Vibrational Spectra of Cyclopentadienylnickel Nitrosyl and its Pentadeuterio- and ¹⁵NO Derivatives

By G. Paliani, R. Cataliotti,* A. Poletti, and A. Foffani, Institute of Physical Chemistry, University of Perugia, 06100 Perugia, Italy

The i.r. and Raman spectra of C_5H_5NiNO have been studied and, with the aid of C_5D_5NiNO and $C_5H_5Ni^{15}NO$ isotopes, it has been possible to reassign some fundamentals.

BECAUSE of its high symmetry and well defined structure,¹ cyclopentadienylnickel nitrosyl may be regarded as a model molecule for spectroscopic studies of monocyclopentadienyl π -complexes with transitional metals. Although the vibrational spectrum has already been investigated,^{2,3} the assignments suggested for some fundamentals can be considered rather uncertain owing to the lack of data on isotopic analogues. The present study was undertaken to check earlier assignments and to get a reliable vibrational analysis for the parent molecule, with the aid of H–D and ¹⁴N–¹⁵N isotopic shifts.

EXPERIMENTAL

Materials.-C₅H₅NiNO was purchased from Strem Chemicals Inc. and purified by g.l.c. C₅H₅Ni¹⁵NO was prepared from nickelocene and 98% ¹⁵NO in n-pentane⁴ and purified by g.l.c. C₅D₅NiNO was prepared in the same way, starting from [2H10]nickelocene which was synthetized from NiBr_2 and $\mathrm{C_5D_6}$ with triethylamine as catalyst instead of diethylamine ⁵ (which exchanges with C_5D_6). For the synthesis of $[{}^{2}H_{6}]$ cyclopentadiene the method suggested by Gallinella ⁶ was followed. In a typical run, to hexamethylphosphorotriamide (250 ml) were added, in order and in a dry-box, freshly distilled C₅H₆ (30 ml), 99.75% D₂O (60 ml), and 40% NaOD solution (1.85 ml). After 2 h the brown mixture was quickly distilled at atmospheric pressure with a high-efficiency fractionating column. The i.r. spectrum of the product (C_5D_6), collected at -80 °C and dried (Na₂SO₄), showed ca. 50% of deuterium. Two other

¹ A. Peter Cox and Alan B. Brittain, Trans. Faraday Soc., 1970, **66**, 557.

² R. D. Feltham and W. G. Fateley, Spectrochim. Acta, 1964, **20**, 1081.

³ I. J. Hyams and E. R. Lippincott, Nature, 1967, 214, 267.

exchanges performed in the same way gave a final product with 98% of deuterium (i.r. check).

Spectra.—I.r. spectra, in the 4000—250 cm⁻¹ region, were recorded with a Perkin-Elmer Model 521 grating spectrometer, calibrated with water vapour and indene peaks. The frequencies of sharp bands are accurate to ± 1 cm⁻¹. KBr and CsI sealed microcells, with 0.025 and 0.1 mm thicknesses, were used for the spectra of liquids. Vapourphase spectra were measured, at various pressures, in 10 cm glass cells with CsI windows. Far-i.r. spectra were recorded with a Beckman IR 11 spectrometer, in polyethylene moulded cells.

The laser Raman spectrum of liquid C_5H_5NiNO was recorded with a Jarrell-Ash spectrometer; the source was a 60 mW He-Ne lamp (6328 Å). A double-pass 20 μ l cell was used with 90° scattering.

Spectra are shown in the Figure and frequencies listed in Tables 1-3. Assignments of the fundamental modes of the three isotopic species are collected in Table 4.

RESULTS AND DISCUSSION

 C_5H_5 NiNO has C_{5v} molecular symmetry ^{1,7} and its **33** fundamental motions can be classified as follows according to the symmetry and activity: $6A_1$ (i.r., Raman polarized); $1A_2$ (inactive); $7E_1$ (i.r., Raman depolarized); $6E_2$ (Raman depolarized).

Vibrational Assignments.— A_1 vibrations. The Raman polarization data and the ratios of frequency shift (H : D), substantiate the previous assignments for vibrations of

⁵ J. J. Eisch and R. B. King, Organometallic Synth., 1965, 1, 169.

⁶ E. Gallinella, personal communication.

⁷ A. P. Cox, L. F. Thomas, and J. Sheridan, *Nature*, 1958, **181**, 1157.

⁴ T. S. Piper, F. A. Cotton, and G. Wilkinson, J. Inorg. Nuclear Chem., 1955, **1**, 165.

this symmetry species.^{2,3} In the vapour spectrum of C_5H_5NiNO there is a weak band at 1112 cm⁻¹ with rotational structure and ca. 10 cm⁻¹ R-P separation. Such a separation is that predicted for a parallel motion by the Seth-Paul method.⁸ Consequently the vapour-phase band cannot be assigned, as in the liquid, to the perpendicular breathing mode, and we

should correspond to the first overtone of the ring-Ni stretching mode (near 320 cm⁻¹), which is located at 640 cm⁻¹ in the light compound. Since in the ¹⁵NO molecule it falls nearer to the Ni-N stretching mode, it produces stronger Fermi coupling with this fundamental; therefore it appears at lower frequency and with enhanced intensity than in the light compound.

Infrared spectra of liquid C_5H_5NiNO ----; C_5D_5NiNO · · · ; $C_5H_5Ni^{15}NO$ ----

believe it may be the $\nu_4+\nu_6$ combination (parallel mode).

In the spectra of both H_5 and D_5 complexes an absorption at 649 cm⁻¹ is found. In the ¹⁵NO spectrum this band shifts to 642 cm⁻¹ and another peak is observed at 634 cm^{-1} . We correlate the 649 peak with that at 642 cm⁻¹ in the ¹⁵NO molecule and attribute these bands to the Ni-N stretching motion. The isotopic shift is 7 cm⁻¹, compared with a value of 5 cm⁻¹ predicted for such a mode.⁹ The peak at 634 cm⁻¹ in ¹⁵NO species

The Teller–Redlich product-rule for A_1 vibrations gives a ratio of 0.496 compared with a theoretical one of 0.508.

 E_1 vibrations. The peak at 3105 (H₅ and ¹⁵NO species) is attributed to the degenerate C-H stretching of E_1 symmetry; in the D₅ molecule it corresponds to the band at 2286 cm⁻¹ (H : D ratio = 1.36).

W. A. Seth-Paul, J. Mol. Structure, 1969, 3, 409. (a) G. Paliani, A. Poletti, and A. Santucci, J. Mol. Structure, 1971, 8, 63; A. Poletti, A. Santucci, and G. Paliani, Spectrochim. Acta, 1971, 27, A, 2061; (b) Eiichi Miki, Bull. Chem. Soc. Japan, 1968, 41, 1835.

At 1425 cm⁻¹ (1424 in $C_5H_5Ni^{15}NO$) is found, in the liquid spectrum, a rather intense band which shifts, upon deuteriation, to 1296 cm⁻¹ (H: D ratio = 1.10). In the vapour this band has a gaussian profile as required

TABLE 1

I.r. and Raman spectra of C₅H₅NiNO

Τ	Li		
vapour	I.r.	Raman	Assignment
3944w	3942m		$v_0 + v_{10}$
00110	3936sh		$v_{1r} + v_{1o}$
3648m	3592s		2No
3118m	31159	3120w(n)	2.7 <u>2</u>
0110111	9105ch	0120W (P)	¹
	0100311	3098w (dp)	V8 Na -
	2919vw	oooon (ap)	15 No + No
2680w	2677m		2 3
2483m	2450s		2 16 No No
23031	2391m		² 1 ⁵
2000w 9964w	2262m		
2204W	2202111 223211		v9 1 v19
2200W	2181w		V4 - 1 V9
9155w	2101w 2130mw br		V16 1 V19
21000	2150mw,DI 2057m		v2 - v6
1836vc	1800220	1803 1 (22)	V10 T V11
1607m	1705m	1000w (P:)	v v
1610m	16916		ν ₅ - ν ₁₀
1498cb	10215 1445cb		$v_{10} + v_{20}$
1400511	144050		$v_4 + v_5$
1422111	14205		V9
1940	13/9W 19/9mm	1949 (dr.)	$v_6 + v_{10}$
1340VW	104011W	1949AM (ab)	$v_{10} + v_{13}, v_{16}$
1288VW	1280W		$v_4 + v_{12}$
1200VW	1201VW		$v_{13} + v_{18}$
0 (1117	1207VW		$v_3 + v_{14}$
T [1117	1110-	1114 - ()	
$\vec{p}_{1112111}$	11128	111 4 5 (þ)	V3
1052	1054-	1056m (do)	
1005	10045	1050w (dp)	V ₁₀
100078	1000VS	1007W (dp)	V ₁₁
	970sh	964mw (ap)	$2v_{12}$; v_{18}
000	009		
7 000W	89311		$v_4 + v_{14}$
- (010	941ab	940	
	041511	040VW	$v_{13} + v_{20}, v_{19}$
	700	806(m)	
2 803VS	799VS	800w (pr)	V ₄
(190	790		9
640a	100W	650m (m)	$2v_{14} + v_{20}$
6495 640ab	0495 640ab	699 _a h	ν ₅
560m h.	5 CO	0335H	2V ₆
002W,Dr	009W	000W	$v_{12} + v_{14}; v_{20}$
4805	54845	480VW	V ₁₂
319m	522m	3228 (p)	V ₆
	2905n		v ₁₃
	188W, DI	0.9-	Zv_{14}
		925	V ₁₄

s = Strong; m = medium, w = weak, br = broad, v = very,(p) = polarized; (dp) = depolarized.

for a perpendicular motion; therefore it is assigned as the degenerate C-C stretching, in contrast with the assignment of Hyams and Lippincott.³

The band at 1005 cm⁻¹ (Raman 1007dp) is assigned as previously reported,² essentially for its gaussian contour and the isotopic shift. The corresponding parallel C-H bend of E_1 symmetry absorbs at 1054 cm⁻¹ (Raman 1056dp) and shifts at 852 $\rm cm^{-1}$ in the $\rm D_5$ molecule (H : D ratio = 1.24).

The absorption at 484 cm⁻¹ (478 in the D_5 molecule) is easily assigned to the Ni-N-O bending mode because in the ¹⁵NO molecule it shifts to 470 cm⁻¹.

The ring-tilt mode was assigned by Hyams and Lippincott³ to the Raman line at 252 cm⁻¹. We have not found any absorption in this region, neither in the far-i.r. nor in the Raman spectrum. However in the i.r. spectrum we observed an absorption at 290 cm⁻¹ in both H₅- and ¹⁵NO-molecules. Since for methylcyclopentadienylnickel nitrosyl the same tilting mode has been assigned ¹⁰ at 298 cm⁻¹ we suggest that the present

TABLE 2

	I.r. spectrum of C_5D_5NiNO								
Liquid	Assignment	Liquid	Assignment						
3592s	22	1296m	V.						
3184mw	$\gamma_1 + \gamma_2$	1267vw	V10 + V00						
3140w	$v_1 + v_{10}$	1247mw	$\gamma_{4} + \gamma_{5}$						
3098w	$v_{0} + v_{0}$	1217vw	$v_{10} + v_{10}$						
3048vw	$v_2 + v_3$	1198vw	Va — Va						
2926w	N + N	1176vw	Va — Vr						
2852vw	$\lambda_1 + \lambda_2$	1103m	$v_{0} - 2v_{1}$						
2612mw	$v_{a} + v_{e}$	1066m	$v_4 + v_{10}$						
2451ms	$\nu_0 + \nu_E$	1052s	V. 12						
2416sh	$2y_{10}, y_{2} + y_{4}$	1010vw	V19 + V20						
2335mw		956w	21.						
2286vw	Ve Ve	910m	$v_{4} + v_{e}$						
2160w	$v_0 + v_{11} + v_{14}$	852s	¥ I U						
2120w.br	$\gamma_0 + \gamma_4 + \gamma_{10}$	832 mw	$v_{14} + v_{18}$						
2042w	$V_{0} + V_{10}$	771s	V.,						
1952sh	$\gamma_{10} + \gamma_{10}$	749w	V V.						
1808vvs	Va 16 1 18	737vw	V5 + V14						
1703w	$v_{a} + v_{c}$	716vw	$2v_{14} + v_{20}$						
1623vw	$v_{10} + v_{11}$	689mw	$y_4 + y_{14}$						
1594w	$y_0 + y_e$	649vs	Ve 14						
1455m	$\gamma_4 + \gamma_{10}$	600vs	ν ₄						
1434vw	$y_{2} + y_{4} + y_{14}$	551w	2112						
1413vw	$v_{e} + v_{11}$	534vw							
1383mw	$y_{10} + y_{20}$	478vs	20 V19						
1363m	$v_4 + v_{11}$	298ms	V ₆						
	TABLE	2 3							
	I.r. spectrum of	C5H5Ni ¹⁵ NO							
Liquid	Assignment	Liquid	Assignment						
3942m	$v_e + v_{1e}$	1443sh	V4 + VE						
3936sh	V11 + V10	1424s	Vo Vo						
3518s	22	1368vw	$v_e + v_{10}$						
3115s	ν,	1341mw	$v_{10} + v_{12}$						
3105sh	Ve	1268sh	$v_4 + v_{12}$						
2959vw	$v_2 + v_3 + v_{14}$	1261w	$v_{13} + v_{18}$						
2927vw	$v_2 + v_{10} + v_{14}$	1205vw	$\nu_3 + \nu_{14}$						
2852 vw	$v_2 + v_4 + v_{13}$	1111s	ν, τ						
2677m	2v16	1054s	V10						
2469w	V1 - V5	1005vs	V11						
2402s	$v_2 + v_5$	939w	$2v_{12}$						
2391sh	$v_{10} + v_{16}$	894mw	$v_4 + v_{14}$						
2262m	$v_9 + v_{19}$	799vs	ν ₄						
2232w	$v_4 + v_9$	73 8w	$\mathbf{v_{20}} + 2\mathbf{v_{14}}$						
2181w	$v_{16} + v_{19}$	$642 \mathrm{sh}$	ν ₅						
2098w,br	$\nu_2 + \nu_6$	634ms	$2v_6$						
2057m	$v_{10} + v_{11}$	555w	$v_{12}+v_{14}$						
1774vvs	ν ₂	47 0s	ν ₁₂						

1706mw

1619ms

absorption at 290 cm⁻¹ should be attributed to the tilt vibration.

321ms

290sh

ν₁₃

 $+ v_{20}$

+ ٧a

V10

 ν_{12}

ν₆

ν₁₃

We are also not in agreement with Hyams and Lippincott³ for the assignment of the last E_1 vibration, the ring-Ni-N bend, since we have not found lines around 150 cm⁻¹ in the Raman spectrum. However in the fari.r. spectrum there is a weak-broad absorption at 188

¹⁰ R. T. Bailey, Spectrochim. Acta, 1969, 25, A, 1127.

(964)

(840)

(565)

cm⁻¹ and in the Raman spectrum a strong line at 92 cm⁻¹. We assign the Raman line to the ring-Ni-N bending mode, and the i.r. band to its first overtone. Unfortunately we are unable to observe the last two frequencies experimentally in the D_5 -molecule. Therefore only an approximate product ratio of 0.39 (theoretical 0.386) can be obtained by use of values deduced from the combination analysis of these two modes.

mode can be found in the Raman spectrum. In our low-temperature i.r. spectrum,¹² however, an absorption at 1102 cm^{-1} becomes active (and moves to 864 cm⁻¹ in the D_5 -molecule). This band can be assigned as the E_2 parallel bending mode, since the H:D ratio is of the order expected for such a vibration.

Conclusions.—Only few changes to the earlier vibrational assignments for the C₅H₅NiNO molecule ^{2,3} are required. However, the present comparative analysis

Assi	gnment of fun	damental vibrations for C_5F	I_5 NiNO and its D_5 -	and ¹⁵ NO-analogue	s
Species	No.	Description	C₅H₅NiNO	Assignments $C_5 D_5 NiNO$	C₅H₅Ni¹⁵NO
<i>A</i> ₁ (I.r., R)	1	Sym. C-H stretch	3115 4	2335	3115
	2	N–O stretch	1809	1808	1774
	3	Sym. ring breath	1112	1052	1111
	4	Sym. C-H bend (799	600	799
	5	Ni-N stretch	649	649	642
	6	Ring-Ni stretch	322	298	321
$A_{\bullet}(\text{Inactive})$	7	C-H bend ()	ء 1240		
$E_1(I.r., R)$	8	C-H stretch	3105	2286	3105
	9	C–C stretch	1425	1296	1424
	10	C-H bend ()	1054	852	1054
	11	C-H bend ()	1005	771	1005
	12	Ni-N-O bend	484	478	470
	13	Ring-Ni tilt	290	$(275)^{d}$	290
	14	Ring-Ni-N bend	92	(92)	(92)
$E_2(\mathbf{R})$	15	C-H stretch	3098	(2286)	(3098)
	16	C-C stretch	1343	(1212)	(1343)
	17	CH bend ()	1102 °	ک [°] 862	(1102)

TABLE 4

^a All frequencies are taken from liquid i.r. and Raman spectra. ^b (||) and (\perp) refer to vibrations parallel and perpendicular to the C_{s} symmetry axis. ^c Observed in the solid state (ref. 12). ^d Values in parentheses deduced from combinations and overtones.

964

840

565

C-H bend (\perp)

Ring distortion (\bot)

Ring distortion (||)

 E_2 vibrations. These vibrations are Raman-active only under C_{5v} molecular symmetry. By comparison with the i.r. spectrum of liquid C₅H₅NiNO, the following assignments can be made: the peak at 3098 cm⁻¹ is readily attributed to the E_2 C-H stretching mode. The line at 1343 cm⁻¹ was not observed by Hyams and Lippincott³ but appears in our Raman spectrum as a weak unpolarized absorption. Its intensity and position justify attribution to the E_2 C-C stretch.

18

19

20

The line at 964 cm⁻¹ is attributed to the perpendicular E_2 C-H bending, also because it is definitely unpolarized. The lines at 840 and 565 cm⁻¹ are tentatively assigned, according to Bailey,¹¹ as perpendicular and parallel ring distortions, respectively.

No line attributable to the E_2 parallel C-H bending

of the three isotopic species definitely substantiate previous studies, carried out only on the light compound.

(740)

(766)

(533)

Our analysis of the combination bands, made more reliable by use of isotopes, clearly shows that there is mixing of modes localized on both the organic and inorganic halves of the molecule. This suggests that caution must be exercised in using the 'local symmetry' approximation in complexes of this type.

We thank Professor C. Pecile for use of Raman and fari.r. spectrometers, and the Italian Consiglio Nazionale delle Ricerche for financial support.

[2/412 Received, 23rd February, 1972]

¹¹ R. T. Bailey, Spectrochim. Acta, 1971, 27, A, 199. ¹² Unpublished results.