Reactions of Niobium and Tantalum Pentafluorides with Trimethylsilyldiethylamine and with Trimethylsilyl Chloride

By J. C. Fuggle, D. W. A. Sharp, and J. M. Winfield,* Chemistry Department, University of Glasgow, Glasgow

The diethylamido-niobium and -tantalum fluorides, MF4NEt2 and MF3(NEt2)2 are formed from the pentafluorides and Me₃SiNEt₂ at 20 °C. They are weaker Lewis acids than the pentafluorides and are thought to be fluoro-bridged polymers from their i.r. spectra. Niobium pentafluoride reacts with Me₃SiCl in Et₂O to give labile niobium chlorofluoride species and finally NbCl₅,OEt₂.

THE only substituted derivatives of niobium and tantalum pentafluorides that have been investigated to any extent are the chlorofluorides, which are prepared from PCl_5, MCl_5 (M = Nb or Ta), and AsF_3 .¹ They reorganise rapidly in acetonitrile to give MCl₅, NCMe and MF_5 , NCMe, and only the tetrachloride, fluorides are well characterised. MCl₄F have tetrameric fluoro-bridged structures² similar to that of the pentafluorides.³ In this paper we describe the preparation of previously unreported diethylamido-derivatives of NbF₅ and TaF₅ from reactions of the fluorides with trimethylsilyldiethylamine. Analogous reactions of NbF5 with trimethylsilyl chloride are described also. Dialkylamidoderivatives of non-metal fluorides,4 tungsten hexafluoride,⁵ titanium tetrachloride, and tetrabromide,⁶ have been prepared previously using silvlamines, and tungsten-(VI) chlorofluorides have been observed in the reaction of WF₆ and Me₃SiCl.⁷

RESULTS

Reactions of Niobium and Tantalum Pentafluorides with Trimethylsilyldiethylamine.--Mono- and bis-diethylamidoniobium(v) and -tantalum(v) fluorides are prepared conveniently from $(MF_5)_4$ or MF_5 , OEt_2 and Me_3SiNEt_2 at

 $(\mathrm{MF}_5)_4$ and a large excess of $\mathrm{Me}_3\mathrm{SiNEt}_2.$ In all cases the other product is Me₃SiF. The formation of more highly substituted products and those of intermediate composition was not observed under the conditions used. The diethylamido-derivatives (Table 1) are rapidly hydrolysed in moist air, involatile at 20 °C, melt without apparent decomposition, and are almost insoluble in Et₂O and other organic solvents. Their colours presumably arise from $M \leftarrow NEt_2$ charge transfer. They form 1:1 complexes with pyridine or 4-methylpyridine but no isolable complexes are formed with MeCN or Et₂O. Apparently they are weaker Lewis acids than the pentafluorides as $MF_5(py)_2$ and MF₅L, L = MeCN or Et₂O, are well known.⁸

The i.r. spectra of MF₄NEt₂ and MF₃(NEt₂)₂ contain series of strong bands in the region 1200-890 cm⁻¹ which are attributed to the -NEt₂ groups by analogy with the spectra of transition metal dialkylamides.9 The main features in the 800-250 cm⁻¹ region are a set of partially resolved bands ca. 700-580 cm⁻¹ and a broad, strong band at 480 [NbF₄-NEt2], 458 [NbF3(NEt2)2], 499 [TaF4NEt2], and 475 $\rm cm^{-1}$ $[TaF_3(NEt_2)_2]$. These latter bands may be compared with bands in the i.r. spectra of $(NbF_5)_4$ and $(TaF_5)_4$ at 498 and 511 cm⁻¹ respectively, and with bands at 485 and 495 cm⁻¹ in $(NbCl_4F)_4$ and $(TaCl_4F)_4$, which have been assigned to stretching modes involving the M-F-M bridges.¹⁰ Similar bands are not observed for the pyridine and 4-methyl-

TABLE 1

Diethylamino niobium and tantalum fluorides

			Analysis											
					ound (%)		Required (%)						
Compound	Colour	M.p. (°C)	C	н	F	N	M	Ċ	н	F	N	M		
NbF4NEt2	Orange	150	19.8	4 ·3	31.2	5.9	37.8	19.9	$4 \cdot 2$	31.5	5.8	38.6		
TaF4NEt2	Pale yellow	123	14.7	3.7	22.5	$4 \cdot 2$	54.8	14.6	3.1	$23 \cdot 1$	4.3	55.0		
$NbF_3(NEt_2)_2$	Scarlet	82	$32 \cdot 2$	6.8	19.8	9.4	31.1	32.7	6.9	19.4	9.5	31.6		
$TaF_{3}(NEt_{2})_{2}$	Yellow	203	$24 \cdot 4$	$5 \cdot 2$	14.9	7.6	48 ·1	$25 \cdot 1$	5.3	14.9	7.3	47.3		
TaF4NEt2, py	Yellow	115	26.0	3.6	19.1	6.7	44 ·9	26.5	3.7	18.6	6.9	44 ·3		
TaF ₄ NEt ₂ ,4-Mepy	Yellow	122	28.7	3.4	18.4	6.7		28.5	4.0	18.0	6.6			
NbF ₃ (NEt ₂) ₂ ,py	Brown	56	41 ·7	6.8	14.8	11.3	24.5	41 ·8	6.9	15.3	11.3	$24 \cdot 9$		
TaF ₈ (NEt ₂) ₂ , py	Brown	51	$32 \cdot 9$	5.3	12.7	9.2	39.9	33.8	5.5	12.4	9.1	39.2		
$TaF_{3}(NEt_{2})_{2}, 4-Mepy$	Pale brown	Liquid	35.9	5.5	11.5	9 ∙0	37.9	35.4	5.7	12.0	8.8	3 8·1		

20 °C. The compounds MF4NEt2 are formed from reactions employing a small excess of MF5,OEt2, while MF3- $(NEt_2)_2$ are the products from dry reactions between

L. Kolditz and U. Calov, Z. anorg. Chem., 1970, 376, 1.
 H. Preiss, Z. anorg. Chem., 1966, 346, 272; 1968, 362, 13.
 A. J. Edwards, J. Chem. Soc., 1964, 3714.
 E.g., R. Schmutzler, Angew. Chem., 1964, 76, 893; G. C. Demitras and A. G. MacDiarmid, Inorg. Chem., 1967, 6, 1903.
 A. Majid, R. R. McLean, D. W. A. Sharp, and J. M. Winfield,

Z. anorg. Chem., 1971, 385, 85. • H. Bürger and H.-J. Neese, Z. anorg. Chem., 1969, 365,

243; 1969, 370, 275.
 ⁷ G. W. Fraser, C. J. W. Gibbs, and R. D. Peacock, J. Chem.

Soc. (A), 1970, 1708.

pyridine complexes although their i.r. spectra in the 1200-890 cm⁻¹ region are similar to MF_4NEt_2 and $MF_3(NEt_2)_2$. We suggest that the bands observed in the spectra of

⁸ (a) H. C. Clark and H. J. Emeléus, J. Chem. Soc., 1958, 190;
(b) K. C. Moss, J. Chem. Soc. (A), 1969, 1224; (c) J. A. S. Howell and K. C. Moss, *ibid.*, 1971, 2483; (d) J. C. Fuggle, D. W. A. Sharp, and J. M. Winfield, J. Fluorine Chem., 1972, 1, 1972.

427.
(a) H. Bürger, H. Stammreich, and Th. T. Sans, Monatsh.,
(a) H. Gitlitz, J. Chem. Soc. (A), 1969, 980. ¹⁰ H. Preiss and P. Reich, Z. anorg. Chem., 1968, **362**, 19;

I. R. Beattie, K. M. S. Livingston, G. A. Ozin, and D. J. Rey-nolds, J. Chem. Soc. (A), 1969, 958.

 $\rm MF_4NEt_2$ and $\rm MF_3(NEt_2)_2$ ca. 700–580 $\rm cm^{-1}$ are due to M-F(terminal) and M-NEt₂ groups and that these compounds have polymeric, fluoro-bridged structures in the solid state.

Reactions of Niobium Pentafluoride with Trimethylsilyl Chloride.-The behaviour of NbF5 towards Me3SiCl is more complicated than that with Me₃SiNEt₂. Although Nb-F bonds are replaced by Nb-Cl bonds, as evidenced by the formation of Me₃SiF, discrete niobium chlorofluorides were not isolated. The ¹⁹F n.m.r. spectrum of a solution whose composition is NbF_5 : Me₃SiCl: Et₂O = 1: 2·2: 1 indicates that more than one Nb-F species is present, but gives no will depend on the mole ratio Me₃SiCl: NbF₅. Addition of pyridine displaces Et₂O and the least soluble species are precipitated, but it cannot be assumed that the distributions of fluoro- and chloro-ligands about niobium are identical in the solution and solid species.

MF4NEt2 are formed readily from MF5,OEt2 and Me₃SiNEt₂ but because of their relatively weak Lewis acidity and insolubility in Et₂O, further substitution is very slow. Attempts to prepare Nb(NEt₂)₅ from NbCl₅ and LiNEt₂ result in the formation of $Nb(NEt_2)_4$, and although Ta(NEt₂)₅ is formed in an analogous reaction

Analyzeic

TABLE	2
-------	---

Reactions of NbF₅ with Me₃SiCl

					Analysis											
Reactants (mmol)					~	Foun	d (%)		Required (%)							
NbF₅	Me _s SiCl	Et ₂ O	Product •	M.p. (°C)	Ċ	н	Cl	F	N	Nb	C	н	Cl	F	Ν	ND
13.8	6.9	21.6	Nb ₂ ClF ₉ py ₄	166	$32 \cdot 9$	3 ∙4	4 ·8	$24 \cdot 4$	7.7		33.9	$2 \cdot 9$	$5 \cdot 0$	$24 \cdot 1$	$7 \cdot 9$	
6.7	6.7	33 ·0	$NbClF_4py_2$	148	33 ·0	3.0	10.0	20.7	7.8		$33 \cdot 1$	$2 \cdot 8$	$9 \cdot 8$	21.0	7.7	
$7 \cdot 2$	14.5	$22 \cdot 3$	NbCl ₂ F ₃ py ₂	126 (decomp.)	31.7	3 ∙0	18.4	14.9	7.4	24.5	31.7	2.7	18.7	15.0	7.4	24.5
7.8	41.9	33·3	NbCl ₅ ,OEt ₂ ^b	80	13·9	3.1	51 ·7			26.5	13.9	$2 \cdot 9$	51.5			27.0
<u>а</u> т	· · · · · ·		and an Calant to m	manimitate the	ML as			aion i	h Tn +	he cho	mon of	nurid	ino A	ddition	n of r	wriding

• Pyridine was added sufficient to precipitate the Nb containing species. • In the absence of pyridine. Addition of pyridine to a small quantity of NbCl₅,OEt₂ gave NbCl₅py m.p. 220 °C (decomp.). Found C, 17.6; H, 1.7; Cl, 50.0; N, 3.9; Nb, 26.7%. C₅H₅Cl₅NNb requires C, 17.2; H, 1.4; Cl, 50.8; N, 4.0; Nb, 26.6%.

stereochemical information. Other reactions of Me₃SiCl with NbF₅ in Et₂O are summarised in Table 2. NbCl₅,OEt₂ is obtained from solution when the mole ratio Me₃SiCl: $NbF_5 = 5:1$. Although the reduction of $NbCl_5$ by pyridine to give NbCl₄py has been reported,¹¹ NbCl₅py can be prepared from NbCl₅,OEt₂ providing excess of pyridine is removed quickly from the product, and apparently is stable indefinitely in the absence of excess of pyridine. Addition of pyridine to ether solutions in which the mole ratio $Me_3SiCl:NbF_5$ is 1:2, 1:1, or 2:1 precipitates yellow solids which have sharp m.p.s and whose analyses correspond to Nb₂ClF₉py₄, NbClF₄py₂, and NbCl₂F₃py respectively. Their i.r. and Raman spectra and X-ray powder data differ from each other and from those of NbF₅py₂ and NbCl₅py, but do not provide sufficient evidence to state that the compounds are discrete.

DISCUSSION

These reactions may be rationalised in the following way. In Et₂O solution niobium and tantalum pentafluorides are present as MF₅,OEt₂ which are believed to be monomeric.^{86, c} NbF₅,OEt₂ reacts with Me₃SiCl, presumably by a process involving nucleophilic attack at Nb by the Si-Cl group as no reaction occurs between NbF₅ and SiCl₄,¹² to give NbF₄Cl,OEt₂ or more highly substituted compounds and Me₃SiF. By analogy with $MF_{6-n}Cl_n^-$ (M = Nb or Ta), anions,¹³ and $WF_{6-n}Cl_n$,⁷ redistribution reactions giving other members of the series $NbF_{5-n}Cl_n, OEt_2$ are expected to occur. Thus a solution will contain several species whose concentrations

¹¹ M. Allbutt, K. Feenan, and G. W. A. Fowles, I. Less-Common Metals, 1964, 6, 299; J. O'Keane, Ph.D. Thesis, University of Glasgow, 1971. ¹² J. H. Canterford and T. A. O'Donnell, *Inorg. Chem.*, 1966,

5, 1442.

¹³ Yu. A. Buslaev, E. G. Ilin, S. V. Bainova, and M. N. Krutkina, Doklady Akad. Nauk S.S.S.R., 1971, 196, 374.

it is easily decomposed to $EtN:Ta(NEt_2)_3$ and Ta- $(NEt_2)_4$.¹⁴ Although $WF_2(NEt_2)_4$ has been prepared from WF₆ and Me₃SiNEt₂,¹⁵ the formation of polymeric niobium and tantalum fluorides having more than two -NEt₂ substituents could be sterically unfavourable.

Spectroscopic ⁹ and structural ¹⁶ evidence suggests that dialkylamido-ligands are good π -donors to d^0 transition metals. The weak Lewis acid properties of MF_4NEt_2 and $MF_3(NEt_2)_2$ relative to MF_5 may be understood on this basis. It is considered that the lack of reaction between MF₃(NEt₂)₂ and Me₃SiNEt₂ is determined both by electronic and by steric factors.

EXPERIMENTAL

All operations were carried out in vacuo or in a Lintott inert atmosphere box in which the concentrations of H_2O and O_2 were ≤ 12 p.p.m. I.r. spectra were obtained using a Perkin-Elmer 457 spectrometer, the samples being mounted as Nujol of Fluorube mulls between AgCl, KBr, Si, and Ge windows. To prevent reactions between the fluorides and Nujol, the latter was purified by prolonged shaking with H_2SO_4 followed by several distillations from Na metal. Raman spectra were obtained using a Cary 81 spectrometer with He-Ne excitation (University of Strathclyde), the solid samples being sealed in 5 mm Pyrex tubes with optically flat ends. N.m.r. spectra were recorded using a Perkin-Elmer R10 instrument at 60.0 MHz (1H) and 56.4 MHz (¹⁹F) with a probe temperature of 33°. Niobium and Tantalum were determined gravimetrically as M2O5 and microanalyses were by Beller or Bernhardt laboratories.

40, 449, 1355. ¹⁵ A. Majid, D. W. A. Sharp, and J. M. Winfield, unpublished

work. ¹⁶ E.g., D. C. Bradley, M. H. Chisholm, C. E. Heath, and M. B. Hursthouse, *Chem. Comm.*, 1969, 1261; C. E. Heath and M. B. Hursthouse, *ibid.*, 1971, 143.

¹⁴ D. C. Bradley and I. M. Thomas, Canad. J. Chem., 1962,

Niobium and tantalum pentafluorides, prepared from the metals and fluorine at 300 °C, were purified by repeated sublimation. Trimethylsilyldiethylamine was prepared from trimethylsilyl chloride and NHEt₂ in vacuo, and was freed from NH₂Et₂Cl by repeated vacuum distillation. Me₃SiCl (Fluka, *puriss.*) was dried over 3 Å molecular sieves and organic solvents were dried by standard methods. Reactions between MF₅ and Me₃SiX, X = NEt₂ or Cl, were carried out *in vacuo* in a two compartment vessel designed to enable precipitated solids to be washed with solvent.

Reactions with Me_3SiNEt_2 .—(a) NbF_5 (11.7 mmol), Me₃SiNEt₂ (11·3 mmol) and Et₂O (24·2 mmol) gave an orange solution which was shaken for 2 h to give Me₃SiF, identified by i.r. spectroscopy,¹⁷ and an orange precipitate. MeaSiF and a yellow precipitate were obtained from TaF₅ (18.4 mmol), Me₃SiNEt₂ (13.2 mmol), and Et₂O (62.3 mmol) under similar conditions. The solid products were identified as diethylamidoniobium(v) tetrafluoride and diethylamidotantalum(v) tetrafluoride respectively (Table 1). Their X-ray powder data ¹⁸ indicated that $(MF_5)_4$ was absent. I.r. and Raman spectra (1200-200 cm⁻¹) were as follows: NbF4NEt2 i.r. 1189m, 1124s, 1092ms, 1069ms, 1035ms, 994s, 907sh, 901sasy, 793ms, 722w, 674w, 646vsbr, 622w, 600vs, 595w, 480sbr, 325ms cm⁻¹; Raman 1187(15), 1071(7), 1033(7), 994(30), 898(40), 790(8), 638(15), 594(28), 334(25) cm⁻¹; TaF₄NEt₂ i.r. 1192ms, 1126m, 1093ms, 1071m, 1043ms, 1004s, 917ms, 905w, 794ms, 723mw, 666s, 638vs, 620vs, 550w, 499sbr, 420w, 365mbr, 306m, 240s cm⁻¹; Raman 1003(15), 919(2), 662(28), 598(18), 305(10) cm⁻¹.

(b) Mixtures of the pentafluorides and a large excess of Me_3SiNEt_2 were shaken at 20 °C. Viscous liquids were formed after 8 h; further reaction gave scarlet or yellow solids after 3 days. Me_3SiF and unchanged Me_3SiNEt_2

were removed, the solids were crushed in the inert atmosphere box, and were shaken for a further 3 days with Me_3SiNEt_2 . The solid products isolated after this time were identified as bis(diethylamido)niobium(v) trifluoride and bis(diethylamido)tantalum(v) trifluoride (Table 1). Their X-ray powder data ¹⁸ indicated that $(MF_5)_4$ and MF_4NEt_2 were absent. I.r. spectra (1200—200 cm⁻¹) were as follows: NbF₃(NEt₂)₂ i.r. 1190ms, 1136s, 1090ms, 1068ms, 1050ms, 1000vsasy, 906sh, 890vs, 843w, 790s, 723w, 630vs, 610w, 584vs, 458vsbr, 330sh, 320ms, 306sh cm⁻¹; TaF₃(NEt₂)₂ i.r. 1191s, 1142 1136s, 1094s, 1066w, 1052ms, 1018m, 1002s, 904w, 894s, 789s, 723m, 662w, 610vsbr, 595sh, 523w, 475vsbr, 292msbr cm⁻¹. Satisfactory Raman spectra of these compounds could not be obtained.

(c) Pyridine and 4-methylpyridine complexes (Table 1) of the diethylamido-metal fluorides were obtained by direct combination using excess of the ligand. I.r. and X-ray powder data are reported elsewhere,¹⁸ but the i.r. spectrum (1200—200 cm⁻¹) of TaF₄NEt₂py was typical of those obtained: 1193m, 1159w, 1130m, 1095mw, 1069s, 1049s, 1008sbr, 956w, 906s, 792m, 762s, 697s, 681w, 644s, 631w, 590vs, 580vs, 450w, 433w, 336m, 310mbr, 262m, 240s cm⁻¹.

Reactions with Me₃SiCl.—Me₃SiCl (6.8 mmol) and NbF₅ (3.2 mmol) at 20 °C gave Me₃SiF and a yellow solid from which a viscous yellow liquid was distilled at 140 °C. This was not investigated further. Other reactions (Table 2) were performed in Et₂O, using pyridine to precipitate solid products. The vibrational spectra and X-ray powder data of these products are reported elsewhere.¹⁸

[2/826 Received, 12th April, 1972]

¹⁷ H. Kriegsmann, Z. anorg. Chem., 1958, 294, 113.

¹⁸ J. C. Fuggle, Ph.D. Thesis, University of Glasgow, 1971.