Crystal Structure of the Aziridinylgallane Trimer †

By W. Harrison, A. Storr. and J. Trotter,* Department of Chemistry, University of British Columbia, Vancouver 8, British Columbia, Canada

Crystals of the title compound are orthorhombic, a = 18.364(5), b = 10.823(3), c = 7.114(2) Å, Z = 4 (trimeric units), space group Pnma. The structure was determined from diffractometer data by Patterson and Fourier syntheses, and refined by full-matrix least-squares methods to R 0.077 for 252 observed reflexions. The sixmembered (Ga-N)₃ ring is in the chair conformation, torsion angles 59-61°, and lies on a crystallographic mirror plane. The mean dimensions are Ga–N 1.97, N–C 1.55, C–C 1.55 Å; N–Ga–N 100, Ga–N–Ga 121, Ga–N–C 116°, angles in three-membered rings ca. 60°.

The structure of the aziridinylgallane trimer, $[(CH_2)_2-$ NGaH₂]₃, has been determined as part of a study of cyclogallazanes.1,2

EXPERIMENTAL

The reaction of aziridine with an equimolar amount of trimethylamine-gallane at room temperature yields the (N-ethylene)cyclogallata-azoniane, [(CH₂)₂NGaH₂]₃. Sublimation of the compound in sealed capillaries under low pressures of nitrogen gave colourless crystals suitable for an X-ray crystallographic study.

Crystal Data.— $C_6H_{18}Ga_3N_3$, M = 341.4, orthorhombic, $a = 18.364(5), \quad b = 10.823(3), \quad c = 7.114(2)$ Å, U =1413.9 Å³, D_m not measured because of instability of the crystals, Z = 4, $D_c = 1.60$, F(000) = 672. Mo- K_{α} radiation, $\lambda = 0.7107 \text{ Å}$; $\mu(\text{Mo-}K_{\alpha}) = 59 \text{ cm}^{-1}$. Space group Pnma (D_{2h}^{16}) , from absent spectra and structure analysis.

Intensity data were measured on a Datex-automated General Electric XRD 6 diffractometer by our usual methods.³ Of 732 reflexions, only 252 were considered observed, having $I > 3\sigma(I)$; no absorption correction was made.

The structure was determined from the Patterson map, which could be interpreted in terms of space group Pnma, and electron-density syntheses. Refinement was by fullmatrix least-squares methods, with the scattering factors of ref. 4 and anisotropic thermal parameters for gallium and isotropic parameters for nitrogen and carbon. The function minimized was $\Sigma w(F_o - F_c)^2$, with $\sqrt{w} = 1$ when $|F_o| \leq$ 100, $\sqrt{w} = 100/|F_0|$ when $|F_0| > 100$, $\sqrt{w} = 0.1$ for un-

† Preliminary publication: W. Harrison, A. Storr, and J. Trotter, Chem. Comm., 1971, 1101.

For details see Notice to Authors No. 7 in J. Chem. Soc. (A), 1970, Issue No. 20 (items less than 10 pp. are sent as full size copies).

observed reflexions (which were given their measured $|F_0|$ values). The final R was 0.077 for the 252 observed reflexions. Measured and calculated structure factors are listed in Supplementary Publication No. SUP 20403 (7 pp., 1 microfiche).[‡]

TABLE 1

Final positional (fractional $\times 10^4$) and thermal parameters (components of the vibration tensors, U in $Å^2 \times 10^2$), with standard deviations in parentheses

	x	У	Z	U_{iso}
Ga(1)	0851(1)	0931(3)	1828(5)	
Ga(2)	2345(2)	2500	3376(9)	
N(1)	0374(12)	2500	2209(36)	4 ·8(8)
N(2)	1659(9)	1092(18)	3665(29)	7.4(6)
C(1)	1951(15)	-0098(27)	4412(39)	9.6(10)
C(2)	1499(15)	0735(28)	5656(42)	9.8(10)
C(3)	-0222(18)	2500	3711(51)	6.8(11)
C(4)	0500(19)	2500	1585(62)	8.9(11)
	<i>U</i> ,,	U_{22}		U_{33}
Ga(1)	5.81(17)	7.42()	18) 10	·11(24)
Ga(2)	4.73(26)	10.44(36) 10	·71(45)
	U_{12}	U_{13}		U_{23}
Ga(1)	-0.24(16)) 0.58(2	9) —	1.39(29)
Ga(2)	0	´ 1·54(3	6)	0 , ,

Final positional parameters are given in Table 1. Atoms are in positions 4(c) and 8(d), the molecule possessing a crystallographic mirror plane which contains one gallium atom and one aziridine ring. Bond lengths and valency angles are in Table 2.

¹ A. Storr, J. Chem. Soc. (A), 1968, 2605. ² A. Storr and A. D. Penland, J. Chem. Soc. (A), 1971, 1237. ³ E.g., W. Harrison and J. Trotter, J. Chem. Soc. (A), 1971,

1607. ⁴ 'International Tables for X-Ray Crystallography,' vol. III, Kynoch Press, Birmingham, 1962.

TABLE 2

Bond lengths (Å), and valency and torsion angles (deg.), with standard deviations in parentheses

(d) Bond	distances
----------	-----------

· · /				
$\begin{array}{c} Ga(1)-N(1) \\ Ga(1)-N(2) \end{array}$	1·930(12) 1·985(19)	N(2)-C(1) N(2)-C(2)	1·4 1·4	94(31) 98(28)
Ga(2)-N(2)	1.987(19)	C(3)-C(4)	1.5	96(49)
N(1)-C(3) N(1)-C(4)	1·531(38) 1·666(41)	C(1)-C(2)	1.5	13(35)
(b) Bond angles				
N(1)-Ga(1)-N(2) N(2)-Ga(1)-N(2')	99·7(9)	C(3)-N(1)-C(2)-N(2)-C(2)-N(2)-C(2)-N(2)-C(2)-C(2)-N(2)-C(2)-C(2)-C(2)-C(2)-C(2)-C(2)-C(2)-C	C(4) C(2)	59.7(20) 60.7(16)
$C_{-}(1) = C_{-}(1) = C_{-}(1)$	100 0/10	-(-) - (-)	~ (-)	e4 9/90)
Ga(1) - N(1) - Ga(1) Ga(1) - N(2) - Ga(2)	$123\cdot 3(12)$ 118.2(11)	N(1)-C(3)-C(3)-C(3)-C(3)-C(3)-C(3)-C(3)-C(3	ン(4) こ(3)	55·9(19)
Ga(1)-N(1)-C(3) Ga(1)-N(1)-C(4)	115·0(8) 113·6(8)	N(2)-C(1)-C(1)-C(1)-C(2)-C(2)-C(2)-C(2)-C(2)-C(2)-C(2)-C(2	C(2) C(1)	59·7(16) 59·5(16)
Ga(1) - N(2) - C(1) Ga(1) - N(2) - C(2)	115·3(15) 117·0(15)		ζ,	
Ga(2)-N(2)-C(1) Ga(2)-N(2)-C(2)	$118 \cdot 1(15)$ $114 \cdot 8(16)$			
(c) Torsion angles	- ()			

=	
Ga(1')-N(1)-Ga(1)-N(2)	-59.6
N(1) - Ga(1) - N(2) - Ga(2)	+58.7
Ga(1) - N(2) - Ga(2) - N(2')	61.0

DISCUSSION

The Figure shows the trimeric molecule viewed down c. The six-membered $(Ga-N)_3$ ring has a chair conformation, with torsion angles 59—61° (Table 2), and lies on a crystallographic mirror plane. The aziridine rings are perpendicular to the Ga-N-Ga planes. The mean dimensions are: Ga-N 1.97, N-C 1.55, C-C 1.55 Å; N-Ga-N 100, Ga-N-Ga 121, Ga-N-C 116°, angles in

⁵ D. F. Shriver and C. E. Nordman, *Inorg. Chem.*, 1963, 2, 1298.

⁶ K. Gosling, G. M. McLaughlin, G. A. Sim, and J. D. Smith, Chem. Comm., 1970, 1617. three-membered rings 60°. The mean Ga–N bond length (1.97 Å) is in good agreement with that in monomeric trimethylamine-gallane, 1.97 Å,⁵ and is also close to the Al–N bond distances in similar trimeric aluminium compounds, [MeNH,AlMe₂]₃ 1.95,⁶ and [(CH₂)₂N,

The molecular structure viewed along c [atom C(3) is displaced for clarity]

 $AlMe_2]_3$ 1.93 Å.⁷ Bond angles in the ring are also in good agreement with those in these related molecules.

Intermolecular distances correspond to van der Waals interactions, the shortest contacts being Ga \cdots C 3.96, N \cdots C 4.10, and C \cdots C 3.96 Å.

We thank the National Research Council of Canada for financial support, and the University of British Columbia Computing Centre for assistance.

[2/320 Received, February 14th, 1972]

⁷ J. L. Atwood and G. D. Stucky, J. Amer. Chem. Soc., 1970, 92, 285.