Some Metal Halide–Phosphorus Halide–Alkyl Halide Complexes. Part I. Reactions with Boron, Aluminium, Silicon, Germanium, and Tin Halides

By J. I. Bullock * and N. J. Taylor, The Joseph Kenyon Laboratories, University of Surrey, Guildford F. W. Parrett, Chemistry Department, Royal Military College of Canada, Kingston, Ontario, Canada

The reaction systems metal chloride-phosphorus trichloride-tert-butyl chloride (metal = Al, B, Si, Ge, or Sn) and metal chloride-methyldichlorophosphine-tert-butyl chloride (metal = B, Ge, or Sn) have been investigated. Solid products were obtained in each case with the exception of silicon and germanium. These solids have been characterised by vibrational spectroscopy as ionic complexes of alkylchlorophosphonium cations with the univalent anionic species AICI4⁻, BCI4⁻, and SnCI5⁻.

ALTHOUGH the complexes of aluminium trichloride with phosphorus trichloride and alkyl chlorides have been much used as starting materials for the synthesis of organophosphorus compounds,1-8 little work to determine the structure of these complexes has been attempted.

likely that other metal chlorides might form complexes, we have investigated the MCl_x-PCl₃-RCl system with boron trichloride, silicon, germanium, and tin tetrachlorides as well as aluminium trichloride; tert-butyl chloride was used as the alkylating agent because of its

			araciono a	ad anno	119 505	
	Rate of formation	Analyses				
System	of solid *	% P	% Metal	% C1	Notes	Suggested structure †
$AlCl_3 + PCl_3 + Bu^tCl$	Very fast	8.55	7.5	6 8·7	C ₄ H ₉ PAlCl ₇ requires P, 8.55; Al, 7.45; Cl. 68.3%	$[\operatorname{ButPCl}_3][\operatorname{AlCl}_4]$
$\mathrm{BCl}_3 + \mathrm{PCl}_3 + \mathrm{Bu}^{\mathrm{t}}\mathrm{Cl}$	Very slow	8.8		71 ·0	C ₄ H ₉ PBCl ₇ requires P, 8.9; Cl, 71.5%	$[\operatorname{ButPCl}_3][\operatorname{BCl}_4]$
$SiCl_4 + PCl_3 + Bu^{t}Cl$	No solid product ob	tained			///	
$GeCl_4 + PCl_3 + ButCl$	No solid product ob	tained				
$SnCl_4 + PCl_3 + Bu^{t}Cl$	Very slow	$6 \cdot 3$	24.6	57.5	C ₄ H ₉ PSnCl ₈ requires P, 6·3; Sn, 24·2; Cl, 57·85%	$[Bu^tPCl_3][SnCl_5]$
$\mathrm{BCl}_3 + \mathrm{MePCl}_2 + \mathrm{Bu}^{\mathrm{t}}\mathrm{Cl}$	Fast	13.3		75.8	CH ₃ PBCl ₅ requires P, 13.25; Cl, 75.7%	See text
$GeCl_4 + MePCl_9 + Bu^{t}Cl$	No solid product ob	tained			/0	
$SnCl_4 + MePCl_2 + Bu^{t}Cl$	Moderate	6.3	$25 \cdot 2$	52.8	C ₅ H ₁₂ PSnCl ₇ requires P, 6.6; Sn 25.25; Cl. 52.8%	, $[Bu^tMePCl_2][SnCl_5]$

TABLE 1 Preparations and Analyses

* Rate of formation varied from very fast (10 s) to very slow (poor yield after 1-2 weeks). † Based on vibrational spectra discussed later.

From conductivity 1 and thermographic 9 measurements, the ionic structure $[RPCl_3^+][AlCl_4^-]$ (R = alkyl) has been proposed but no vibrational or crystallographic data has been presented. Since it seemed

¹ A. M. Kinnear and E. A. Perren, J. Chem. Soc., 1952, 3437.

² J. P. Clay, *J. Org. Chem.*, 1951, **16**, 892. ³ F. W. Hoffmann, T. C. Simmons, and L. J. Glunz, *J. Amer. Chem. Soc.*, 1957, **79**, 3570.

⁴ S. Z. Ivin and K. V. Karavanov, Zhur. obshchei Khim., 1958, 28, 2958.

⁵ I. P. Komkov, S. Z. Ivin, and K. V. Karavanov, Zhur. obshchei Khim., 1958, 28, 2960.

known reactivity¹ with aluminium trichloride and phosphorus trichloride. In this paper, we present i.r., and where possible, Raman spectra of the reaction products of these systems. In addition, we report ⁶ K. V. Karavanov and S. Z. Ivin, Zhur. obshchei Khim.,

1963, **35**, 78. ⁷ I. P. Komkov, K. V. Karavanov, and S. Z. Ivin, *Zhur*. obshchei Khim., 1958, 28, 2963.

⁸ S. Z. Ivin, L. E. Dinitrieva, and K. V. Karavanov, Zhur. obshchei Khim., 1966, 36, 350.

⁹ G. Lindner and P. O. Granbom, Acta Chem. Scand., 1966, 20, 432.

results for the systems MCl_{z} -MePCl₂-Bu^tCl, (M = B, Ge, and Sn).

RESULTS AND DISCUSSION

In agreement with the conclusions of the conductivity measurements of Kinnear and Perren,¹ the vibrational spectra of the compounds treated here can readily be interpreted in terms of univalent ionic species with the exception of the methyldichlorophosphine-boron trichloride adduct. In order to simplify interpretation, the spectra attributable to the cations are considered initially and then each anion is considered individually.

Cation Spectra.—The expected tert-butyltrichlorophosphonium cation $\operatorname{But}PCl_3^+$ should be a distorted tetrahedron of symmetry C_{3v} with $\Gamma_{vib} = 3A_1(i.r.,R) + 3E(i.r.,R)$. The similar species MePCl₃⁺ has ^{10,11} a wellcharacterised spectrum with ¹⁰ $3A_1$ at 795, 491, and 247 and 3E at 629, 271, and 153 cm⁻¹. Several lines persisted in the spectra when the metal chloride was changed such that we assign the values listed in Table 2 to the cation by comparison with the known values for MePCl₃⁺. The internal C–C and C–H vibrations of the tert-butyl group have been omitted.

The tert-butylmethyldichlorophosphonium cation $\operatorname{But}MePCl_2^+$ has expected symmetry C_s with $\Gamma_{vib} = 6A'(i.r.,R) + 3A''(i.r.,R)$ such that two P-C (2A') and two P-Cl (A' + A'') stretching modes and five deformation modes (3A' + 2A'') are expected. The vibrational spectrum and tentative assignments for the cation of $[\operatorname{But}MePCl_2][\operatorname{SnCl}_5]$ are listed in Table 3 since the fundamentals of SnCl_5^- are well-known ^{12,13} and are readily subtracted. Furthermore, the positions of the stretching modes are comparable to the reported spectrum ¹¹ of $\operatorname{Me}_2\operatorname{PCl}_2^+$ (symmetry C_{2v}). The 631 cm⁻¹ band is only observed in the i.r. and is of somewhat variable intensity. However, since only four stretching modes are expected, this band is probably an overtone or combination band in resonance with the 614 cm⁻¹ band.

Anion Spectra.—(i) $AlCl_4^-$ and BCl_4^- . The vibrational spectra of these species have been reported several times; for $AlCl_4^-$, see ref. 14 and BCl_4^- , see ref. 15. The i.r. absorptions of $[Bu^+PCl_3][AlCl_4]$ and $[Bu^+PCl_3][BCl_4]$ attributable to these anions are shown in Table 4. The observed spectra are in good agreement with the literature values. Both species exhibit breakdown in the T_d selection rules with the appearance of v_1 in the i.r. Bands not due to fundamentals have been tentatively assigned to various combination modes.

(*ii*) SnCl₅⁻. The vibrational spectra of [Bu^tPCl₃]-[SnCl₅] and [Bu^tMePCl₂][SnCl₅] assignable to SnCl₅⁻ are given in Table 5. The SnCl₅⁻ anion is considered to be a trigonal bipyramid of symmetry D_{3b} ; $\Gamma_{vib} = 2A_1'(R)$

¹⁰ I. R. Beattie, K. Livingston, and T. Gilson, J. Chem. Soc. (A), 1968, 1.
¹¹ R. Baumgartner, W. Sawodny, and J. Goubeau, Z. anorg.

 $+2A_2''(i.r.) + 3E'(i.r.,R) + E''(R)$. The observed spectra agree favourably with reported spectra.^{12,13} However, the assignments of the deformation modes v_4 , v_6 , and v_8 have been tentatively altered from the assignments of Creighton and Green ¹² in view of the

TABLE 2

Vibrational assignments † of Bu^tPCl_a+

[Bu ^t PCl ₃]- [BCl ₄]	[Bu ^t PC	l₃][SnCl₅]	
i.r.	i. r.	Raman	Assignments
783vw	781vw		$A_1 v P - C$
481m	483 mw	485m	[∼] vP–Cl
229m	230w	234w	8PCl3
640vs	641s	645 vw	E v P - Cl
210mw	211w	213w	δBu ^t PCl
159 wbr	*	*	δCl−P−Cl
	[Bu ^t PCl ₃]- [BCl ₄] i.r. 783vw 481m 229m 640vs 210mw 159wbr	[Bu ^t PCl ₃]- [BCl ₄] [Bu ^t PC i.r. i.r. 783vw 781vw 481m 483mw 229m 230w 640vs 641s 210mw 211w 159wbr *	

* This region obscured by strong anion vibrations. † Anion vibrations omitted in this Table.

TABLE 3

Vibrational assignments † of Bu^tMePCl₂+

$[Bu^tMePCl_2]$	[SnCl ₅]	
i. r .	Raman	Assignments
803ms		$A' \nu P - C(Me)$
781ms		$A' v P - C(Bu^{t})$
631s		Overtone or combination?
614vs	611vw	$A^{\prime\prime}$ vP–Cl
508s	507m	A' vP-Cl
248vw	$250 \mathrm{sh}$	
229 vw		Deformation modes
212w	211w	

† Anion vibrations omitted in this Table.

TABLE 4

I.r. spectra * of AlCl₄⁻ and BCl₄⁻

[Bu ^t PCl ₃][AlCl ₄]	$[Bu^{t}PCl_{3}][BCl_{4}]$	Assignments
844wbr	1130, 1075vwbr	$v_1 + v_3$
	923, 894vw	$v_2 + v_3$
491vs	723s (B ¹⁰), 696vs (B ¹¹)	ν ₈
527 ms	667s	$v_1 + v_4$
	490sh	$v_3 - v_2?$
349m	3 96mw	ν ₁
	308mw	$v_{2} - v_{1}?$
183s, 175s	275w	V _A
	196vwsh	ν?
568w	350mw	-
307w	260w	Other bands
74ms	78w	
64s	66w	
	46 w	
	* Cation vibrations omitted.	

observed coincidences. Bands assigned to $SnCl_4$ probably result from decomposition of the samples whilst the spectra were being obtained. Both these complexes exhibit decomposition when heated to 40 °C.

MePCl₂,BCl₃ Adduct.—The spectrum of this compound contains the vibrations expected for the adduct

¹¹ R. Baumgartner, W. Sawodny, and J. Goubeau, Z. anorg. Chem., 1964, 333, 171.

¹² J. A. Creighton and J. H. S. Green, *J. Chem. Soc.* (*A*), 1968, 808.

¹³ I. R. Beattie, T. Gilson, K. Livingston, and G. A. Ozin, *J. Chem. Soc.* (A), 1967, 712.

¹⁴ I. R. Beattie and M. Webster, J. Chem. Soc., 1963, 38; J. Reddijk and W. L. Groeneveld, *Rec. Trav. chim.*, 1968, **87**, 513; K. Balasubrahmangam and L. Nanis, J. Chem. Phys., 1965, **42**, 676; D. E. H. Jones and J. L. Wood, Spectrochim. Acta, 1967, **23A**, 2695.

 ²³A, 2695.
¹⁵ W. Kynaston, B. E. Larcombe, and H. S. Turner, J. Chem. Soc., 1960, 1172; W. Garrard, E. F. Mooney, and H. A. Willis, *ibid*, 1961, 4255; L. Atkinson and P. Day, J. Chem. Soc. (A), 1969, 2423.

 $MePCl_2, BCl_3$ but the fundamentals of the anion BCl_4^- are also clearly recognisible. For this anion to be present, ionic structures such as $[(MePCl_2)_2BCl_2][BCl_4]$

		TABLE 5			
	Vibratio	nal spectra	† of SnCl ₅ -		
[Bu ^t PCl ₃][SnCl ₅]		[Bu ^t MePO	[Bu ^t MePCl ₂][SnCl ₅]		
i. r.	Raman	i.r.	Raman	Assignments	
404 brsh	405w	404w	403wbr	v_{3} , SnCl ₄ *	
368sh	368 sh		364m	v ₁ , SnCl ₄ *	
350vs	353 m	360s	358 sh	ν ₅ , Ε'	
340 sh	338vs	336 wsh	333vs	v_1, A_1'	
314vs	312vw	321s		v_3, A_2''	
	269w		265 mw	v_2, A_1'	
169vs	171w		170 sh	ν ₈ , Ε ^{''} ?	
160vs		163m	161m	$v_4, A_2''?$	
150vs	152m	154 brsh	147 wsh	ν ₆ , Ε'?	
	124 vw	127 vw	129wbr	ν ₄ , SnCl ₄ *	
	104w		97wbr	ν ₂ , SnCl ₄ *	
66vw		69w	70sh 65w	} ν ₇ , Ε′	
52 vw		56w		Lattice modes,	
44 vw		50w		etc.	
* Decomposition of sample, † Cation vibrations omitted.					

and [MePCl][BCl₄] may be postulated. The former structure is not unlike the pyridine–BCl₃ adduct which is thought ¹⁶ to be [(C_5H_5N)₂BCl₂][BCl₄]. Cations such as PCl₂⁺ have been postulated ¹⁷ but not identified, and

The formation of the unstable species SnCl_5^- in preference to the usually encountered stable anion SnCl_6^{2-} suggests that this type of reaction may be a suitable synthesis for low-charged chloro-anions. The failure to observe any reaction products with silicon and germanium tetrachlorides is not unexpected in view of the known instability ¹⁸ of the anions SiCl₅⁻ and GeCl₅⁻, the former only being found in solution.

EXPERIMENTAL

Purification of Reagents.—Aluminium trichloride was purified by initial sublimation from a mixture of aluminium trichloride (95%) and sodium chloride (5%) and then repeated sublimation of the trichloride alone.

Boron trichloride, phosphorus trichloride, methyldichlorophosphine, silicon, germanium, and tin tetrachlorides and tert-butyl chloride were purified by fractional distillation either *in vacuo* or in a current of dry nitrogen. Methylene chloride was dried over phosphorus pentoxide and distilled in a current of dry nitrogen, the first and last quarters being rejected.

Preparation of Samples.-Since all the compounds investi-

		INDLE 0			
		Vibrational spectrum of MePCl ₂	,BCl ₃ adduct		
I.r.	Raman	Assignments	I.r.	Raman	Assignments
	(a) [B	Cl ₄ -]		(c) MePCl ₂	,BCl ₃ †
1078wbr 723s 692sh 666brsh 395s 274s 201ms	724wbr 694wbr 397s 275ms 200m	$\begin{array}{c} \nu_1 + \nu_3 \\ \nu_3 \\ \nu_1 + \nu_4 \\ \nu_1 \\ \nu_4 \\ \nu_2 \end{array}$	787brsh 755sh 590sh 512sbr 484brsh 306vs 240vw	590mw 514m } 304w	$B^{io} = B^{io} + B$
	(b) []	MePCl+] *	173s	235vw J 172s }	8P-CI
769sh 576br	772w 580wsh	vP–C vP–Cl	162sh	162s J	
219s 1462m 1393mw	219vw 1396w	δMe−P−Cl Asym. C−H def. \ Methyl group Sym. C−H def. \ deformations	980wbr 940m	(d) Other	bands
$\left.\begin{array}{c} 905m\\ 889m\\ 881m \end{array}\right\}$	906w	CH3 def.	866w 111w 101w	110w 100w 79mw	
			55ms		

TADLER

* Considered as bent triatomic. † C. Symmetry. ‡ P-B Probably a somewhat mixed mode.

we here tentatively assign the observed spectrum in terms of the equilibrium $MePCl_2, BCl_3 \longrightarrow [MePCl]-[BCl_4]$, (see Table 6). This complex was observed to sublime even at room temperature but a vapour-phase i.r. spectrum only indicated the presence of boron trichloride and methyldichlorophosphine. The instability of this compound and the associated difficulty in manipulation indicate that the structure may only be resolved by crystallography.

The general applicability of this type of reaction to

 ¹⁶ N. N. Greenwood and K. Wade, J. Chem. Soc., 1960, 1130.
¹⁷ N. N. Greenwood, P. G. Perkins, and K. Wade, J. Chem. Soc., 1957, 4345. gated are water sensitive, vacuum-line and glove-box techniques were employed for all sample preparations and manipulations.

In all cases (except aluminium trichloride), slight excesses of phosphine and tert-butyl chloride with respect to the metal chloride, were used to minimise the chance of polymeric anions being formed. With aluminium trichloride, a ten-fold excess of phosphorus trichloride was found necessary to suppress this effect. The analytical results for the complexes prepared are listed in Table 1.

The reaction system BCl₃-MePCl₂-Bu^tCl yielded a

¹⁸ I. R. Beattie and K. M. Livingston, J. Chem. Soc. (A), 1969. 859. product CH_3PBCl_5 ; an identical product was prepared in absence of the last reagent.

All complexes were prepared as white powders. The aluminium trichloride complex was recrystallised as colourless needles from methylene chloride. Efforts to recrystallise the other complexes using a variety of solvents failed.

Spectroscopy.—Raman spectra were obtained using a Spex 1401 Spectrometer with helium-neon laser excitation. Sample presentation was in sealed capillary tubes. Some samples exhibited strong fluorescence effects prohibiting the observation of Raman spectra.

The Grubb-Parsons Spectromaster $(400-1000 \text{ cm}^{-1})$ and the R.I.I.C. FS720 Interferometer $(30-400 \text{ cm}^{-1})$ were utilised to obtain i.r. spectra over the desired region of the spectrum. Sample presentation was as Nujol mulls between either potassium bromide or Polythene plates.

We thank the S.R.C. for a studentship for N. J. T.

[2/555 Received, 9th March, 1972]