left[\mathrm{IrpyCl}_{\text {I.r. }} \mathrm{a}\right]$	$\underset{\text { I.r. }}{\left[\mathrm{OsO}_{2}\left(\mathrm{Me}_{4} \mathrm{C}_{2} \mathrm{O}_{2}\right)\right]_{\mu}}$	$\mathrm{K}_{2}\left[\mathrm{OsO}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right)_{2}\right]$		$\underset{\text { I.r. }}{\left[\mathrm{OsO}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right)_{2}\right]_{n}, n \mathrm{H}_{2} \mathrm{O}}$	$\begin{gathered} {\left[\mathrm{CoCl}_{2}\left\{\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{OH})_{2}\right\}_{2}\right]} \\ \text { I.r. } \end{gathered}$
			I.r.	R		
M-O modes						
$\nu^{\text {as }}\left(\mathrm{MO}_{2}\right)$			803 s			
$v^{\mathbf{E}}\left(\mathrm{MO}_{2}\right)$				$859(10)$		
$\delta\left(\mathrm{MO}_{2}\right)$			330 s			
\checkmark (MO)		485 m	469s	$\left\{\begin{array}{l}460(1) \\ 431(1)\end{array}\right.$	436 m	
HO_{2}, OH modes					$\{3400 \mathrm{~s}$	3170s
	$\{3112 \mathrm{~s}$					
py	$\left\{\begin{array}{l}312 \mathrm{~s} \\ 3051 \mathrm{~m}\end{array}\right.$					
		$\{2979$ s			$\{2940$ s	
eg, tmg		2900s	2940s		$\{2880$ s	2920s
py	1600 s					
py, eg, tmg	$\left\{\begin{array}{l}1472 \mathrm{~m} \\ 1440 \mathrm{~s}\end{array}\right.$	1440m	1485 m		1440m	$\left\{\begin{array}{l}1471 s \\ 1449 \mathrm{~s}\end{array}\right.$
py						
eg, tmg		1298w	1299 m		1220w	$\left\{\begin{array}{l}1307 \mathrm{~s} \\ 1276 \mathrm{~m}\end{array}\right.$
py, eg, tmg	1230 m					
	1150 m	1150 m	1218w		1204w	1212s
	1070 s	1112s	1064 s		1031m	1062s
	1060m	981 s	1038s		$\left\{\begin{array}{r}1010 \mathrm{~m} \\ 985 \mathrm{~m}\end{array}\right.$	1027s
			1038 s		985m	
tmg		$\left\{\begin{array}{l}943 \mathrm{~m} \\ 854 \mathrm{~s}\end{array}\right.$	$\left\{\begin{array}{l}893 \mathrm{~m} \\ 880 \mathrm{~m}\end{array}\right.$	899(1)	$\left\{\begin{array}{l}895 \mathrm{~s} \\ 865 \mathrm{~m}\end{array}\right.$	$\left\{\begin{array}{l}892 \mathrm{~s} \\ 881 \mathrm{~m}\end{array}\right.$
py	760s	714 s	880m		865m	881m
	690s	$\{659 \mathrm{~s}$	645 m		$\{689 \mathrm{~m}$	
	690 s	629s			625s	
eg, tmg, py	469 m	585 s	547s	539(3)	571 s	
eg, tmg		391s				
		340 s	386s		309s	
py		309 m				

${ }^{a}$ Ref. 7. ${ }^{b}$ Ref. 14. ${ }^{\circ}$ py $=$ Pyridine; eg $=$ co-ordinated $\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right)$ group; tmg $=$ co-ordinated $\left(\mathrm{Me}_{4} \mathrm{C}_{2} \mathrm{O}_{4}\right)$ group.
All spectra measured in samples in the solid state: \dagger Raman spectrum of $\mathrm{RuO}_{2}\left(\mathrm{OH}_{2}\right)_{2} \mathrm{Py}_{2}\left(700-1000 \mathrm{~cm}^{-1}\right)$: $995 \mathrm{w}, 850 \mathrm{w}$.

the basis of these data we then propose a square-based pyramidal structure for OsO_{4}, py with the pyridine ligand in the equatorial plane; this arrangement of oxoligands about the osmium atom is the most likely since four oxo-ligands in a plane would compete for two d orbitals, but with one ligand perpendicular to the plane all three $t_{2 g}$ orbitals are brought into use. ${ }^{6}$ There is such an arrangement of oxo-ligands in $c i s-\left[\mathrm{OsO}_{4} \mathrm{X}_{2}\right]^{2-}(\mathrm{X}=\mathrm{F}$ or OH) and in $\left[\mathrm{ReO}_{4}(\mathrm{OH})_{2}\right]^{3-}$, and for the $\left[\mathrm{OsO}_{4} \mathrm{X}_{2}\right]^{2-}$ species the observed profile ${ }^{6}$ of the Raman spectrum in the $750-1000 \mathrm{~cm}^{-1}$ region is very similar to that of OsO_{4}, py .

In ' $\mathrm{OsO}_{3}, \mathrm{Py}_{2}$ ' both the Raman and i.r. spectra in the same region are much simpler than in $\mathrm{OsO}_{4}, \mathrm{py}$: there is only one strong Raman band at $875 \mathrm{~cm}^{-1}$ and an i.r. one at $833 \mathrm{~cm}^{-1}$, and there are few Raman-i.r. coincidences over the whole spectrum. The positions and intensities of the 875 and 833 bands are strongly suggestive of the presence of an 'osmyl' (trans $\mathrm{O}=\mathrm{Os}=\mathrm{O}$) grouping; for such species, the Raman-active symmetric stretch $v^{s}\left(\mathrm{OsO}_{2}\right)$ is found in the range $850-900 \mathrm{~cm}^{-1}$ and the i.r.-active asymmetric stretch $\nu^{\text {as }}\left(\mathrm{OsO}_{2}\right)$ and deformation $\delta\left(\mathrm{OsO}_{2}\right)$ are found in the $790-850$ and $300-350 \mathrm{~cm}^{-1}$ regions respectively. ${ }^{6}$ The presence of these bands and the general lack of Raman and i.r. coincidences suggests a centrosymmetric structure with bridging oxo-ligands,

so that the complex should be formulated as $\mathrm{Os}_{2} \mathrm{O}_{6}, \mathrm{Py}_{4}$. The above type of structure (centrosymmetric, with $D_{2 h}$ skeletal symmetry) has been shown to be that in the anion of $\mathrm{K}_{4}\left[\mathrm{Os}_{2} \mathrm{O}_{6}\left(\mathrm{NO}_{2}\right)_{4}\right]$, nitro-ligands replacing pyridine, ${ }^{8}$ and we find that prolonged action of an aqueous solution of potassium nitrite on $\mathrm{Os}_{2} \mathrm{O}_{6}$, py_{4} gives $\mathrm{K}_{4}{ }^{-}$ $\left[\mathrm{Os}_{2} \mathrm{O}_{6}\left(\mathrm{NO}_{2}\right)_{4}\right]$. The $\mathrm{Os}_{2} \mathrm{O}_{2}$ bridge system in $\mathrm{K}_{4}\left[\mathrm{Os}_{2} \mathrm{O}_{6}{ }^{-}\right.$ $\left(\mathrm{NO}_{2}\right)_{4}$, and also a number of other $\mathrm{M}_{2} \mathrm{O}_{2}$ bridge systems have symmetric (Raman-active) stretches ca. $600 \mathrm{~cm}^{-1}$ and asymmetric (i.r.-active) stretches $c a .450 \mathrm{~cm}^{-1} ;{ }^{6}$ the bands at 640 (Raman) and 448 (i.r.) in $\mathrm{Os}_{2} \mathrm{O}_{6}, \mathrm{py}_{4}$, not found in $\mathrm{OsO}_{4}, \mathrm{py}$, may perhaps be assigned to these modes.

The action of ruthenium tetroxide in carbon tetrachloride on pyridine is to give a dark green solid, formulated by Koda as $\mathrm{RuO}_{4}, \mathrm{py}_{2}{ }^{4}$ We find that this is monomeric in benzene and is diamagnetic, but its i.r. spectrum is quite different from that of $\mathrm{OsO}_{4}, \mathrm{py}$ in the $750-1000 \mathrm{~cm}^{-1}$ region. The only band which is unlikely to arise from pyridine modes is that at $790 \mathrm{~cm}^{-1}$; we propose that this may be due to a trans $-\mathrm{O}=\mathrm{Ru}=\mathrm{O}$

[^2]asymmetric stretch, $v^{\text {as }}\left(\mathrm{RuO}_{2}\right)$. This mode is found at $814 \mathrm{~cm}^{-1}$ in trans- $\left[\mathrm{RuO}_{2} \mathrm{Cl}_{4}\right]^{2-} .9$ There is a very weak Raman band at $850 \mathrm{~cm}^{-1}$ which may be due to $v^{s}\left(\mathrm{RuO}_{2}\right)$. Since there are no strong bands between 850 and 1000 cm^{-1} reported for the species formulated as RuO_{4}, bipy,$3 \mathrm{H}_{2} \mathrm{O}^{10}$ we suggest that this may also contain a trans $\mathrm{O}=\mathrm{Ru}^{\mathrm{VI}}=\mathrm{O}$ unit; the diamagnetism for such d^{2} systems presumably arises from the very axially distorted ligand field, as in ' osmyl' complexes. ${ }^{11}$

(1)

(II)

(III)

Oxo-osmium(vi) Monoesters.--Various structures have been proposed for those monoesters which do not contain pyridine: viz., (I), ${ }^{2,3}$ (II), ${ }^{2}$ and, in the case of the cyclopentene ester, a polymer (III) ${ }^{12}$ linked by oxo-bridges. We have prepared two of the mono-esters reported by Criegee. Comparison of the vibrational spectra of $\mathrm{OsO}_{2}, \mathrm{Py}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right)$, $\mathrm{OsO}_{4}, \mathrm{py}$, and $\mathrm{Os}_{2} \mathrm{O}_{6}, \mathrm{Py}_{4}$ allows assignment of the pyridine modes; the remaining i.r. bands are very similar in frequency to those observed in ethylene glycol ${ }^{13}$ and its complexes $\mathrm{MCl}_{2}\left\{\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{OH})_{2}\right\}_{2}(\mathrm{M}=$ Co or Ni$),{ }^{14}$ except that no $\mathrm{O}-\mathrm{H}$ stretches are observed in the osmium ester. The appearance of a very strong Raman band at $870 \mathrm{~cm}^{-1}$ and an intense i.r. band at 824 cm^{-1} suggests the presence of a trans $\mathrm{O}=\mathrm{Os}=\mathrm{O}$ grouping as in $\mathrm{Os}_{2} \mathrm{O}_{6}, \mathrm{Py}_{4}$. The Raman and i.r. bands ca. $456 \mathrm{~cm}^{-1}$ may be the $\mathrm{Os}-\mathrm{O}$ stretch of the co-ordinated $\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right)$ ligands; such bands are not found in $\mathrm{OsO}_{4}, \mathrm{Py}, \mathrm{Os}_{2} \mathrm{O}_{6}, \mathrm{Py}_{4}$, or in ethylene glycol, ${ }^{13}$ but $\mathrm{Os}-\mathrm{O}$ (single bond) stretches are found ca. $500 \mathrm{~cm}^{\mathbf{- 1}} .^{15}$ We therefore propose the simple octahedral structure for the complex with two trans-oxo-ligands.

The complex obtained by reaction of tetramethylethylene with osmium tetroxide in cyclohexane was formulated by Criegee ${ }^{3}$ as $\mathrm{OsO}_{2}\left(\mathrm{Me}_{4} \mathrm{C}_{2} \mathrm{O}_{2}\right)$, with a structure of type (I) above. Our analyses are consistent with this formula but the implied tetrahedral co-ordination with cis-oxo-ligands is unlikely for osmium(vi) which in all its other complexes has octahedral coordination. The complex is black, which prevents measurement of its Raman spectrum, and insoluble in
${ }^{11}$ K. A. K. Lott and M. C. R. Symons, J. Chem. Soc., 1960 , 973.
${ }^{12}$ R. Becker, quoted in ref. 19.
${ }^{13}$ U. Kanbayashi and K. Mukada, Nippon Kagaku Zasshi, 1963, 84, 293.

14 A. Mujaka, Bull. Chem. Soc. Japan, 1959, 32, 1381.
${ }^{15}$ W. P. Griffith, J. Chem. Soc., 1965, 3694; 1964, 245.
organic solvents, suggesting a possible polymeric structure. Comparison of its i.r. spectrum with that of $\mathrm{OsO}_{2} \mathrm{Py}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right)$ and of the ethyleneglycol diesters discussed below suggests that no bands in the $\mathrm{Os}=\mathrm{O}$ stretching region ($800-1150 \mathrm{~cm}^{-1}$) can be assigned to osmiumoxygen stretches. Mono-oxo-osmium(vi) species of type (III) have not been established previously; we suggest that the compound is a polymer, $\left[\mathrm{OsO}_{2}\left(\mathrm{Me}_{4}{ }^{-}\right.\right.$ $\left.\left.\mathrm{C}_{2} \mathrm{O}_{2}\right)\right]_{n}$, with the organic ligand occupying two cis-sites on octahedrally co-ordinated osmium(vi), there being zig-zag $\mathrm{Os}_{2} \mathrm{O}_{2}$ bridges linking the metal atoms to give a polymer chain with no $\mathrm{Os}=\mathrm{O}$ double bonds.

Oxo-osmium(vi) Diesters.-These are made by procedures similar to those for the monoesters. Two main structural types have been proposed: a five-co-ordinate complex with a single $\mathrm{Os}=\mathrm{O}$ bond (IV) ${ }^{\mathbf{2 , 3 , 1 6}}$ and a four-coordinate species involving tetravalent osmium (V). ${ }^{\mathbf{1 7}}$ An X-ray powder study on the pinacol complex formulated as $\mathrm{OsO}\left(\mathrm{Me}_{4} \mathrm{C}_{2} \mathrm{O}_{2}\right)_{2}$ has been reported ${ }^{18}$ but no structural data were obtained.

(IV)

(X)

We have prepared $\mathrm{K}_{2}\left[\mathrm{OsO}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right)_{2}\right]$ from ethylene glycol and $\mathrm{K}_{2}\left[\mathrm{OsO}_{2}\left(\mathrm{OCH}_{3}\right)_{4}\right]$ in the manner described by Criegee, ${ }^{3}$ and also the acid hydrolysis product of this, originally formulated as $\mathrm{OsO}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right)_{2} \cdot{ }^{3}$ Although the potassium salt was not analysed by the original workers, we find it to have the stoicheiometry above, and its vibrational spectra clearly suggest that it contains the trans $-\mathrm{O}=\mathrm{Os}=\mathrm{O}$ ' osmyl' grouping; the Raman band at $859 \mathrm{~cm}^{-1}$ is probably $v^{s}\left(\mathrm{OsO}_{2}\right)$ and the i.r. bands at 803 and $330 \mathrm{~cm}^{-1}$ may be assigned to $\nu^{2 s}\left(\mathrm{OsO}_{2}\right)$ and $\delta\left(\mathrm{OsO}_{2}\right)$ respectively. The Raman and i.r. bands $c a .460 \mathrm{~cm}^{-1}$ may arise as before from Os-O single-bond stretches of the co-ordinated bidentate organic ligands. The i.r. spectrum is very similar to that for $\mathrm{MCl}_{2}\left\{\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{OH})_{2}\right\}_{2}$ ($\mathrm{M}=\mathrm{Ni}$ or Co), ${ }^{14}$ for ethylene glycol, ${ }^{13}$ and for the above monoesters, but again no $\mathrm{O}-\mathrm{H}$ stretches are seen.

Our analyses of the diester made by acidification of this potassium salt suggest that it is $\mathrm{OsO}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right)_{2}, \mathrm{H}_{2} \mathrm{O}$ [or $\mathrm{Os}(\mathrm{OH})_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right)_{2}$, but this is less likely as the complex appears to be polymeric]. It is very dark in colour and we were unable to record its Raman spectrum for this reason; the i.r. spectrum is very similar to that of the above potassium salt but it does have bands $c a$. 3400 and $1600 \mathrm{~cm}^{-1}$ which could be due to water. We do not observe the strong bands $c a .1000 \mathrm{~cm}^{-1}$ ascribed to terminal $\mathrm{Os}=\mathrm{O}$ groups said to arise in diesters of proposed structure (IV), ${ }^{19}$ and so we tentatively propose that it is polymeric with $\mathrm{Os}^{-} \mathrm{O}^{-} \mathrm{Os}$ bridges, or possibly dimeric with an $\mathrm{Os}_{2} \mathrm{O}_{2}$ bridge system as in $\mathrm{Os}_{2} \mathrm{O}_{6}, \mathrm{py}_{4}$.

[^3]We hope to examine this complex and $\left[\mathrm{OsO}_{2}\left(\mathrm{Me}_{4} \mathrm{C}_{2} \mathrm{O}_{2}\right)\right]_{n}$ at a later date with oxygen-18 substitution in order to clarify the structures.
$\mathrm{K}\left[\mathrm{OsO}_{2}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{3}\right]$.-This dark blue material is obtained by the action of acetic acid on $\mathrm{K}_{2}\left[\mathrm{OsO}_{2}(\mathrm{OMe})_{4}\right]$, ${ }^{3}$ and from its formula is apparently five-co-ordinate. The i.r. spectrum is very complex in the $1600 \mathrm{~cm}^{-1}$ region suggesting that not all the acetate ligands are unidentate. Using the i.r. criteria for co-ordinated acetates of Curtis et al., ${ }^{20}$ we may assign the $1585 \mathrm{~cm}^{-1}$ band to unidentate, and those at 1660 and $1626 \mathrm{~cm}^{-1}$ to bridging or chelating acetate groups. It therefore seems likely that the complex is indeed octahedral with one chelating or bridging acetate group per osmium atom. The i.r. bands at 845 and $316 \mathrm{~cm}^{-1}$ may provisionally be assigned to $\nu^{\text {as }}\left(\mathrm{OsO}_{2}\right)$ and $\delta\left(\mathrm{OsO}_{2}\right)$ of the 'osmyl' unit (as may the bands at 825 and $316 \mathrm{~cm}^{-1}$ in $\left.\mathrm{K}_{2}\left[\mathrm{OsO}_{2}(\mathrm{OMe})_{4}\right]\right)$.

EXPERIMENTAL

Tetraoxo(pyridine)osmium(virr), $\mathrm{OsO}_{4}, \mathrm{Py}$.—This was made as bright yellow crystals by reaction of pyridine with a solution of osmium tetroxide in pyridine ${ }^{3}$ [Found: C, $17.8 ; \mathrm{H}, 1.7 ; \mathrm{O}, 19.7 ; \mathrm{N}, 4.3 . \quad \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NO}_{4} \mathrm{Os}$ requires C , $18 \cdot 0 ; \mathrm{H}, 1.5 ; \mathrm{O}, 19 \cdot 2 ; \mathrm{N}, 4.2 \% ; M$ (benzene) found: 323 ; required for OsO_{4}, py 333.2].

Di- μ-oxo-tetraoxotetrakis(pyridine)diosmium(vi), $\mathrm{Os}_{2} \mathrm{O}_{6} \mathrm{Py}_{4}$. -This was made in the same manner as $\mathrm{OsO}_{4}, \mathrm{py}^{3}$ but in the presence of ethanol. The compound forms dark greenbrown platelets (Found: C, 30.3; H, 2.5; O, 12.1; N, $7 \cdot 1$. $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{Os}_{2}$ requires C, $\left.30 \cdot 5 ; \mathrm{H}, \mathbf{2} \cdot 6 ; \mathrm{O}, 12 \cdot 3 ; \mathrm{N}, 7 \cdot 2 \%\right)$.

Dihydroxodioxobis (pyridine) ruthenium (vI), $\mathrm{RuO}_{2}(\mathrm{OH})_{2} \mathrm{Py}_{2}$. -This was prepared by the method of Koda, ${ }^{4}$ pyridine being mixed with a solution of RuO_{4} in carbon tetrachloride. The latter solution was made by Nakata's ${ }^{21}$ procedure [Found: C, $36.5 ; \mathrm{H}, 4 \cdot 1 ; \mathrm{N}, 7 \cdot 8 ; \mathrm{O}, 19.6 ; \mathrm{Ru}, 30.9$. $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{Ru}$ requires $\mathrm{C}, \mathbf{3 7} \cdot 1 ; \mathrm{H}, 3.7 ; \mathrm{N}, 8.7$; $\mathrm{O}, 19 \cdot 8$; $\mathrm{Ru}, 31 \cdot 3 \%$; M (methanol) 305; requires 323.0].

Ethane-1,2-diolatodioxobis(pyridine)osmium(vi), $\mathrm{OsO}_{2}-$ $\mathrm{Py}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right)$.-This was prepared ${ }^{3}$ from a solution of OsO_{4} in cyclohexane and pyridine under a current of ethylene. It formed dark brown crystals (Found: C, $32.6 ; \mathrm{H}, \mathbf{3 . 4}$; $\mathrm{N}, 6.5 ; \mathrm{O}, 14.6 . \quad \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}$ Os requires $\mathrm{C}, 32.7 ; \mathrm{H}, 3.2$; $\mathrm{N}, 6 \cdot 3 ; \mathrm{O}, 14 \cdot 5 \%$).

Poly[di- μ-oxo-tetramethylethane-1,2-diolato-osmium(vi)] $\left[\mathrm{OsO}_{2}\left(\mathrm{Me}_{4} \mathrm{C}_{2} \mathrm{O}_{2}\right)\right]_{n}$. -This was made ${ }^{3}$ as glittering black needles from tetramethylethylene and a solution of OsO_{4} in cyclohexane (Found: C, 21.4; H, 3.7; O, 19.0. $\mathrm{C}_{8} \mathrm{H}_{12}{ }^{-}$ $\mathrm{O}_{4} \mathrm{Os}$ requires $\mathrm{C}, 21 \cdot 3 ; \mathrm{H}, 3 \cdot 6 ; \mathrm{O}, 18 \cdot 9 \%$).

Dipotassiumbis(ethane-1,2-diolato)dioxo-osmate(vI), $\quad \mathbf{K}_{\mathbf{2}^{-}}$ $\left[\mathrm{OsO}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right)_{2}\right]$.-This was made as very hygroscopic rosecoloured crystals by the action of ethylene glycol on $\mathrm{K}_{2}\left[\mathrm{OsO}_{2}\left(\mathrm{OCH}_{3}\right)_{4}\right]^{3}$ (Found: C, 11.2; H, 2.9; O, 22.3. $\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{O}_{6} \mathrm{~K}_{2} \mathrm{Os}$ requires C, $11 \cdot 4 ; \mathrm{H}, 2 \cdot 3 ; \mathrm{O}, 22 \cdot 8 \%$).

Poly[μ-oxo-bis(ethane-1,2-diolato)osmium (vi)], [OsO$\left.\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right)_{2}\right]_{n} n \mathrm{H}_{2} \mathrm{O}$.-This was made ${ }^{3}$ by acidification of the above potassium salt; it formed dark brown crystals (Found: C, 14.4; H, 2.6; O, 28.9. $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}_{6}$ Os requires C , $14 \cdot 0 ; \mathrm{H}, 2 \cdot 9 ; \mathrm{O}, 27 \cdot 9 \%$).

Dipotassium Tetramethoxodioxo-osmate(vI), $\mathrm{K}_{2}\left[\mathrm{OsO}_{2}-\right.$

[^4]$\left(\mathrm{OCH}_{3}\right)_{4}$]. -This was made ${ }^{3}$ as brown crystals by the action of methanolic potassium hydroxide on a solution of OsO_{4} in methanol.
I.r. spectrum: $3150 \mathrm{~m}, 2800 \mathrm{~s}, 1610 \mathrm{~s}, 1420 \mathrm{w}, 1270 \mathrm{w}$, $1177 \mathrm{~m}, 1130 \mathrm{w}, 1060 \mathrm{~m}, 1045 \mathrm{~m}, 1030 \mathrm{~m}, 955 \mathrm{~m}, 875 \mathrm{~m}, 825 \mathrm{~s}$, $755 \mathrm{w}, 535 \mathrm{~s}, 400 \mathrm{~m}, 316 \mathrm{~m}, 300 \mathrm{~s} \mathrm{~cm}^{-1}$.
Potassium Trisacetatodioxo-osmate(vi), $\quad \mathrm{K}\left[\mathrm{OsO}_{2}\left(\mathrm{CH}_{3}{ }^{-}\right.\right.$ $\mathrm{COO})_{3}$].-This was prepared as a dark blue solid ${ }^{3}$ by reaction of glacial acetic acid with $\mathrm{K}_{2}\left(\mathrm{OsO}_{2}\left(\mathrm{OCH}_{3}\right)_{4}\right)$ (Found: C, 16.6; H, 2.2; O, 29.0. $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{O}_{8} \mathrm{KOs}$ requires $\mathrm{C}, \mathbf{1 6 . 4 ; ~ H ,}$ $2 \cdot 1$; O, $29 \cdot 2 \%$).
I.r. spectrum: $2925 \mathrm{~s}, 1660 \mathrm{~s}, 1626 \mathrm{~s}, 1585 \mathrm{~m}, 1485 \mathrm{~m}$, $1370 \mathrm{~m}, 1325 \mathrm{~m}, 1285 \mathrm{~s}, 1265 \mathrm{~s}, 1042 \mathrm{w}, 1020 \mathrm{~m}, 930 \mathrm{~m}, 845 \mathrm{vs}$, $536 \mathrm{~s}, 400 \mathrm{~m}, 316 \mathrm{~s}, 300 \mathrm{~s} \mathrm{~cm}^{-1}$.

Raman spectra were measured on a Cary 81 instrument with red (helium-neon, $6328 \AA$) or yellow (krypton, $5628 \AA$) irradiation, on powdered samples over the range 1100-300 cm^{-1}. I.r. spectra were measured as Nujol or hexachlorobutadiene mulls on a Grubb-Parsons Spectromaster (4000$400 \mathrm{~cm}^{-1}$) with potassium bromide plates, and over the range $500-200 \mathrm{~cm}^{-1}$ with vaseline in Polythene plates on a Grubb-Parsons DM 4 instrument. Microanalyses were performed by Alfred Bernhardt.

We thank Johnson, Matthey, Ltd., for the loan of the platinum metals used in this work.
[1/2269 Received, 30th November, 1971]

[^0]: ${ }_{2}$ F. D. Gunstone, Adv. Org. Chem., 1960, 1, 110.
 2 J. C. Riemersma, 'Some Biological Techniques in Electron Microscopy,' Academic Press, New York, 1970, p. 69; Biochim. Biophys. Acta, 1968, 152, 718.
 ${ }^{3}$ R. Criegee, Annalen, 1936, 522, 75; R. Criegee, B. Manchard, and H. Wannowius, ibid., 1942, 550, 99.

[^1]: ${ }^{4}$ Y. Koda, Inorg. Chem., 1963, 2, 1306.
 5 W. P. Griffith, J. Chem. Soc. (A), 1966, 899.
 ${ }^{6}$ W. P. Griffith, J. Chem. Soc. (A), 1969, 211.
 ${ }^{7}$ F. Herbelin, J. D. Herbelin, J.-P. Mathieu, and H. Poulet, Spectrochim. Acta, 1966, 22, 1515.

[^2]: ${ }^{8}$ L. O. Atovyman and O. A. L'yachenko, J. Struct. Chem., 1967, 8, 143.
 ${ }^{9}$ J. L. Woodhead and J. M. Fletcher, U.K.A.E.R.E., 1962, $\mathrm{R}-4123$.
 ${ }_{10}$ T. Ishiyama, Bull. Chem. Soc. Japan, 1971, 44, 1571; 1969, 42, 2071.

[^3]: ${ }^{16}$ E. D. Korn, J. Cell Biol., 1967, 34, 627.
 17 E. D. Korn, Biochim. Biophys. Acta, 1966, 116, 317, 325.
 18 H. Nowotny and E. Henglein, Naturwiss, 1939, 27, 167.
 19 W. Stoeckenius and S. C. Mahr, Lab. Invest., 1965, 14, 1196.

[^4]: ${ }^{20}$ N. F. Curtis, J. Chem. Soc. (A), 1968, 1579; K. Nakamoto Y. Morimoto, and A. E. Martell, J. Amer. Chem. Soc., 1961, 83, 4528.
 ${ }_{21}$ H. Nakata, Tetrahedron, 1963, 19, 1959.

