Crystal and Molecular Structure of the Five-co-ordinate High-spin Complex \{[2-\{[2-(Diethylamino)ethyl]amino\}ethyl]diphenylphosphine oxide\} di-isothiocyanatocobalt(II)

By C. A. Ghilardi • and A. Bianchi Orlandini, Istituto di Chimica Generale dell'Università di Firenze, Laboratorio del C.N.R., 41 via Jacopo Nardi, 50132 Firenze (Italy)

Abstract

The crystal and molecular structure of the title compound has been determined by X-ray diffraction techniques, from 1258 reflections collected by photographic methods. The complex crystallises in the monoclinic space group $P 2_{1} / c$, with $a=9 \cdot 518(1), b=16 \cdot 310(1), c=16 \cdot 532(1) A, \beta=100 \cdot 59(1)^{\circ}, Z=4$. The structure was solved by Patterson and Fourier methods and refined by full-matrix least-squares procedures to $R 9 \cdot 5 \%$.

The structure consists of distorted trigonal bipyramids, with two nitrogen and one oxygen atoms forming the equatorial plane and two nitrogen atoms at the apices.

During studies to clarify the relationship between the nature of the donor set and the spin state in five-coordinate $\mathrm{Co}^{\mathrm{II}}$ and $\mathrm{Ni}^{\mathrm{II}}$ complexes, we have prepared several series of such complexes with multidentate ' hybrid' ligands containing in turn nitrogen, oxygen, phosphorus, arsenic, and sulphur as donor atoms. ${ }^{1}$ The influence of the co-ordination geometry on the spin-state of the metal-complex has also been studied through a crystallographic investigation carried out on several complexes where the donor set has been systematically varied.
The crystal structure of the high-spin complex $\mathrm{Co}(\mathrm{nno})(\mathrm{NCS})_{2}$, where (nno) is the terdentate ligand [2-\{[2-(diethylamino)ethyl]amino\}ethyl]diphenylphosphine oxide, $\mathrm{Et}_{2} \mathrm{~N} \cdot\left[\mathrm{CH}_{2}\right]_{2} \cdot \mathrm{NH} \cdot\left[\mathrm{CH}_{2}\right]_{2} \cdot \mathrm{P}(: \mathrm{O}) \mathrm{Ph}_{2}$ has therefore been determined. The presence of a phosphine oxide provides additional interest in the study of this compound, since few structures of such complexes have been reported.

EXPERIMENTAL

Crystal Data. $-\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{CoN}_{4} \mathrm{OPS}_{2}, \quad M=519.55$, Monoclinic, $a=9.518(1), b=16.310(1), c=16.532(1) \AA, \beta=$
${ }^{1}$ L. Sacconi, Pure Appl. Chem., 1971, 27, 161, and references therein.
$100 \cdot 59(1)^{\circ}, \quad U=2522.8 \AA^{3}, \quad D_{\mathrm{m}} \quad$ (by flotation) $=1 \cdot 36$, $Z=4, \quad D_{\mathrm{c}}=1 \cdot 376, \quad F(000)=1084 . \quad \mathrm{Fe}-K_{\alpha}$ radiation, $\lambda=1.9373 \quad \AA ; \quad \mu\left(\mathrm{Fe}-K_{\alpha}\right)=61.8 \mathrm{~cm}^{-1}$. Space group, $P 2_{1} / c$ from systematic absences: $0 k 0$ for $k=2 n+1$ and $h 0 l$ for $l=2 n+1$.

Data Collection.-Dark blue crystals with elongated prismatic shape were obtained. ${ }^{2}$ The crystal used for X-ray analysis had dimensions $0.46 \times 0.12 \times 0.12 \mathrm{~mm}$. Unit-cell parameters and their estimated standard deviations were determined by a least-squares fit of 1820 values $(+2 \theta,-2 \theta$ technique), measured on an automatic Hilger four-circle diffractometer. Double integrated Weissenberg photographs of the layers $0-5 k l$ were taken on a Nonius integrating camera, by the multiple-film equi-inclination technique with manganese-filtered $\mathrm{Fe}-K_{\alpha}$ radiation. The intensities of 1258 reflections were measured on a Nonius microdensitometer and the various levels roughly scaled by means of two Weissenberg photographs containing 30° samples from each level. The intensities were corrected for Lorentz and polarization effects. No correction was made for absorption or for anomalous dispersion. The atomic scattering factors for cobalt, sulphur, phosphorus, oxygen, nitrogen, and carbon were taken from ref. 3.

Structure Determination.-The structure was solved by the heavy-atom technique: the positions of the cobalt and
${ }^{2}$ R. Morassi and L. Sacconi, to be published.
${ }^{3}$ D. T. Cromer and J. T. Waber, Acta Cryst., 1965, 18, 104.
one sulphur atom were determined from a three-dimensional Patterson synthesis. A series of Fourier synthesis showed the positions of all non-hydrogen atoms. At this point R was 23%. Block-diagonal least-squares cycles with isotropic temperature factors reduced R to 17%. These calculations were performed on the IBM 1130.4 Refinement was then continued using the full-matrix leastsquares program of Busing and Levy adapted for the IBM 7090 by Stewart. ${ }^{5}$ The function minimized was $\Sigma w\left(\left|F_{0}\right|-\right.$ $\left.\left|F_{\mathrm{c}}\right|\right)^{2}$. The F values were weighted according to Hughes

Table 1
Positional parameters ($\times 10^{4}$), isotropic thermal parameters, and estimated standard deviations

Atom	x / a	y / b	z / c	B / \AA^{2}
Co	1086(2)	2662(1)	2957(1)	*
S(1)	2690(7)	5004(3)	4545(3)	
$\mathrm{S}(2)$	-1122(7)	4616(4)	1073(4)	*
P	3404(5)	1482(2)	2357(2)	
O	2873(11)	2063(6)	2958(6)	*
$\mathrm{N}(1)$	17(17)	1575(9)	2311(12)	*
N(2)	-622(18)	2460(8)	3594(8)	*
N(3)	2018(15)	3576(7)	3677(7)	*
N(4)	305(16)	3319(9)	1964(8)	*
C(1)	1960(21)	847(10)	1820(10)	5•8(4)
$\mathrm{C}(2)$	553(27)	1263(15)	1629(15)	8.9(6)
$\mathrm{C}(3)$	- 1349(24)	1557(13)	2422(13)	7.6(5)
C(4)	-1593(24)	1822(13)	3245(13)	$7 \cdot 8(5)$
C(5)	-1547(27)	3332(15)	3392(13)	$8 \cdot 9(6)$
$\mathrm{C}(6)$	-2715(34)	3422(19)	3840(19)	13.4(8)
C(7)	-186(29)	2473(16)	4515(17)	$11 \cdot 3(7)$
$\mathrm{C}(8)$	1240(27)	1910(13)	4721(13)	$8 \cdot 5(6)$
$\mathrm{C}(9)$	2302(18)	4167(9)	4037(9)	$4 \cdot 3(3)$
C(10)	-285(22)	3894(11)	1575(11)	6.4(4)
C(11)	4706(18)	804(9)	2876(9)	4.3(3)
C(12)	5515(19)	285(9)	2477(9)	$4 \cdot 5(3)$
C(13)	6576(22)	-213(10)	2913(11)	$5 \cdot 9(4)$
$\mathrm{C}(14)$	6826(23)	-177(12)	3763(13)	$7 \cdot 1(5)$
C(15)	6027(20)	$302(10)$	4180(10)	5-2(4)
C(16)	4973(19)	826(9)	3759(10)	4.8(4)
C(17)	4271 (18)	2032 (8)	1655(9)	$4 \cdot 1(3)$
C(18)	4408(21)	1669(11)	908(11)	6.2(4)
C(19)	5180(29)	2120(17)	382(17)	10.0(7)
$\mathrm{C}(20)$	5876(24)	2873(12)	651(12)	$7 \cdot 1(5)$
$\mathrm{C}(21)$	$5635(23)$	3195(11)	1388(12)	6.8(5)
$\mathrm{C}(22)$	4847(19)	2793(10)	1895(10)	4.9(4)

Table 2
Anisotropic thermal parameters ($\times 10 \AA^{2}$) with their estimated standard deviations

Atom	B_{11}	B_{22}	B_{33}	B_{12}	B_{13}	$B_{\mathbf{2 3}}$
Co	$50(2)$	$43(1)$	$51(1)$	$-3(1)$	$7(1)$	$-5(1)$
$\mathrm{S}(1)$	$134(5)$	$41(2)$	$58(2)$	$-7(2)$	$-22(2)$	$-11(2)$
$\mathrm{S}(2)$	$78(5)$	$100(4)$	$99(4)$	$-3(3)$	$-15(3)$	$47(3)$
P	$33(3)$	$42(2)$	$41(2)$	$2(2)$	$1(2)$	$-12(1)$
O	$49(8)$	$54(6)$	$52(6)$	$6(5)$	$8(4)$	$-23(4)$
$\mathrm{N}(1)$	$46(12)$	$83(9)$	$145(14)$	$-5(8)$	$33(9)$	$-79(10)$
$\mathrm{N}(2)$	$84(12)$	$79(9)$	$39(7)$	$-48(8)$	$10(6)$	$-4(6)$
$\mathrm{N}(3)$	$57(10)$	$45(7)$	$48(7)$	$-4(6)$	$6(6)$	$-6(4)$
$\mathrm{N}(4)$	$66(11)$	$76(9)$	$53(8)$	$-1(7)$	$10(6)$	$4(7)$

The temperature factor is defined as:

$$
\exp \left(-\frac{1}{4} \sum_{i=1} \sum_{j=1} B_{i j} h_{i} h_{j} a_{i}^{*} a_{j}^{*}\right)
$$

scheme: $w=1$ for reflections with $F_{0} \leqslant 15$ and $\sqrt{ } w=$ $15 / F_{0}$ for reflections with $F_{0}>15$. Three cycles of isotropic refinement on all atoms led to $R 13.9 \%$. At this point cycles of isotropic refinement on carbon atoms and cycles of anisotropic refinement on heavy atoms were
${ }^{4}$ Series of programmes from the A.R.C. Unit of Structural Chemistry, University College, London, for the IBM 1130 Computer.
alternated to convergence. The final R was $9 \cdot 5 \%$. Hydrogen atoms were not introduced. Scale level factors were also refined in each cycle except during the anisotropic refinement. A difference-Fourier map calculated at this stage showed no particular features. Final values of the atomic parameters and their standard deviations are reported in Tables 1 and 2. Standard deviations were calculated according to the expression: $\sigma_{j}=$ $\left[\Sigma w \Delta F^{2} a^{i j} /(m-n)\right]^{1 / 2}$, where m is the number of reflections, n the number of the parameters refined, and $a^{j j}$ the $j j^{\text {th }}$ element of the inverse least-squares matrix. Standard deviations were corrected by the factor: $K=$ $\left[\left(m-n_{0}\right) /\left(m-n_{\mathrm{t}}\right)\right]^{1 / 2}$, where m is the number of the reflections, n_{0} the number of the refined parameters, and n_{t} the number of the total parameters. This correction was applied to take account of the fact that the refinement was carried out in two stages. However, standard deviations are probably underestimated because corrections for

Table 3
Bond lengths (\AA) and angles (${ }^{\circ}$) with estimated standard deviations in parentheses
(a) Bond lengths

$\mathrm{Co}-\mathrm{O}$	$1.96(1)$	$\mathrm{N}(1)-\mathrm{C}(2)$	$1.41(3)$
$\mathrm{Co}-\mathrm{N}(1)$	$2 \cdot 22(2)$	$\mathrm{N}(1)-\mathrm{C}(3)$	$1 \cdot 35(3)$
$\mathrm{Co}-\mathrm{N}(2)$	$2 \cdot 12(2)$	$\mathrm{N}(2)-\mathrm{C}(4)$	$1 \cdot 44(3)$
$\mathrm{Co}-\mathrm{N}(3)$	$2 \cdot 01(1)$	$\mathrm{N}(2)-\mathrm{C}(5)$	$1 \cdot 67(3)$
$\mathrm{Co}-\mathrm{N}(4)$	$1.99(1)$	$\mathrm{N}(2)-\mathrm{C}(7)$	$1.50(3)$
$\mathrm{S}(1)-\mathrm{C}(9)$	$1.61(2)$	$\mathrm{N}(3)-\mathrm{C}(9)$	$1 \cdot 14(2)$
$\mathrm{S}(2)-\mathrm{C}(10)$	$1.57(2)$	$\mathrm{N}(4)-\mathrm{C}(10)$	$1.21(2)$
$\mathrm{P}-\mathrm{O}$	$1.52(1)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.48(3)$
$\mathrm{P}-\mathrm{C}(1)$	$1.82(2)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.49(3)$
$\mathrm{P}-\mathrm{C}(11)$	$1 \cdot 76(2)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.45(4)$
$\mathrm{P}-\mathrm{C}(17)$	$1 \cdot 78(2)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.62(4)$

(b) Bond angles

$\mathrm{O}-\mathrm{Co}-\mathrm{N}(1)$	$85 \cdot 6(0 \cdot 5)$	$\mathrm{Co}-\mathrm{N}(2)-\mathrm{C}(4)$	$114 \cdot 0(1 \cdot 2)$
$\mathrm{O}-\mathrm{Co}-\mathrm{N}(2)$	$131 \cdot 8(0 \cdot 5)$	$\mathrm{Co}-\mathrm{N}(2)-\mathrm{C}(5)$	$101 \cdot 1(1 \cdot 0)$
$\mathrm{O}-\mathrm{Co}-\mathrm{N}(3)$	$94 \cdot 6(0 \cdot 5)$	$\mathrm{Co}-\mathrm{N}(2)-\mathrm{C}(7)$	$114 \cdot 0(1 \cdot 4)$
$\mathrm{O}-\mathrm{Co}-\mathrm{N}(4)$	$117 \cdot 5(0 \cdot 5)$	$\mathrm{C}(4)-\mathrm{N}(2)-\mathrm{C}(5)$	$105 \cdot 0(1 \cdot 5)$
$\mathrm{N}(1)-\mathrm{Co}-\mathrm{N}(2)$	$77 \cdot 8(0 \cdot 6)$	$\mathrm{C}(4)-\mathrm{N}(2)-\mathrm{C}(7)$	$117 \cdot 0(1 \cdot 6)$
$\mathrm{N}(1)-\mathrm{Co}-\mathrm{N}(3)$	$172 \cdot 6(0 \cdot 6)$	$\mathrm{C}(5)-\mathrm{N}(2)-\mathrm{C}(7)$	$103 \cdot 1(1 \cdot 5)$
$\mathrm{N}(1)-\mathrm{Co}-\mathrm{N}(4)$	$88 \cdot 0(0 \cdot 6)$	$\mathrm{Co}-\mathrm{N}(3)-\mathrm{C}(9)$	$166 \cdot 9(1 \cdot 3)$
$\mathrm{N}(2)-\mathrm{Co}-\mathrm{N}(3)$	$96 \cdot 7(0 \cdot 5)$	$\mathrm{Co}-\mathrm{N}(4)-\mathrm{C}(10)$	$156 \cdot 9(1 \cdot 4)$
$\mathrm{N}(2)-\mathrm{Co}-\mathrm{N}(4)$	$106 \cdot 8(0 \cdot 6)$	$\mathrm{P}-\mathrm{C}(1)-\mathrm{C}(2)$	$114 \cdot 5(1 \cdot 4)$
$\mathrm{N}(3)-\mathrm{Co}-\mathrm{N}(4)$	$98 \cdot 4(0 \cdot 5)$	$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	$116 \cdot 0(1 \cdot 9)$
$\mathrm{O}-\mathrm{P}-\mathrm{C}(1)$	$111 \cdot 2(0 \cdot 7)$	$\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	$115 \cdot 8(1 \cdot 9)$
$\mathrm{O}-\mathrm{P}-\mathrm{C}(11)$	$111 \cdot 1(0 \cdot 7)$	$\mathrm{N}(2)-\mathrm{C}(4)-\mathrm{C}(3)$	$112 \cdot 4(1 \cdot 8)$
$\mathrm{O}-\mathrm{P}-\mathrm{C}(17)$	$111 \cdot 1(0 \cdot 6)$	$\mathrm{N}(2)-\mathrm{C}(5)-\mathrm{C}(6)$	$114 \cdot 1(1 \cdot 9)$
$\mathrm{C}(1)-\mathrm{P}-\mathrm{C}(11)$	$106 \cdot 3(0 \cdot 8)$	$\mathrm{N}(2)-\mathrm{C}(7)-\mathrm{C}(8)$	$105 \cdot 6(1 \cdot 8)$
$\mathrm{C}(1)-\mathrm{P}-\mathrm{C}(17)$	$111 \cdot 6(0 \cdot 7)$	$\mathrm{S}(1)-\mathrm{C}(9)-\mathrm{N}(3)$	$179 \cdot 6(1 \cdot 5)$
$\mathrm{C}(11)-\mathrm{P}-\mathrm{C}(17)$	$105 \cdot 4(0 \cdot 8)$	$\mathrm{S}(2)-\mathrm{C}(10)-\mathrm{N}(4)$	$177 \cdot 2(1 \cdot 8)$
$\mathrm{Co}-\mathrm{O}-\mathrm{P}$	$134 \cdot 4(0 \cdot 7)$	$\mathrm{P}-\mathrm{C}(11)-\mathrm{C}(12)$	$123 \cdot 5(1 \cdot 2)$
$\mathrm{Co}-\mathrm{N}(1)-\mathrm{C}(2)$	$118 \cdot 1(1 \cdot 3)$	$\mathrm{P}-\mathrm{C}(11)-\mathrm{C}(16)$	$117 \cdot 2(1 \cdot 2)$
$\mathrm{Co}-\mathrm{N}(1)-\mathrm{C}(3)$	$108 \cdot 7(1 \cdot 3)$	$\mathrm{P}-\mathrm{C}(17)-\mathrm{C}(18)$	$119 \cdot 4(1 \cdot 2)$
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(3)$	$126 \cdot 8(1 \cdot 9)$	$\mathrm{P}-\mathrm{C}(17)-\mathrm{C}(22)$	$118 \cdot 0(1 \cdot 2)$

(c) Phenyl rings
(i) Bond lengths
Ring (A)
Ring (B)

Mean value
Mean devn.
Max. devn
0.0
0.0
1.
0.03
1.39
$1 \cdot 40$
(ii) Bond angles

Ring (A)	$120 \cdot 0$	1.6	1.9
Ring (B)	119.9	1.8	2.1

absorption and anomalous dispersion were not applied. Bond lengths and angles with their estimated standard deviations are given in Table 3. The final values of the
${ }^{5}$ ' X-Ray '63' System of Programs, J. M. Stewart, Technical Report TR 64 6, University of Maryland, Computer Science Center, 1964.
observed and calculated structure factors are listed in Supplementary Publication No. SUP 20421 (2 pp., 1 microfiche).*

DISCUSSION

The structure consists of discrete molecules of $\mathrm{Co}(\mathrm{nno})(\mathrm{NCS})_{2}$ in which the cobalt atom exhibits a distorted trigonal bipyramidal co-ordination, with an axial angle of $172 \cdot 6^{\circ}$. The cobalt atom is five-coordinated by four nitrogen atoms and one oxygen atom. The two nitrogen atoms from the isothiocyanate groups occupy an axial and an equatorial position; the oxygen atom co-ordinates in the equatorial plane, the remaining two positions being occupied by the two nitrogen atoms of the ligand. The Figure shows a perspective view of the molecule and the atom numbering system used.

A perspective view of the configuration of the complex $\mathrm{Co}(\mathrm{nno})(\mathrm{NCS})_{2}$

The cobalt atom is $0.23 \AA$ out of the equatorial plane toward the NCS ligand. The equation of the plane through atoms $\mathrm{N}(4), \mathrm{O}$, and $\mathrm{N}(2)$ in monoclinic coordinates is: $2 \cdot 919 x+12 \cdot 493 y+8 \cdot 249 z=5 \cdot 856$. It follows that the $\mathrm{N}(3)-\mathrm{Co}-\mathrm{L}(\mathrm{eq})$ angles are larger than the theoretical value of 90°. Furthermore the $\mathrm{Co}-\mathrm{N}(1)$ axial bond is $0.1 \AA$ longer than the $\mathrm{Co}^{-}-\mathrm{N}(2)$ equatorial bond. This type of distortion, although not very enhanced, recalls the trend, previously noticed ${ }^{6}$ in some high-spin trigonal bipyramidal $\mathrm{Co}^{\mathrm{II}}$ complexes, toward tetrahedral geometry.

The factors, which are generally supposed to be responsible for distortions in the co-ordination geometry, leave unexplained the difference between the mean value of the $\mathrm{N}(1)-\mathrm{Co}-\mathrm{L}(\mathrm{eq})$ angles $\left(83.8^{\circ}\right)$ and the mean of the $\mathrm{N}(3)-\mathrm{Co}-\mathrm{L}(\mathrm{eq})$ angles $\left(96 \cdot 6^{\circ}\right)$: i.e. (a) the stereo-

[^0]chemical activity of the d electrons for a d^{7} high spin system in $C_{3 v}$ symmetry is small, owing to the single occupancy of $d_{x y}, d_{x^{2}-y^{2}}$, and $d_{z^{2}}$ orbitals; (b) ligandligand repulsion should be more effective on the $N(1)$ than $\mathrm{N}(3)$ atom $[\mathrm{N}(3)$ forms with all the equatorial ligands angles larger than 90°], but only the elongation of the axial $\mathrm{Co}^{-} \mathrm{N}(1)$ bond may be regarded as a result of this effect; and (c) steric constraints play an important role in complexes with multidentate ligands. In the present case this factor has little effect, because the ligand forms both five- and six-membered rings. Fivemembered chelate rings form 'bite' angles smaller than and six-membered chelate rings angles larger than $90^{\circ} .{ }^{7,8}$

Another feature of this co-ordination is that one of the equatorial angles is considerably larger than the others $\left[\mathrm{O}-\mathrm{Co}-\mathrm{N}(2) 131 \cdot 8, \mathrm{O}-\mathrm{Co}^{-} \mathrm{N}(4) 117 \cdot 5\right.$, and $\mathrm{N}(2)-\mathrm{Co}^{-} \mathrm{N}(4)$ 106.8]. This distortion probably cannot be attributed to packing effects: no relevant inter- or intra-molecular contacts have been found. A similar value of $129 \cdot 8^{\circ}$ has been reported for the high-spin complex $\mathrm{Co}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NO}\right)_{5}\left(\mathrm{ClO}_{4}\right)_{2}{ }^{9}$ The $\mathrm{Co}-\mathrm{O}$ distance value $[1.96(1) \AA]$ is in good agreement with the mean value $[1.975(8) \AA]$ for equatorial bonds, which has been found in the $\mathrm{Co}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NO}\right)\left(\mathrm{ClO}_{4}\right)_{2}$ complex. ${ }^{9}$ Bond distances and angles in the two isothiocyanate groups are slightly different, but still in the range of those reported. ${ }^{10-13}$ The values $[1.99(1)$ and 2.01 (1) $\AA]$ for the $\mathrm{Co}-\mathrm{N}$ distances involving the isothiocyanate groups are not significantly different from those $[1.97(1)$ and $1.99(1) \AA]$ found in the complex $\mathrm{Co}(\mathrm{ns})(\mathrm{NCS})_{2}, 10 \dagger$ which has a very similar coordination geometry. The values of the $\mathrm{Co}-\mathrm{N}$ bond distance $[2 \cdot 22(2)$ and $2 \cdot 12(2) \AA]$ are also comparable with those $[2 \cdot 24(1)$ and $2 \cdot 15(1) \AA]$ found for apical and equatorial $\mathrm{Co}-\mathrm{N}$ bonds in the $\mathrm{Co}(\mathrm{ns})(\mathrm{NCS})_{2}$ complex, ${ }^{10}$ where the two nitrogen atoms are in the same $s p^{3}$ hybridization. The $\mathrm{P}-\mathrm{O}$ bond length of $1.52(1) \AA$ is slightly longer than that found in free triphenylphosphine oxide $[1 \cdot 46(1) \AA]^{14}$ and may be indicative of a lower bond-order. Values of $1.51(2)$ and $1.50 \AA$ for coordinated phosphine oxide have been reported. ${ }^{15,16}$ Some poor values of bond distances in the ligand, especially for the ethyl chains, and the high thermal parameters for the carbon atoms may be indicative of disorder.

We thank Professor L. Sacconi for suggestions and continuous interest and D. Masi for technical assistance.
[1/2484 Received, 29th December, 1971]

[^1]
[^0]: * See note about Supplementary Publications in Notice to Authors, No. 7 in J. Chem. Soc. $(A), 1970$, Issue No. 20 (items less than 10 pp are supplied as full size copies.
 \dagger The ligand ns is $N N$-bis-[2-(diethylamino)ethyl]-2-(methylthio) ethylamine, $\left(\mathrm{Et}_{2} \mathrm{~N} \cdot\left[\mathrm{CH}_{2}\right]_{2}\right)_{2} \mathrm{~N}\left(\left[\mathrm{CH}_{2}\right]_{2} \cdot \mathrm{SMe}\right)$.
 - L. Sacconi, M. Di Vaira, and A. Bianchi, J. Amer. Chem. Soc., 1970, 92, 4465; P. Dapporto, G. Fallani, and L. Sacconi, J. Co-ordination Chem., 1971, 1, 269.
 ${ }^{7}$ L. P. Haugen and R. Eisenberg, Inorg. Chem., 1969, 8, 1072.
 ${ }^{8}$ S. Biagini and M. Cannas, J. Chem. Soc. (A), 1970, 2398.

[^1]: ${ }^{2}$ Bernard A. Coyle and James A. Ibers, Inovg. Chem., 1970, 9, 767.
 ${ }_{10}$ P. Dapporto and M. Di Vaira, J. Chem. Soc. (A), 1971, 1891.
 11 Prem C. Jain and E. C. Lingafelter, J. Amer. Chem. Soc., 1967, 89, 6131.
 ${ }^{12}$ A. Ferrari, A. Braibanti, G. Bigliardi, and A. M. Lanfredi, Acta Cryst., 1965, 18, 367.
 ${ }^{13}$ M. Di Vaira, J. Chem. Soc. (A), 1971, 148.
 14 G. Bandoli, G. Bartolozzo, D. A. Clemente, U. Croatto, and C. Panattoni, J. Chem. Soc. (A), 1970, 2778.

 15 J. A. Bertrand, Inorg. Chem., 1967, 6, 495.
 ${ }_{16}^{16}$ M. Mathew and Gus J. Palenik, Canad. J. Chem., 1969, 47 1094.

