A Sapphire Cell for High-temperature Raman Studies of Reactive Gases. The Vibrational Spectra of SeF₄, SeOF₂, TiF₄, and SbF₃

By Lesley E. Alexander and I. R. Beattie,* Department of Chemistry, The University, Southampton SO9 5NH

The vibrational spectra of TiF₄ (Raman: solid, gas), SbF₃ (Raman: solid, gas, solution in methanol; infrared: solid), SeOF2 (Raman: solid, liquid, gas), SeF4 (Raman: solid (two forms), liquid, gas; i.r.: gas) are reported. The use of vibrational spectroscopy to study polymerisation in condensed phases is discussed with particular reference to CIF_a and the title compounds.

THE study of the Raman spectra of gases at temperatures up to 1000 °C can be considered to be routine for samples which do not attack silica. However, with many compounds, notably fluorides, rapid attack of borosilicate and silica cells occurs as the temperature is raised above ambient. We approached the problem of cell corrosion in two ways: (a) by the design of metal cells with sapphire windows: (b) by the design of an all-sapphire cell. In both cases the problem of gasket materials arises. The only material known to us which is sufficiently soft to form a vacuum seal and sufficiently inert to withstand prolonged contact with fluorides at reasonably high temperatures is polytetrafluoroethylene. However, difficulties arise when this material is heated above 400 °C.

The metal cell with sapphire windows used a gold O-ring as the high temperature seal. By use of the thick sapphire window as essentially an insulating material of the furnace, it is possible to make a lower temperature (water cooled) high-vacuum O-ring seal in polytetrafluoroethylene on the outside of the window. In the case of the all-sapphire cell (which was used for the experiments described here) it was possible to use a polytetrafluoroethylene seal up to 400 °C providing that (a) the sealing faces were optically polished and (b) a very thin (ca. 0.002 in) polytetrafluoroethylene seal was used, with the two sealing surfaces in compression.

Titanium Tetrafluoride.—The physical properties of titanium tetrafluoride show that it is polymeric in the

TABLE 1 Vibrational spectra of TiF_4 and GeF_4

TiF4 (solid) Raman	${f TiF_4}$ (gas) Raman	GeF ₄ (gas) ^a	Assignments (gas phase)
817s	793vvw	800	٧3
770m,sh	712vs,p	738	vı
494w	-		-
4 66w			
367w			
236 w	209s,br	260	ν4
208w	185s	205	ν2
138w			-

^a From ref. 1.

solid state. Although no detailed X-ray structural study is available, a structure based on six-co-ordinated

¹ A. D. Caunt, L. N. Short, and L. A. Woodward, Trans. Faraday Soc., 1952, 48, 873; see also (for SiF₄) R. J. H. Clark and D. M. Rippon, Chem. Comm., 1971, 1295. ² I. R. Beattie, N. Cheetham, T. R. Gilson, K. M. S. Livingston, and D. B. Brandle, J. Chem. Comm. (40), 10771 (1075).

and D. J. Reynolds, J. Chem. Soc. (A), 1971, 1910. ³ W. Dähne and R. Hoppe, Naturwiss., 1962, **49**, 254.

titanium is probable. Table 1 shows the Raman spectrum of solid titanium tetrafluoride and also as a gas at 300 °C.

There are no molecular weight data available for gaseous titanium tetrafluoride but the close similarity between the vibrational spectra of germanium tetrafluoride¹ and titanium tetrafluoride in terms of position, number of bands, and polarisation characteristics strongly suggests the presence of monomeric tetrahedral units. The weakness of v_3 is, however, surprising and we note that under conditions where this band was observed a weaker band at 1017 cm⁻¹ also showed the presence of a small amount of a Ti-terminal oxygen species.

The totally symmetric mode of gaseous tin tetrafluoride is, by analogy with germanium tetrafluoride, expected to be just below 700 cm⁻¹. This is $ca. 80 \text{ cm}^{-1}$ higher than the totally symmetric stretching mode of the (polymeric) solid,² at 621 cm⁻¹. By contrast, for titanium tetrafluoride the frequency change from gas to solid for the most intense Raman band in the ' titaniumfluorine stretching region ' is an increase of $ca. 100 \text{ cm}^{-1}$. It is probable that tin tetrafluoride and titanium tetrafluoride have different structures in the solid state. Tin tetrafluoride is polymeric with *trans*-terminal fluorines,³ while VOF_3 and presumably VF_4 have cis-terminal oxygen and fluorine or fluorines respectively.⁴ For VOF_3 the frequency change from gas⁵ to solid⁶ is an increase of 20 cm⁻¹.

Antimony Trifluoride.-The solid-state structure of antimony trifluoride can be described 7 as based on a basic C_{3v} SbF₃ unit with mean Sb-F distances of 1.92 Å, together with additional fluorines at an average Sb-F distance of 2.61 Å and completing the distorted octahedron about the central antimony. There are two molecules in the unit cell which is not centrosymmetric. Our solid-state spectra (Table 2) agree with those given by Downs and Adams.⁸ Similarly, our gas-phase Raman spectra taken at 330 °C agree satisfactorily with the earlier i.r. matrix isolation studies.⁸ The bands are readily assigned on the basis of the expected C_{3v} monomer. Table 2 also reports data for a solution of antimony trifluoride in methanol, although the assignments in this

⁴ A. J. Edwards and P. Taylor, 6th International Symposium

⁶ I. R. Beattie, K. M. S. Livingston, D. J. Reynolds, and

G. A. S. Ozin, J. Chem. Soc. (A), 1970, 1210.
 ⁷ A. J. Edwards, J. Chem. Soc. (A), 1970, 2751.

⁸ A. J. Downs and C. J. Adams, J. Chem. Soc. (A), 1971, 1534.

case rely on the absence of reaction and can only be taken as tentative.

		TABLE 2		
	Vibra	tional spectra	a of SbF ₃	
Solid		Matrix isolation ^a	Gas	Solution in MeOH
ÍI.r.	R. '	i.r.	R.	R.
725m				
600m	503vs	645m	666s,p	593s,p
473 vs	462s	624s	634m	530m
271m	284 mw			
248m	257w	259m	250m,p	270w
226m	233 vw			235w
215m	220w			
	$173 \mathrm{mw}$			
	$153 \mathrm{mw}$			
	$125 \mathrm{mw}$			
	98mw			
		^a Ref. 8.		

Selenium Oxide Diffuoride.—The physical properties of this compound suggest that it is essentially monomeric in the liquid, although some degree of intermolecular

TABLE 3

Raman spectra of SeOF ₂						
Solid 979w,sh	Liquid (this Liquid • work) Gas Assigr					
956vs 956vs 698s 658w 648w 622ms 610ms 400w	1012vs,p 664s,p 605s	1007vs,p 658vs,p 603s	1049vs,p 667vs,p ^{\$} 637m,br	A' A' A''	$v_1 \\ v_2 \\ v_5$	
388w 380mw	3 77m,p	375m	362 m,p	A'	ν3	
304m 293w	3 08m	309 ms	282m,br	A''	ν ₆	
135mw 110ms 98w 77w 50s	278mw,p	283m	253vw,p?	A'	v ₄	

^a Ref. 10. ^b The poor quality gas-phase i.r. spectrum showed one band at 670 cm⁻¹.

interaction in condensed phases would not be unexpected. Figure 1 shows the Raman spectra of solid, liquid, and gaseous (120 °C) selenium oxide difluoride. Although there are frequency shifts and some major relative intensity effects, the differences are not sufficiently great to assume the presence of discrete polymeric species in the liquid. Gaseous SeOF₂ is known to be monomeric ⁹ and assignments appear to be unambiguous, except for the 253 cm⁻¹ band which is questionable (Table 3). For the liquid the agreement with the work of Rolfe and Woodward ¹⁰ is acceptable.

Selenium Tetrafluoride.—Selenium tetrafluoride is in an interesting portion of the Periodic Table from the point of view of polymerisation via fluorine bridging. Figure 2 summarises the situation for the non-transition elements. It raises some problems about techniques for studying polymerisation and in particular it is perhaps relevant to enquire what is meant by the physicist

FIGURE 1 The Raman spectra of selenium oxide difluoride; (a), gas; (b), liquid; (c), solid; * sapphire

FIGURE 2 Approximate representation of polymerisation (via fluorine bridging) of non-transition element fluorides. Compounds shown below the line are essentially polymeric in the solid state

and by the chemist with respect to terms such as 'dimerisation'. We shall consider initially one case in some detail, that of chlorine trifluoride, which has recently been studied by matrix isolation techniques¹¹ by use of i.r. spectroscopy. Chlorine trifluoride is a rigorously planar molecule in the solid state by X-ray diffraction techniques.¹² The 'axial' Cl-F bond

R. A. Frey, R. L. Redington, and A. L. K. Aljibury, *J. Chem. Phys.*, 1971, **54**, 344.
 R. D. Burbank and F. N. Bensey, *J. Chem. Phys.*, 1953, **21**, 602.

⁹ E. E. Aynsley, R. D. Peacock, and P. L. Robinson, J. Chem. Soc., 1952, 1231.
¹⁰ J. A. Rolfe and L. A. Woodward, Trans. Faraday Soc.,

¹⁰ J. A. Rolfe and L. A. Woodward, *Trans. Faraday Soc.*, 1955, **51**, 779.

1972

distance is 1.72 Å, the 'equatorial' distance 1.62 Å, and the bond angle 87°. The next nearest Cl-F distance is 3.06 Å. Microwave spectroscopy gives closely similar results for the gaseous species: ¹³ axial Cl-F, 1.698 Å; the concentration of dimers was *ca.* 4%. However, work by Adams and his co-workers ¹⁵ suggested that the gas was essentially monomeric at -40 °C. Selig *et al.*¹⁶ on the basis of Raman studies, stated 'We

FIGURE 3 The Raman spectra of selenium tetrafluoride; (a), gas; (b), liquid; (c), solid; (d)? crystalline solid, * sapphire, † SeOF₂

	TABLE	4
--	-------	---

	_	Vibrational spectra of SeF_4				
	Ra	iman		Gas i.r.		
Solid(I) .	Solid(II)	Liquid •	Gas	This work	Ref. 24	
742vs						
736vs	742vs	748vs.p	749vs,p	744s	745vs,PQR	
728w.sh	728vw.sh	720w.sh	724w,sh	674w,PQR ^b	736vs,br	
,	- •		590vw.sh	634 vs, QQ?	622vs, PQR	
			574s,p			
548s	552m	542s,p	559vw.sh			
496s	54 0m	-				
	521m					
	500ms	484s,p				
39 5m	391 w	400w				
			374w			
361w	350m	357	366m,p	36 7m		
341w			_			
220mw		200w	162w,p?			
139w			-			
119w	9 8w					
80m	80w					
	^a Wea	ak bands due to SeOF	⁷ ₂ impurity omitted.	^b SeOF ₂ ?.		

'equatorial' Cl-F, 1.598 Å; angle $87^{\circ}29'$. To most chemists this compound would be considered to be monomeric in the solid state. Earlier molecular weight studies ¹⁴ on the gas suggested that at the b.p. (11.75 °C)

¹³ D. F. Smith, J. Chem. Phys., 1953, 21, 609.

¹⁴ H. Schmitz and H. J. Schumacher, Z. Naturforsch., 1947, 2a, 363. believe . . . that the degree of dimerisation in the gas, if any, must be much lower than the 4% indicated by early data.'

¹⁵ R. M. Adams, R. B. Bernstein, and J. J. Katz, *J. Chem. Phys.*, 1954, 22, 13. ¹⁶ H. Selig, H. H. Claassen, and J. H. Holloway, *J. Chem.*

¹⁶ H. Selig, H. H. Claassen, and J. H. Holloway, *J. Chem. Phys.*, 1970, **52**, 3517. The i.r. spectrum of the gas ¹⁶ and of the solid ¹¹ show differences between the two spectra, notably in the region of v_4 : gas-phase spectrum 702 cm⁻¹; solid-state spectrum 610 cm⁻¹ very broad. In matrices ¹¹ bands in the 666—626 cm⁻¹ region have been attributed to the

 ClF_3 molecule interacts weakly with an adjacent ClF_3 molecule in preference to a weak interaction with the surrounding matrix. Thus vibrational spectroscopy, although useful for studying polymerisations, must be used with caution. Quite large changes in frequency,

Correlation of the fundamental BrF ₃		modes of vibration of ${\rm SeF}_4$ and ${\rm SF}_4$ ${\rm AsF}_5$		with th	hose of A SeF ₄	AsF ₅ and BrF ₃ SF ₄	
Mode	Assignment/cm ⁻¹	Mode	Assignment/cm ⁻¹	Mode	Assignr	nent/cm ⁻¹	۲
← a ₁	675		734 811	*	a ₁	749	892
<i>b</i> ₂ (tr	ranslation) 🧲 🗕 🖌	2 eb	811>	₹ F	<i>b</i> 2	736 [*]	867
- ★ ^b ¹	612 <		784>	k	b _i	622 ^{**}	730
- ↑ «1	552 <	- λ α'1	644>	K	<i>a</i> ₁	574	559
<u>م</u> لم الم	350	a″2 ↓ a″2	400	N.	<i>b</i> ₁		5 3 2
<i>a</i> 2	(rotation) <	-↓ -↓ -↓ -↓ -↓ -↓ -↓	386>	÷ Į	<i>a</i> 2		414
a ₁ (tr	ranslation) <	ed ed	372>	ANA A	a ₁	365	464
<i>b</i> 2	(rotation) <		372>	b ₂ (r	otation)		
≪[` ¤₁	233 ←	€ e'a	· 130>	₹¥ }	<i>a</i> ₁	162	226
	242 <		130>	<u>:</u> k:	<i>b</i> 2		353

TABLE 5

* Value taken from ref. 24. \dagger Symmetry co-ordinates are used to describe approximately the fundamental modes. Coupling will be serious, notably for the two e' modes of AsF₅.

formation of dimers and higher polymers. In view of the known structure of gaseous and solid ClF_3 , together with the gas-phase molecular weight data, it is clear that these bands are not due to the dimers and higher polymers with which chemists normally deal. The spectral changes may be an indication that an isolated

band contour, and relative intensity may occur owing to phenomena which are linked with weak association in condensed phases, rather than with the formation of chemically important polymeric species.

It is impossible to draw a sharp distinction between the two extremes of monomer and polymer. However, species such as IF₅,¹⁷ ClF₃, and BrF₃ ¹¹ are best regarded as associated liquids. Species such as BeF₂,¹⁸ GeF₂,¹⁹ and TeF_{4}^{20} are unambiguously polymeric (in the solid state).

Table 4 and Figure 3 report the Raman spectra of selenium tetrafluoride as a gas (known to be monomeric⁹), as a liquid, and as a solid (apparently two forms), and the i.r. spectrum of the gas. Table 5 compares the gas-phase results with those for the related molecules AsF_5^{21} BrF₃,¹⁶ and SF₄¹¹ (see also ref. 22). The assignments require little discussion as they follow

from the polarisation data, activity, and position in terms of the related molecules tabulated. The agreement of our Raman work on the liquid with that of Rolfe, Woodward, and Long²³ is acceptable. It is clear from the successive changes gas \longrightarrow liquid \longrightarrow fluoride there are considerable interactions present in the liquid and in the solid. Similar suggestions have been made from i.r. studies by use of matrix isolation techniques.24

Consideration of the molecular shape of SeF_4 indicates that a loose polymerisation towards the TeF_4 structure results in a perturbed C_{2n} molecule. In Sidgwick and Powell terms it is necessary to move the equatorial lone pair through an angle of 30°, while closing the SeF₂ equatorial angle by 30°. This procedure would be expected to lead to a strengthening of bonds a and cand a weakening of bonds b and d. The values found ²⁰ in the crystal-structure determination of TeF_4 are: a = 1.80, b = 1.87, c = 1.92, d = 2.08, e = 2.26 Å. For gaseous SeF₄ the values are $^{25}a = b = 1.682$, c = d =1.771 Å with angles of 100.55 and 169.20° . It is clear that such interactions can lead to: (a) a perturbed C_{2n} SeF_4 molecule; (b) a perturbed SeF_3^+ pyramidal ion; or (c) a fluorine-bridged polymer containing an effectively square pyramidal distribution about the selenium.

- ¹⁷ See, e.g., L. E. Alexander and I. R. Beattie, J. Chem. Soc.
- (A), 1971, 3091.
 ¹⁸ A. F. Wells, 'Structural Inorganic Chemistry,' Oxford University Press, 1962.
 ¹⁹ T. H. M. Alebtar and N. Bartlett I. Chem. Soc. (A).
- ¹⁹ J. Trotter, M. Akhtar, and N. Bartlett, J. Chem. Soc. (A), 1966, 30.
- ²⁰ A. J. Edwards and F. I. Hewaidy, J. Chem. Soc. (A), 1968, 2977.
- ²¹ L. C. Hoskins and R. C. Lord, J. Chem. Phys., 1971, 55, 5063.
- ²² K. O. Christe and W. Sawodny, J. Chem. Phys., 1970, **52**, 6320; I. W. Levin, *ibid.*, 1971, **55**, 5393, and references therein.

Even with crystallographic data the point of view adopted may be dependent upon the observer. Certainly vibrational spectroscopy is not the technique to make such distinctions in the solid state or in the liquid. We note that the ¹⁹F n.m.r. spectrum of SeF₄ at the m.p. $(-9 \ ^{\circ}C)$ shows only one resonance ²⁶ for the liquid so that this gives no additional information regarding the nature of the association.

EXPERIMENTAL

Preparations.—Titanium tetrafluoride was prepared by direct fluorination of titanium metal, followed by vacuum sublimation.²⁷ Antimony trifluoride was a commercial sample purified by repeated vacuum sublimation. Selenium tetrafluoride was prepared by slow fluorination of a sublimed film of selenium in a silica vessel at 0 °C.⁹ (Great care is necessary to avoid the formation of the oxide difluoride as an impurity.) The product was distilled in a glass vacuum line that had been thoroughly outgassed. The ampoules were stored at liquid-nitrogen temperature. Selenium oxide difluoride was prepared by the reaction between selenium dioxide and selenium tetrafluoride, followed by distillation.28

High-temperature Raman Cell.-The cell is shown in Figure 4. Loading is carried out in a glove-box flushed with dry air, nitrogen, or argon. The Teflon washer is placed in position and the bolts tightened to press the cap on to the main body. If nitrogen or air is used in the box this has the advantage that the spectrometer can be aligned by use of the rotational spectrum of nitrogen or air.

Because of the direction of growth of the original sapphire boule, the optic axis of the sapphire is at ca. 15° to the geometrical axis of the cell. It is thus essential to orientate

FIGURE 4 The sapphire cell and furnace assembly

the cell in such a position in the spectrometer that the incident laser beam is not depolarised. This is achieved by orienting the cell such that the optic axis and the tube axis lie in the same vertical plane. For collection of Raman

- ²³ J. A. Rolfe, L. A. Woodward, and D. A. Long, Trans. Faraday Soc., 1953, 49, 1388.
 ²⁴ E. E. Aynsley, R. E. Dodd, and R. Little, Spectrochim.
- Acta, 1962, **18**, 1005.
- ²⁵ L. C. Bowater, R. D. Brown, and F. R. Burden, J. Mol.
- Spectroscopy, 1968, 28, 454. ²⁶ E. L. Muetterties and W. D. Phillips, J. Amer. Chem. Soc., 1959, 81, 1084.
- ²⁷ H. M. Haendler, S. F. Bartram, R. S. Becker, W. J. Bernard, and S. W. Bukata, J. Amer. Chem. Soc., 1954, 76, 2177.
 ²⁸ R. D. Peacock, J. Chem. Soc., 1953, 3617.

light ideally the tube should be aligned at 15° to the horizontal. In practice this is inconvenient, so that depolarisation ratios are inaccurate in the absence of suitable calibration.

Spectra.—Raman spectra were all run with a Spex 1401 spectrometer and a Spectra Physics Model 140 or 165 argon laser. The i.r. spectrometer used was a Beckman IR11. Gas-phase i.r. spectra of selenium oxide fluoride and selenium tetrafluoride were run in a silica cell with polypropylene windows. The spectra were of poor quality in both cases. The solid-state i.r. spectrum of antimony trifluoride was run in Nujol between caesium iodide plates.

We thank Dr. T. R. Gilson for discussion, Esso Petroleum for a maintenance grant, and the S.R.C. for support.

[2/489 Received, 2nd March, 1972]