Crystal and Molecular Structure of Aquobis-(2,2'-bipyridyl)palladium Dinitrate ${ }^{1}$

By Peter C. Chieh, Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada

Crystals of the title compound are monoclinic with $a=6.932(1), b=26 \cdot 721(6), c=11.697$ (3) $\AA, \beta=103.4(1)^{\circ}$. space group $P 2_{1} / c$, and $Z=4$. The structure was determined from diffractometer data by Patterson and Fourier methods and refined by full-matrix least-squares techniques to $R 0.060$ for 2589 observed reflections. The structure consists of discrete Pd (bipy) ${ }_{2}{ }^{2+}$ cations and nitrate anions. There is a weak interaction between the metal ion and one of the nitrate ions, the other nitrate ion being hydrogen bonded to a water molecule. The steric strain imposed by the interaction of interligand ortho-hydrogens is reduced by a distortion from a square planar configuration. The 'bite ' of the 2,2'-bipyridyl ligand results in a rectangular distortion of the PdN_{4} skeleton such that mean of the angles $\mathrm{N}-\mathrm{Pd}-\mathrm{N}$, where both nitrogens are from the same ligand, is $80 \cdot 0(3)^{\circ}$. The corresponding angle involving nitrogens from different ligands is $102 \cdot 2(3)^{\circ}$. There is also a mutual twist of the two ligands to avoid interligand hydrogen contacts. The mean diagonal angle, $\mathrm{N}-\mathrm{Pd}-\mathrm{N}$, is $164.5(5)^{\circ}$. The torsion angle is 24.3°

Palladium- and platinum-(ii) both greatly favour four-co-ordinate square-planar configurations, ${ }^{2}$ although distorted square-planar configurations are expected for sterically hindered complexes. During the course of the present study, there was a review ${ }^{3}$ on the steric effect in bis-($2,2^{\prime}$-bipyridyl)- and bis-(1,10 -phenanthroline)-metal compounds, but the lack of structural data for these complexes was apparent. Molecules often deviate from the ideal geometry in a polyatomic compound to alleviate an apparently major steric effect at little cost in energy. ${ }^{4}$ An example of severe distortion was found in a five-co-ordinate copper complex. ${ }^{5}$ The nature of the distortions from a square-planar geometry has recently been the subject of considerable speculation. ${ }^{6-10}$ By consideration of a mutual twist of the ligands with respect to the normal PdN_{4} plane, repulsion energies from various degrees of distortion, have been calculated, ${ }^{3}$ and the results indicated a very large torsion angle. In view of recent concern over the steric effects present in these complexes and their structural implications for related complexes we have carried out a detailed X-ray structure analysis of aquobis-($2,2^{\prime}$-bipyridyl)palladium nitrate.

EXPERIMENTAL

The crystals were obtained from water-acetone as orangeyellow needles elongated along a. Unit-cell data were determined from various film and diffractometer measurements, the lattice parameters being obtained by leastsquares treatment based on 2θ values of 39 reflections measured on the General Electric XRD 6 with $\mathrm{Cu}-K_{\beta}$ ($\lambda=1$ 39217) radiation.
${ }^{1}$ A. J. Carty and P. C. Chieh, J.C.S. Chem. Comm., 1972, 158.
${ }^{2}$ S. Yamada, Co-ordination Chem. Rev., 1966, 1, 415.
3 E. D. McKenzie, Co-ordination Chem. Rev., 1971, 6, 187.
${ }_{5}^{4}$ C. A. Coulson and C. W. Haigh, Tetrahedron, 1965, $19,527$.
${ }^{5}$ P. C. Chieh and G. J. Palenik, Inorg. Chem., 1972, 11, 816. J. V. Rund, Inorg. Chem., 1968, 7, 24.

Crystal Data. $-\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{O}_{7} \mathrm{Pd}, \quad M=560 \cdot 8$, Monoclinic $a=6.932(1), b=26.721(6), c=11.697(3) \AA, \beta=103.4(1)^{\circ}$, $U=2107.7 \AA^{3}, D_{\mathrm{m}}=1.764$ (by flotation), $Z=4, D_{\mathrm{c}}=$ 1.767, $F(000)=1128$. Absent reflections: $h 0 l$ for l odd, $0 k 0$ for k odd, indicate space group $P 2_{2} / c\left(C_{2 h}^{5}\right)$. Mo- K_{α} radiation, $\lambda=0.7107 \AA ; \mu\left(\mathrm{Mo}-K_{\alpha}\right)=9.3 \mathrm{~cm}^{-1}$.

The intensities of the reflections were measured on a Datex-automated General Electric XRD 6 spectrogoniometer, fitted with a scintillation counter, zirconiumfiltered Mo- $K_{\bar{\alpha}}$ radiation, and a pulse-height analyser, by the $\theta-2 \theta$ scan method. The scan range in 2θ was $(1 \cdot 80+0 \cdot 6$ $\tan \theta)^{\circ}$ and background was measured at the beginning and end of each scan. Four strong reflections were repeated after every 100 reflections to apply small corrections ($<5 \%$) for the fluctuation and declining intensity over the course of the measurement. A total of 4751 reflections with maximum $2 \theta<60^{\circ}$ were measured, and after averaging over equivalent reflections gave 2589 observed and 1287 unobserved reflections. No absorption correction was made. Lorentz and polarization factors were applied to the derivation of the structure amplitudes.

The palladium atom was located from the three-dimensional Patterson map and a Fourier map based on the phase of the palladium atom revealed all the non-hydrogen atom positions; however, the oxygen atom of the water molecule was not included in the least-squares refinement until a difference-Fourier map showed a distinct peak revealing its position. After two cycles of full-matrix least-squares refinement, R was 0.11 ; anisotropic thermal parameters were then introduced and by two further cycles R was reduced to 0.069 . A difference-Fourier map was then calculated and the hydrogen atoms were located by consideration of both relative positions with respect to the ring and electron

[^0]densities. The hydrogen atoms were then included in the refinement, but some of the parameters were alternately kept fixed. The atomic scattering factors were taken from ref. 11. for all non-hydrogen atoms, and from ref. 12 for hydrogen. Dispersion corrections were made for palladium only. The function minimized was $\Sigma\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2}$ and a weighting scheme analysis based on ranges of F_{o} and $\sin \theta / \lambda$ (see Appendix) indicated that this (unit weight) was satisfactory. The final R is 0.060^{*} and the corresponding atomic parameters and thermal parameters are listed in Table 1. The numbering of the atoms are shown in Figures 1 and 2 together with their bond lengths and angles.

DISCUSSION

The bond distances and angles of the $\operatorname{Pd}(\text { bipy })^{2+}$ cation are given in Figure 1, together with their standard deviations. No correction was made for the anisotropic thermal motions for any bond distance. The mean $\mathrm{Pd}-\mathrm{N}$ distance of $2.034(\mathrm{l}) \AA$ is reasonably close to the

Table 1

Final positional and thermal parameters with standard deviations in parentheses

Atom	x	y	z	B / \AA^{2}
Pd	$0 \cdot 2285$ (1)	$0 \cdot 11948(3)$	$0.95722(7)$	
N(11)	$0 \cdot 2207(14)$	$0 \cdot 0585(3)$	0.8527(7)	
$\mathrm{C}(12)$	$0 \cdot 2368(16)$	$0.0133(4)$	$0.9104(9)$	
C(13)	$0 \cdot 2560(19)$	-0.0313(4)	$0 \cdot 8551$ (11)	
C(14)	$0 \cdot 2459(18)$	-0.0309(5)	$0 \cdot 7364(11)$	
C(15)	$0 \cdot 2380(19)$	$0.0140(5)$	$0.6788(10)$	
C(16)	$0 \cdot 2268(17)$	$0 \cdot 0582(4)$	$0 \cdot 7396(9)$	
$\mathrm{N}(21)$	$0 \cdot 2502(12)$	$0.0642(3)$	$1 \cdot 0786(7)$	
$\mathrm{C}(22)$	$0 \cdot 2465(13)$	$0.0175(3)$	$1 \cdot 0377(9)$	
$\mathrm{C}(23)$	$0 \cdot 2571(15)$	-0.0242(4)	$1 \cdot 1089(10)$	
C(24)	$0 \cdot 2633(18)$	-0.0173(5)	1-2272(10)	
$\mathrm{C}(25)$	$0 \cdot 2475(18)$	$0.0303(5)$	1-2686(9)	
$\mathrm{C}(26)$	$0 \cdot 2378(16)$	$0.0714(4)$	$1 \cdot 1918(10)$	
N(31)	$0 \cdot 1321(13)$	$0 \cdot 1745(3)$	$0.8383(7)$	
C(32)	$0 \cdot 1643(17)$	0.2213 (4)	$0.8804(10)$	
$\mathrm{C}(33)$	$0 \cdot 0862(17)$	0.2624(4)	0.8155(11)	
$\mathrm{C}(34)$	-0.0252(17)	$0 \cdot 2551$ (5)	$0 \cdot 7002(11)$	
$\mathrm{C}(35)$	-0.0630(20)	$0 \cdot 2075(6)$	0.6602(10)	
$\mathrm{C}(36)$	$0 \cdot 0121(16)$	$0 \cdot 1683$ (4)	$0.7293(10)$	
N(41)	$0 \cdot 3208(13)$	$0 \cdot 1810$ (3)	1-0601 (8)	
C(42)	$0 \cdot 2814(14)$	$0 \cdot 2250$ (4)	$1 \cdot 0026(10)$	
C(43)	$0 \cdot 3543(18)$	$0 \cdot 2687(4)$	$1 \cdot 0555(11)$	
$\mathrm{C}(44)$	$0 \cdot 4678(16)$	$0 \cdot 2687$ (4)	$1 \cdot 1698(11)$	
$\mathrm{C}(45)$	$0 \cdot 5128(15)$	$0 \cdot 2224(5)$	1-2254(16)	
C(46)	$0 \cdot 4354(17)$	$0 \cdot 1805(4)$	$1 \cdot 1684(10)$	
$\mathrm{O}(11)$	$0 \cdot 6121(16)$	$0 \cdot 1378(4)$	$0 \cdot 8662(10)$	
N(10)	$0 \cdot 7206(16)$	$0 \cdot 1618(3)$	$0.9467(10)$	
$\mathrm{O}(12)$	$0 \cdot 7275(17)$	$0 \cdot 2074(3)$	$0.9436(9)$	
$\mathrm{O}(13)$	$0 \cdot 8203(17)$	$0 \cdot 1381$ (3)	1-0334(9)	
$\mathrm{O}(21)$	$0 \cdot 5760(17)$	$0 \cdot 1301(4)$	$0.4168(9)$	
N(20)	$0 \cdot 6102(18)$	$0 \cdot 1017(4)$	$0.5011(9)$	
$\mathrm{O}(22)$	$0.7827(16)$	$0.0845(4)$	$0.5379(9)$	
$\bigcirc(23)$	0.4797(16)	$0.0907(5)$	$0.5498(10)$	
$\mathrm{O}(1)$	$0 \cdot 0902(16)$	$0 \cdot 1225(4)$	$0.4252(10)$	
H(13)	$0 \cdot 265(17)$	-0.064(4)	0.910 (10)	4-2(26)
H(14)	$0 \cdot 227(15)$	-0.060(4)	$0 \cdot 687(9)$	$7 \cdot 2(22)$
$\mathrm{H}(15)$	0.216(17)	$0.009(4)$	$0.588(9)$	$2 \cdot 5(25)$
H(16)	0.249(16)	$0 \cdot 094(4)$	0.708(9)	$6 \cdot 6(24)$
H(23)	0.278(14)	$-0.060(4)$	$1.082(8)$	$9 \cdot 7(20)$
$\mathrm{H}(24)$	$0 \cdot 269(15)$	-0.050(4)	$1 \cdot 282(9)$	$2 \cdot 6(24)$
H(25)	$0.245(16)$	$0 \cdot 036(4)$	$1 \cdot 357$ (9)	$8 \cdot 1(24)$
H(26)	0.227(16)	0.116(4)	$1 \cdot 226(9)$	$2 \cdot 0(22)$
$\mathrm{H}(33)$	$0 \cdot 115(14)$	$0 \cdot 294$ (3)	$0 \cdot 859$ (8)	$1.8(21)$
H(34)	$-0.074(14)$	$0 \cdot 280$ (3)	$0 \cdot 644$ (8)	$4 \cdot 2(26)$
$\mathrm{H}(35)$	$-0 \cdot 139(17)$	$0 \cdot 198(4)$	$0 \cdot 588(9)$	$3 \cdot 9(20)$
$\mathrm{H}(36)$	0.000 (14)	$0 \cdot 126(3)$	$0 \cdot 710$ (8)	$4 \cdot 1(22)$
$\mathrm{H}(43)$	$0 \cdot 334(15)$	$0 \cdot 297(3)$	1-015(8)	3-4(22)
$\mathrm{H}(44)$	$0 \cdot 524(14)$	$0 \cdot 297(3)$	$1 \cdot 215(8)$	$1 \cdot 8(21)$
$\mathrm{H}(45)$	$0.579(13)$	$0 \cdot 219(3)$	$1 \cdot 310(7)$	$6 \cdot 0(19)$
$\mathrm{H}(46)$	0.489(15)	$0 \cdot 145(3)$	1.213(8)	$3 \cdot 8(21)$

Table 1 (Continued)

Anisotropic thermal parameters in the form						
$\exp \left[-10^{-4}\left\{b_{11} h^{2}+b_{22} k^{2}+b_{33} l^{2}+2 b_{12} h k+2 b_{13} h l+2 b_{23} k l\right\}\right]$						
Atom	b_{11}	b_{22}	b_{33}	b_{12}	b_{13}	b_{23}
Pd	175(2)	$10(0)$	61 (1)	0 (1)	19 (1)	$1(0)$
N(11)	144(22)	$8(1)$	$56(9)$	$-1(5)$	$9(12)$	0 (3)
$\mathrm{C}(12)$	157(25)	4 (1)	73 (10)	$2(5)$	$31(13)$	$-2(3)$
C(13)	252(33)	7 (2)	75(11)	-6(6)	45(17)	-3(4)
$\mathrm{C}(14)$	170(29)	$9(2)$	95(11)	$-10(6)$	13(16)	$-9(4)$
C(15)	229(31)	12(2)	67(10)	$5(7)$	50(16)	-4(4)
$\mathrm{C}(16)$	214(30)	11(2)	60 (10)	$5(6)$	34(15)	0 (3)
$\mathrm{N}(21)$	101(19)	$8(1)$	48(7)	$-1(4)$	13(10)	0 (2)
$\mathrm{C}(22)$	76(21)	$9(1)$	50(8)	0 (5)	3(11)	$2(3)$
$\mathrm{C}(23)$	115(24)	11(2)	83(11)	$-8(5)$	14(14)	6(4)
$\mathrm{C}(24)$	203(30)	17(2)	57(10)	$-12(7)$	$-5(15)$	$5(4)$
$\mathrm{C}(25)$	219(31)	18(2)	47(10)	$-13(7)$	9 (15)	2(4)
$\mathrm{C}(26)$	166(27)	14(2)	54(10)	7 (6)	26(14)	3(4)
$\mathrm{N}(31)$	$173(23)$	$10(1)$	44(8)	3 (5)	8(11)	$1(3)$
$\mathrm{C}(32)$	176(27)	11(2)	60(10)	6 (6)	20(14)	$3(4)$
C(33)	180(29)	12(2)	80(12)	7(6)	37(16)	3 (4)
$\mathrm{C}(34)$	163(28)	18(2)	83(13)	15(7)	30(16)	14(4)
$\mathrm{C}(35)$	248(35)	22(3)	54(11)	$-3(8)$	-2(2)	6 (4)
$\mathrm{C}(36)$	131(26)	14(2)	65(10)	0 (6)	19(4)	4(4)
N(41)	156(24)	8(1)	52(8)	$2(4)$	28(12)	$-2(3)$
$\mathrm{C}(42)$	$55(20)$	14(2)	76(10)	$4(5)$	50(12)	$2(4)$
$\mathrm{C}(43)$	$190(29)$	11(2)	81 (12)	$1(6)$	13(16)	$-3(4)$
C(44)	149(27)	$13(2)$	93(12)	$-12(6)$	43(16)	-8(4)
$\mathrm{C}(45)$	114(23)	$17(2)$	83(11)	$-18(6)$	39(14)	$-12(4)$
$\mathrm{C}(46)$	177(27)	$14(2)$	54(10)	$-6(6)$	1(14)	1 (4)
$\mathrm{O}(11)$	348(32)	$19(2)$	132(12)	$-15(7)$	-63(17)	-6(4)
N(10)	204(25)	$9(1)$	81(11)	$15(6)$	33(13)	$5(4)$
$\mathrm{O}(12)$	489(36)	11(1)	96(10)	$2(6)$	18(15)	7 (3)
$\mathrm{O}(13)$	455(38)	15(1)	100(10)	7(7)	- 22(16)	16(3)
$\mathrm{O}(21)$	414(36)	29(1)	98(11)	10(8)	32(16)	$20(4)$
N(20)	260 (34)	14(2)	$52(9)$	$-1(7)$	5(15)	5(3)
$\mathrm{O}(22)$	265(26)	26(2)	92(7)	-2(7)	13(13)	10 (4)
$\bigcirc(23)$	263(29)	46(3)	142(13)	$-7(9)$	104(17)	$33(6)$
$\mathrm{O}(1)$	385(33)	$17(2)$	129(12)	$-10(7)$	29(17)	$0(4)$

values of $2.022(9) \AA$ found in bis-(2,2'-dipyridyliminato)palladium(II) ${ }^{13}$ and $2.036(7) \AA$ for bis(ethylenediamine)palladium(II) chloride. ${ }^{14}$ The steric strain is therefore reduced by distortion, which will be discussed later, without weakening the $\mathrm{Pd}-\mathrm{N}$ bonds.
It has been shown that palladium(II) greatly favours a square-planar configuration. Previous analyses of the cation of the present complex suggested ${ }^{2,3,10}$ that an undistorted configuration was impossible. An analysis of the structure revealed that the steric strain is relieved mainly by rectangular and tetrahedral distortions of the PdN_{4} skeleton. The mean of angles involving intraligand nitrogens $[\mathrm{N}(11)-\mathrm{Pd}-\mathrm{N}(21)$ and $\mathrm{N}(31)-\mathrm{Pd}-\mathrm{N}(41)$] is 80.0° which is considerably smaller than that $\left(102 \cdot 2^{\circ}\right)$ of the angles $[\mathrm{N}(11)-\mathrm{Pd}-\mathrm{N}(31)$ and $\mathrm{N}(21)-\mathrm{Pd}-\mathrm{N}(41)]$ involving interligand nitrogen atoms. A comparison with the corresponding values of 85.6 and $94 \cdot 4$ for the planar PdN_{4} conformation found in bis-(2,2'-dipyridylinimato)palladium(II) ${ }^{13}$ shows that the distortion is imposed by the 'bite' of the ligand as well as by the

[^1]overall steric effect. A value of 83° was found for the $\mathrm{N}-\mathrm{Pd}-\mathrm{N}$ angle where both nitrogen atoms are from the

Figure 1 (a) Numbering of atoms and bond distances and (b) bond angles in the cation
bidentate ligand in dinitro-(2,9-dimethyl-1,10-phenanthroline) palladium(II); ${ }^{15}$ an even smaller value of 76°
portant. The equations of the least-squares planes, maximum displacements from the plane, and the interplanar angles are listed in Table 2. The tetrahedral distortion gives rise to a torsion angle [interplanar angle between (1) and (2)] of $24 \cdot 3^{\circ}$. In the preliminary calculation, the repulsion energy was calculated as a function of the angle of twist, ${ }^{3}$ which is equal to half the torsion angle; however, the rectangular distortion was not considered. The observed $\operatorname{Pd}^{-} \mathrm{N}$ distance and angle of

Figure 2 The bond distances and angles for the nitrate ions
twist correspond to a repulsion energy of 2.10×10^{5} $\mathrm{J} \mathrm{mol}^{-1}$ even considering the 'soft' model. ${ }^{3}$ This shows the importance of taking into account combined rectangular and tetrahedral distortions although it is difficult to foresee the degree of distortion. By adding an additional degree of freedom, i.e. the rectangular distortion, the problem of calculating the repulsion energy becomes considerably more complicated. Furthermore, since we have at the present time an incomplete understanding of how the energy would vary quantitatively with conformation, the optimum distortion for such a complex cannot be predicted with any degree of accuracy.

The least-squares planes (5) and (6) (Table 2) have similar orientations (interplanar angle $1 \cdot 8^{\circ}$) and both are bent only slightly, $4 \cdot 2$ and $5 \cdot 2^{\circ}$, respectively with respect to plane (1) $[\mathrm{Pd}, \mathrm{N}(11), \mathrm{N}(21)]$. However, the

TAble 2
Equations of mean planes in the form $l X+m Y-n Z=p$ where X, Y, and Z are co-ordinates in \AA, referred to orthogonal axes a, b, and c^{*}

Plane	Atoms	l	m	n	p	Max. displacement (\AA)
(1)	Pd, $\mathrm{N}(11)$, $\mathrm{N}(21)$	0.9874	0.0253	$0 \cdot 1563$	0.762	0
(2)	Pd, $\mathrm{N}(32), \mathrm{N}(41)$	0.9649	-0.0204	-0.2618	-3.914	0
(3)	$\mathrm{Pd}, \mathrm{N}(11), \mathrm{N}(21), \mathrm{C}(12), \mathrm{C}(22)$	0.9862	0.0271	$0 \cdot 1637$	0.848	$0.018[\mathrm{C}(12)+, \mathrm{C}(22)-]$
(4)	Pd, N(31), N(41), C(32), C(42)	0.9611	-0.0190	-0.2754	-4.053	$0.034[\mathrm{C}(32)-, \mathrm{C}(42)+]$
(5)	N(11), C(12)-(16)	0.9702	0.0756	$0 \cdot 2301$	1.591	$0.03[\mathrm{C}(13)+, \mathrm{C}(14)-]$
(6)	N(21), C(22)-(26)	0.9724	0.0452	$0 \cdot 2290$	$1 \cdot 567$	$0.05[\mathrm{~N}(21)]$
(7)	N(31), C(32)-(36)	0.9317	0.0399	-0.3611	-4.559	$0 \cdot 024[\mathrm{C}(34)]$
(8)	$N(41), \mathrm{C}(42)-(46)$	0.9293	-0.0933	-0.3573	$-5 \cdot 381$	$0.021[\mathrm{C}(44)]$
Interplanar angles						
(1)-(2) $24 \cdot 3{ }^{\circ}$						
				$6.9{ }^{\circ}$		
				$7 \cdot 2$		
		1		$7 \cdot 6$		

was found for the N (nitro) $-\mathrm{Pd}-\mathrm{N}$ (nitro) angle where the oxygen atoms are not in the same PdN_{4} plane and the steric strain caused by the two nitro-groups is not im-
${ }^{16}$ L. F. Power, Inorg. Nuclear Chem. Letters, 1970, 6, 791. 3 м
ligand containing $\mathrm{N}(31)$ and $\mathrm{N}(41)$ allows itself to twist a little more than the other ligand to give more relief for the repulsion of the α-interligand hydrogens. Such a twist has been observed in some of the known crystal

Figure 3 A packing diagram; palladium viewed down the a-axis
structures of bipyridyl complexes. ${ }^{3}$ All these distortions have given reasonable hydrogen-hydrogen separations. The mean interligand hydrogen distance, $\mathrm{H}(16) \cdots \mathrm{H}(36)$ and $\mathrm{H}(26) \cdots \mathrm{H}(46)$, is $2.0 \AA$ which is approximately the same as the mean intra-ligand hydrogen, $\mathrm{H}(13) \cdots \mathrm{H}(23)$ and $H(33) \cdots H(43)$, separation $[2 \cdot 1(1) \AA]$. These values are slightly less than twice the accepted van der Waals radius for hydrogen; ${ }^{16}$ however, many ' overcrowded ' organic compounds have hydrogen atoms separated by even small distances. ${ }^{17}$ It is understandable that hydrogen-hydrogen repulsions are reduced by the distortion but not eliminated entirely.

The bond distances and angles for the nitrate ions are shown in Figure 2. The differences in $\mathrm{N}-\mathrm{O}$ distances should not be considered highly significant, since corrections for anisotropic thermal vibrations were not made. In the preliminary communication, ${ }^{1}$ it was mentioned that the i.r. spectrum indicates either a low site-symmetry for the nitrate or an interaction with the metal ion or water molecules. The packing diagram (Figure 3) shows that an oxygen atom, $\mathrm{O}(13)$, of one nitrate ion is situation almost directly above the palladium atom, the $\mathrm{Pd} \cdots \mathrm{O}(13)$ distance is $3 \cdot 157(1) \AA$, however, $\mathrm{Pd} \cdots$ $\mathrm{O}(11)$ is $3.089(1) \AA$. A weak interaction between the metal ion and the nitrate could not therefore be completely ruled out. The oxygen atom, $\mathrm{O}(1)$, of the water molecule is hydrogen bonded to two oxygen atoms, $\mathrm{O}(22)$ and $\mathrm{O}(23)$, of the other nitrate ion with $\mathrm{O}(\mathbf{1}) \cdots \mathrm{O}(22)$

[^2]$2 \cdot 910(2)$ and $\mathrm{O}(1) \cdots \mathrm{O}(23) 2 \cdot 851(2) \AA$; the angle $\mathrm{O}(22) \cdots \mathrm{O}(1) \cdots \mathrm{O}(23)$ is $110 \cdot 5^{\circ}(3)$.

I thank Dr. A. J. Carty for a sample of the compound and helpful discussion, and the National Research Council of Canada for financial support.

APPENDIX

Weighting analyses based on ranges of F_{o} and $\sin \theta / \lambda$.
Range of F_{u}
$0 \cdot 0-15 \cdot 0$
$15 \cdot 0-17 \cdot 4$
$17 \cdot 4-19 \cdot 9$
$19 \cdot 9-22 \cdot 8$
$22 \cdot 8-26 \cdot 0$
$26 \cdot 0-29 \cdot 6$
$29 \cdot 6-33 \cdot 6$
$33 \cdot 6-38 \cdot 7$
$38 \cdot 7-45 \cdot 6$
$45 \cdot 6-56 \cdot 1$
$56 \cdot 1-76 \cdot 9$
$76 \cdot 9-u p$

Range of $\sin \theta / \lambda$		
$0.0-0.262$		
$0.262-0.330$	283	$\mathbf{1 . 5 0}$
$0.330-0.378$	269	0.61
$0.378-0.416$	255	0.49
$0.416-0.448$	231	0.94
$0.448-0.476$	206	0.82
$0.476-0.501$	202	0.48
$0.501-0.524$	203	0.70
$0.524-0.545$	186	
$0.545-0.565$		161
$0.565-0.583$		163
$0.583-0.600$		77
	Total	2589
		Mean
		0.62

[2/196 Received, 31st January, 1972]

[^0]: ${ }^{7}$ J. G. Gibson, R. Laird, and E. D. McKenzie, J. Chem. Soc. (A) , 1969, 2089.
 ${ }^{8}$ L. H. Berka and R. G. Gagne, Inorg. Chem., 1970, 9, 1278.
 ${ }_{10}^{9}$ D. M. Palade, Russ. J. Inorg. Chem., 1969, 14, 399.
 ${ }^{10}$ L. H. Berka, W. T. Edwards, and P. A. Christian, Inorg. Nuclear Chem. Letters, 1971, 7, 265.

[^1]: * Tables of observed and calculated structure factors are listed in Supplementary Publication No. SUP 20412 (3 pp ., 1 microfiche). For details of Supplementary Publications see J. Chem. Soc. $(A), 1970$, Issue No. 20 (items less than 10 pp . are sent as full size copies).
 11 ' International Tables for X-Ray Crystallography,' vol. III, Kynoch Press, Birmingham, 1968.
 12 H. T. Sumison and D. Mclachlan, Acta Cryst., 1950, 3, 217.
 ${ }^{13}$ H. C. Freeman and M. R. Snow, Acta Cryst., 1965, 18, 843.
 ${ }_{14}$ J. R. Wiesner and E. C. Lingafelter, Inorg. Chem., 1966, 5, 1770.

[^2]: ${ }^{16}$ L. Pauling, 'The Nature of Chemical Bond,' 3rd edn., Cornell University Press, Ithaca, New York, 1960.
 ${ }^{17}$ J. M. Robertson, 'Organic Crystals and Molecules,' Cornell University Press, 1953, p. 226.

