Metal-Carbonyl and Metal-Nitrosyl Complexes. Part XIII. ${ }^{1}$ X-Ray Study of the Molecular Structures of π-Cyclopentadienyl- and π-(Methylcyclo-pentadienyl)-trans-iododicarbonyl(trimethyl phosphite)molybdenum

By A. D. U. Hardy and G. A. Sim,* School of Molecular Sciences, University of Sussex, and Chemistry Department, University of Glasgow, Glasgow G12 800

Abstract

The molecular geometries of π-cyclopentadienyl- and π-(methylcyclopentadienyi)-trans-iododicarbonyl(trimethyl phosphite) molybdenum [(I) and (II)] have been determined by X-ray crystal-structure analysis. The Mo-P distances [2.406(9) and 2•388(8) A] are significantly shorter than in π-cyclopentadienyl-trans-iododicarbonyl(triphenylphosphine) molybdenum (III) [2.481(5) A], whereas the Mo-I distances [2.836(4) and $2 \cdot 850$ (3) \AA in (I) and (II) ; 2.858 (3) \AA in (III)] are essentially constant. Both (I) and (II) crystallize in the orthorhombic space group $P 2_{1}{ }_{2}{ }_{1} 2_{1}$, with $Z=4$ in unit cells of dimensions: (I), $a=10 \cdot 75, b=16 \cdot 60, c=8 \cdot 57$ (all ± 0.01) \AA; (II) , $a=16.317(6), b=11.323(3), c=8.740(2) \AA$. Photographic data were used for (I) and diffractometer data for (II). The structures were solved by Patterson and Fourier methods and refined by least squares to $R 7 \cdot 8 \%$ [(I), 906 reflections] and $5 \cdot 9 \%$ [(II), 1847 reflections].

Though many tertiary-phosphine (PR_{3}) complexes of transition metals have featured in X-ray crystallographic studies, ${ }^{2}$ relatively few phosphite $\left[\mathrm{P}(\mathrm{OR})_{3}\right]$ complexes have been examined. Where comparisons can be made, however, it appears that a metal-phosphite $\mathrm{M}-\mathrm{P}$ bond is significantly shorter than the analogous metal-phosphine bond. Since we had previously determined the molecular geometry of π-cyclopentadienyl-trans-iododicarbonyl(triphenylphosphine)molybdenum (III), ${ }^{3}$ we undertook X-ray studies of π-cyclopenta-dienyl- and π-methylcyclopentadienyl-trans-iododicarbonyl(trimethyl phosphite)molybdenum (I) and (II) in order to compare molybdenum-phosphite and -phosphine bonds in very similar molecular environments. The atomic co-ordinates were derived by Fourier and least-squares methods and are shown in Tables 1 and 2.

Figure 1 The molecular structure of $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}(\mathrm{CO})_{2^{-}}$ $\left[\mathrm{P}(\mathrm{OMe})_{3}\right] \mathrm{I}$ (I), viewed along the normal to the $\mathrm{C}_{5} \mathrm{H}_{5}$-plane
Views of the molecular structures are provided in Figures 1 and 2 , and the molecular dimensions are listed in Tables 3 and 4.

The $\mathrm{Mo}_{\mathrm{o}}-\mathrm{P}$ bond lengths are $2 \cdot 406(9)$ in (I), $2 \cdot 388(8)$ in (II), and $2 \cdot 481(5) \AA$ in (III), i.e. the molybdenumphosphite bond is ca. $0 \cdot 1 \AA$ shorter than the molybdenumphosphine bond. The $\mathrm{Cr}-\mathrm{P}$ bonds in pentacarbonyl(triphenyl phosphite)chromium and pentacarbonyl(triphenylphosphine)chromium have lengths of $2 \cdot 309$ and $2 \cdot 422 \AA,{ }^{4}$ so that here also there is a difference of $c a \cdot 0 \cdot 1 \AA$.
${ }_{1}$ Part XII, M. G. Waite and G. A. Sim, J. Chem. Soc. (A), 1971, 1009.
${ }^{2}$ O. Kennard and D. G. Watson, 'Molecular Structures and Dimensions,' vol. 2, International Union of Crystallography, 1970.
${ }^{3}$ M. A. Bush, A. D. U. Hardy, Lj. Manojlovic-Muir, and G. A. Sim, J. Chem. Soc. (A), 1971, 1003.

Precise comparisons of this sort cannot be made in other cases, but several pertinent results can be cited. The $\mathrm{Fe}-\mathrm{P}$ mean bond distance in $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}\left[\mathrm{P}(\mathrm{OPh})_{3}\right]_{2} \mathrm{I}$ is

Table 1
Atomic co-ordinates (as fractions of the cell edges) and thermal parameters $\left(\AA^{2}\right)$ for (I) with standard deviations in parentheses

	x	y	z	B
$\mathrm{C}(1)$	$0 \cdot 4088(33)$	$0 \cdot 5193(21)$	$0 \cdot 7269(45)$	$4 \cdot 54(64)$
$\mathrm{C}(2)$	$0 \cdot 4997(43)$	$0 \cdot 5224(21)$	$0 \cdot 6046(42)$	$5 \cdot 46(79)$
$\mathrm{C}(3)$	$0 \cdot 4651(29)$	$0 \cdot 4554(17)$	$0 \cdot 5079(36)$	$3 \cdot 50(52)$
$\mathrm{C}(4)$	$0 \cdot 3167(37)$	$0 \cdot 4541(21)$	$0 \cdot 7033(43)$	$4 \cdot 52(73)$
$\mathrm{C}(5)$	$0 \cdot 3529(42)$	$0 \cdot 4154(25)$	$0 \cdot 5693(57)$	$5 \cdot 80(89)$
$\mathrm{C}(6)$	$0 \cdot 6988(43)$	$0 \cdot 4066(26)$	$0 \cdot 8000(56)$	$5 \cdot 75(96)$
$\mathrm{C}(7)$	$0 \cdot 4480(32)$	$0 \cdot 2958(21)$	$0 \cdot 8481(45)$	$4 \cdot 27(66)$
$\mathrm{C}(8)$	$0 \cdot 7772(36)$	$0 \cdot 3783(21)$	$0 \cdot 4105(45)$	$4 \cdot 54(69)$
$\mathrm{C}(9)$	$0 \cdot 7311(42)$	$0 \cdot 2007(27)$	$0 \cdot 8040(53)$	$5 \cdot 43(83)$
$\mathrm{C}(10)$	$0 \cdot 5764(56)$	$0 \cdot 2002(37)$	$0 \cdot 3462(70)$	$7 \cdot 84(133)$
$\mathrm{O}(1)$	$0 \cdot 7415(19)$	$0 \cdot 3035(12)$	$0 \cdot 5046(23)$	$3 \cdot 56(40)$
$\mathrm{O}(2)$	$0 \cdot 6361(27)$	$0 \cdot 2063(18)$	$0 \cdot 6655(32)$	$5 \cdot 28(54)$
$\mathrm{O}(3)$	$0 \cdot 5252(28)$	$0 \cdot 2656(15)$	$0 \cdot 4523(35)$	$5 \cdot 37(55)$
$\mathrm{O}(4)$	$0 \cdot 7950(28)$	$0 \cdot 4161(16)$	$0 \cdot 8295(36)$	\dagger
$\mathrm{O}(5)$	$0 \cdot 4046(43)$	$0 \cdot 2415(20)$	$0 \cdot 8835(38)$	\dagger
P	$0 \cdot 6083(8)$	$0 \cdot 2922(5)$	$0 \cdot 5857(10)$	\dagger
Mo	$0 \cdot 5154(2)$	$0 \cdot 3953(1)$	$0 \cdot 7450(3)$	\dagger
I	$0 \cdot 5127(3)$	$0 \cdot 4328(2)$	$1 \cdot 0679(3)$	

\dagger These atoms were assigned anisotropic temperature factors of the form: $T=\exp \left[-\left(h^{2} \beta_{11}+k^{2} \beta_{22}+l^{2} \beta_{33}+\right.\right.$ $\left.\left.2 h k \beta_{12}+2 h l \beta_{13}+2 k l \beta_{23}\right)\right]$. The final values of the parameters ($\beta_{i j} \times 10^{5}$) are:

	β_{11}	β_{22}	β_{33}
	$1212(310)$	$489(112)$	$1930(531)$
$\mathrm{O}(4)$	$3532(700)$	$735(156)$	$1862(636)$
$\mathrm{O}(5)$	$876(73)$	$265(23)$	$1156(256)$
P	$\mathbf{7 7 7 (1 7)}$	$319(6)$	$901(222)$
Mo	$1720(41)$	$648(12)$	$911(225)$
I	β_{12}	β_{12}	β_{23}
	$-125(136)$	$-570(300)$	$30(180)$
$\mathrm{O}(4)$	$-1355(288)$	$1584(478)$	$-381(225)$
$\mathrm{O}(5)$	$-32(38)$	$-46(77)$	$-10(44)$
P	$-57(11)$	$-13(29)$	$-37(14)$
Mo	$-221(20)$	$114(30)$	$-120(17)$
I			

$2 \cdot 15 \AA^{5}$ whereas that in $\mathrm{Fe}_{3}(\mathrm{CO})_{11}\left(\mathrm{PPH}_{3}\right)^{6}$ and $\mathrm{Fe}_{3}(\mathrm{CO})_{9}{ }^{-}$ $\left(\mathrm{PMe}_{\mathbf{2}} \mathrm{Ph}\right)_{\mathbf{3}}{ }^{7}$ is $2 \cdot 24 \AA$, and the $\mathrm{Ir}^{-} \mathrm{P}$ mean bond length of
${ }^{4}$ H. J. Plastas, J. M. Stewart, and S. O. Grim, J. Amer. Chem. Soc., 1969, 91, 4326.
${ }^{5}$ V. G. Andrianov, Yu. A. Chapovskii, V. A. Semion, and Yu. T. Struchkov, Chem. Comm., 1968, 282.
${ }^{6}$ D. J. Dahm and R. A. Jacobson, J. Amer. Chem. Soc., 1968, 90, 5106.
${ }_{2}$ W. S. McDonald, J. R. Moss, G. Raper, B. L. Shaw, R. Greatrex, and N. N. Greenwood, Chem. Comm., 1969, 1295.

Table 2
Atomic co-ordinates (as fractions of the cell edges) and thermal parameters (\AA^{2}) for (II) with standard deviations in parentheses. The hydrogen atoms are numbered according to the atoms to which they are attached

	x	y	z	B
C(1)	-0.7053(21)	0-3942(32)	0.5245(43)	3-87(69)
C(2)	$-0.6570(22)$	$0 \cdot 3656(34)$	$0 \cdot 6559(46)$	4.46(76)
$\mathrm{C}(3)$	-0.6875 (21)	$0 \cdot 2671$ (29)	$0 \cdot 7284(38)$	$3 \cdot 61$ (63)
C(4)	$-0.7671(18)$	$0 \cdot 3060(29)$	$0 \cdot 5150(38)$	$3 \cdot 50(55)$
$\mathrm{C}(5)$	-0.7613(22)	$0 \cdot 2311(33)$	$0 \cdot 6425$ (43)	$4 \cdot 49$ (74)
C(6)	$-0.5354(20)$	$0 \cdot 2693(30)$	$0 \cdot 3995(38)$	3•80(63)
C(7)	-0.6444(21)	$0 \cdot 0346$ (30)	0.4476(38)	$3 \cdot 51(58)$
$\mathrm{C}(8)$	-0.4455(22)	$0 \cdot 1946(35)$	$0 \cdot 9005(40)$	$4 \cdot 15(69)$
$\mathrm{C}(9)$	-0.4396(25)	$0.0081(38)$	0.4646(50)	5-56(91)
C(10)	-0.6217(23)	-0.0249(32)	$0 \cdot 8224(45)$	4.39(72)
C(11)	-0.6996(24)	$0 \cdot 4949(36)$	$0 \cdot 4103(47)$	$4 \cdot 66$ (82)
$\mathrm{O}(1)$	-0.5046(15)	$0 \cdot 2212(23)$	$0 \cdot 7775$ (26)	$4 \cdot 48(48)$
$\mathrm{O}(2)$	-0.4456(14)	$0 \cdot 0973$ (20)	0.5817(26)	3-79(43)
$\mathrm{O}(3)$	-0.5484(16)	$0 \cdot 0072(23)$	$0 \cdot 7482(31)$	4.69(52)
$\mathrm{O}(4)$	-0.4815(14)	$0 \cdot 3121(28)$	$0 \cdot 3469$ (30)	\dagger
$\mathrm{O}(5)$	-0.6571(15)	-0.0607(22)	$0 \cdot 4245(30)$	\dagger
P	$-0.5336(5)$	0.1293(7)	$0 \cdot 6562(9)$	
Mo	-0.6376(1)	$0 \cdot 2091(2)$	$0 \cdot 4942(3)$	\dagger
I	-0.6784(2)	$0 \cdot 2057(3)$	$0 \cdot 1771$ (2)	\dagger
$\mathrm{H}(2)$	-0.5999	0.4155	$0 \cdot 6991$	$5 \cdot 3$
$\mathrm{H}(3)$	-0.6628	$0 \cdot 2149$	$0 \cdot 8226$	$2 \cdot 6$
$\mathrm{H}(4)$	-0.8130	$0 \cdot 2974$	$0 \cdot 4296$	$3 \cdot 3$
$\mathrm{H}(5)$	-0.8050	$0 \cdot 1658$	$0 \cdot 6781$	$4 \cdot 3$
$\mathrm{H}(8 a)$	-0.4039	$0 \cdot 2941$	$0 \cdot 8929$	$4 \cdot 3$
$\mathrm{H}(8 b)$	-0.4760	$0 \cdot 1471$	0.9821	$4 \cdot 3$
$\mathrm{H}(8 c)$	-0.4039	$0 \cdot 0956$	$0 \cdot 8929$	$4 \cdot 3$
$\mathrm{H}(9 a)$	-0.3798	-0.0588	0.4911	$5 \cdot 4$
$\mathrm{H}(9 b)$	-0.4760	-0.0588	0.4911	$5 \cdot 4$
$\mathrm{H}(9 \mathrm{c})$	-0.4471	$0 \cdot 0000$	0.3750	$5 \cdot 4$
$\mathrm{H}(10 a)$	-0.6016	-0.1029	0.8750	$4 \cdot 4$
$\mathrm{H}(10 b)$	-0.6779	0.0515	0.7411	$4 \cdot 4$
$\mathrm{H}(10 c)$	-0.6442	$0 \cdot 0147$	$0 \cdot 8929$	$4 \cdot 4$
$\mathrm{H}(11 a)$	-0.6731	0.5515	$0 \cdot 4732$	$4 \cdot 8$
$\mathrm{H}(11 b)$	-0.7500	$0 \cdot 6029$	$0 \cdot 3750$	$4 \cdot 8$
$\mathrm{H}(11 c)$	-0.6490	$0 \cdot 4044$	$0 \cdot 3571$	$4 \cdot 8$

\dagger These atoms were assigned anisotropic temperature factores of the form: $T=\exp \left[-\left(h^{2} \beta_{11}+k^{2} \beta_{22}+l^{2} \beta_{33}+\right.\right.$ $\left.\left.2 h k \beta_{12}+2 h l \beta_{13}+2 k l \beta_{23}\right)\right]$. The final values of the parameters $\left(\beta_{i j} \times 10^{5}\right)$ are:

	β_{11}	β_{22}	β_{33}
$\mathrm{O}(4)$	$385(102)$	$2010(377)$	$2208(434)$
$\mathrm{O}(5)$	$486(130)$	$790(220)$	$1661(411)$
P	$237(27)$	$476(56)$	$908(97)$
Mo	$233(6)$	$550(14)$	$665(22)$
I	$558(11)$	$1243(26)$	$720(22)$
	β_{12}	β_{13}	β_{23}
$\mathrm{O}(4)$	$-340(172)$	$77(178)$	$1272(382)$
$\mathrm{O}(5)$	$-57(133)$	$-248(187)$	$-254(252)$
P	$64(36)$	$-43(44)$	$-4(68)$
Mo	$1(12)$	$-5(13)$	$4(27)$
I	$-104(19)$	$-72(14)$	$42(29)$

Figure 2 The molecular structure of $\left(\pi-\mathrm{MeC}_{5} \mathrm{H}_{4}\right) \mathrm{Mo}(\mathrm{CO})_{2}-$ $\left[\mathrm{P}(\mathrm{OMe})_{3}\right] \mathrm{I}$ (II), viewed along the normal to the $\mathrm{C}_{5} \mathrm{H}_{4}$-plane
$2 \cdot 25 \AA$ in $\operatorname{IrCl}\left[\mathrm{P}(\mathrm{OPh})_{2}\left(\mathrm{OC}_{6} \mathrm{H}_{4}\right)\right]_{2}\left[\mathrm{P}(\mathrm{OPh})_{3}\right]^{8}$ is $c a .0 \cdot 15 \AA$ shorter than that found in various six-co-ordinate tri-

Table 3
Molecular dimensions of (I)
(a) Bond lengths (\AA)

$\mathrm{Mo}-\mathrm{I}$	2.836(4)	$\mathrm{P}-\mathrm{O}(3)$	1.515(31)
Mo-P	$2 \cdot 406(9)$	$\mathrm{O}(1)-\mathrm{C}(8)$	$1.529(42)$
$\mathrm{Mo}-\mathrm{C}(6)$	$2.035(46)$	$\mathrm{O}(2)-\mathrm{C}(9)$	1-568(53)
$\mathrm{Mo}-\mathrm{C}(7)$	2.008(36)	$\mathrm{O}(3)-\mathrm{C}(10)$	1.519(66)
$\mathrm{Mo}-\mathrm{C}(1)$	$2 \cdot 362$ (35)	$\mathrm{O}(4)-\mathrm{C}(6)$	1.075 (55)
$\mathrm{Mo}-\mathrm{C}(2)$	$2 \cdot 435$ (36)	$\mathrm{O}(5)-\mathrm{C}(7)$	1.059(51)
$\mathrm{Mo}-\mathrm{C}(3)$	2.326(31)	$\mathrm{C}(1)-\mathrm{C}(2)$	1-433(55)
$\mathrm{Mo}-\mathrm{C}(4)$	$2 \cdot 375(39)$	$\mathrm{C}(1)-\mathrm{C}(4)$	1-481(51)
$\mathrm{Mo}-\mathrm{C}(5)$	2-329(47)	$\mathrm{C}(2)-\mathrm{C}(3)$	1-436(47)
$\mathrm{P}-\mathrm{O}(1)$	$1.602(22)$	$\mathrm{C}(3)-\mathrm{C}(5)$	1-473(55)
$\mathrm{P}-\mathrm{O}(2)$	1.610(31)	$\mathrm{C}(4)-\mathrm{C}(5)$	1-371(60)
(b) Valency angles (${ }^{\circ}$)			
$\mathrm{I}-\mathrm{Mo}-\mathrm{P}$	135.6(0.2)	$\mathrm{O}(2)-\mathrm{P}-\mathrm{O}(3)$	99.9(1.5)
$\mathrm{I}-\mathrm{Mo}-\mathrm{C}(6)$	$76 \cdot 3(1 \cdot 3)$	$\mathrm{P}-\mathrm{O}(1)-\mathrm{C}(8)$	123.2(2.0)
$\mathrm{I}-\mathrm{Mo}-\mathrm{C}(7)$	75-4(1-1)	$\mathrm{P}-\mathrm{O}(2)-\mathrm{C}(9)$	119.6 (2.5)
$\mathrm{P}-\mathrm{Mo}-\mathrm{C}(6)$	78.2(1-3)	$\mathrm{P}-\mathrm{O}(3)-\mathrm{C}(10)$	116.5(3.0)
$\mathrm{P}-\mathrm{Mo}-\mathrm{C}(7)$	79-3(1-1)	$\mathrm{Mo}-\mathrm{C}(6)-\mathrm{O}(4)$	176.9(3.8)
$\mathrm{C}(6)-\mathrm{Mo}-\mathrm{C}(7)$	108.9(1.6)	$\mathrm{Mo}-\mathrm{C}(7)-\mathrm{O}(5)$	169.9(3.6)
$\mathrm{Mo}-\mathrm{P}-\mathrm{O}(1)$	122.2(0.8)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(4)$	112-4(3.2)
$\mathrm{Mo}-\mathrm{P}-\mathrm{O}(2)$	$117 \cdot 8(1 \cdot 1)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	102.5(3.2)
$\mathrm{Mo}-\mathrm{P}-\mathrm{O}(3)$	113.0 (1-1)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(5)$	$110 \cdot 8(3 \cdot 2)$
$\mathrm{O}(1)-\mathrm{P}-\mathrm{O}(2)$	97.0(1-3)	$\mathrm{C}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	105.5(3.4)
$\mathrm{O}(1)-\mathrm{P}-\mathrm{O}(3)$	103.5(1-4)	$\mathrm{C}(3)-\mathrm{C}(5)-\mathrm{C}(4)$	108.6(3.5)

(c) Deviations (\AA) of the atoms from the mean plane of the π-cyclopentadienyl ring

$\mathrm{C}(1)$	0.012	$\mathrm{C}(5)$	-0.002
$\mathrm{C}(2)$	-0.013	I	3.106
$\mathrm{C}(3)$	0.009	Mo	2.023
$\mathrm{C}(4)$	-0.007	P	2.921

Table 4
Molecular dimensions of (II)
(a) Bond lengths (\AA)

Mo-I	$2 \cdot 850(3)$	$\mathrm{O}(1)-\mathrm{C}(8)$	$1 \cdot 474(43)$
$\mathrm{Mo}-\mathrm{P}$	$2 \cdot 388(8)$	$\mathrm{O}(2)-\mathrm{C}(9)$	$1 \cdot 441(49)$
$\mathrm{Mo}-\mathrm{C}(6)$	$1 \cdot 983(34)$	$\mathrm{O}(3)-\mathrm{C}(10)$	$1 \cdot 408(46)$
$\mathrm{Mo}-\mathrm{C}(7)$	$2 \cdot 020(34)$	$\mathrm{O}(4)-\mathrm{C}(6)$	$1 \cdot 105(42)$
$\mathrm{Mo}-\mathrm{C}(1)$	$2 \cdot 384(36)$	$\mathrm{O}(5)-\mathrm{C}(7)$	$1 \cdot 117(42)$
$\mathrm{Mo}-\mathrm{C}(2)$	$2 \cdot 288(39)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1 \cdot 430(54)$
$\mathrm{Mo}-\mathrm{C}(3)$	$2 \cdot 298(34)$	$\mathrm{C}(1)-\mathrm{C}(4)$	$1 \cdot 421(47)$
$\mathrm{Mo}-\mathrm{C}(4)$	$2 \cdot 387(30)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1 \cdot 376(51)$
$\mathrm{Mo}-\mathrm{C}(5)$	$2 \cdot 411(37)$	$\mathrm{C}(3)-\mathrm{C}(5)$	$1 \cdot 476(50)$
$\mathrm{P}-\mathrm{O}(1)$	$1 \cdot 559(26)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1 \cdot 404(50)$
$\mathrm{P}-\mathrm{O}(2)$	$1 \cdot 618(24)$	$\mathrm{C}(1)-\mathrm{C}(11)$	$1 \cdot 518(55)$
$\mathrm{P}-\mathrm{O}(3)$	$1 \cdot 617(27)$		
Valency			
$\mathrm{I}-\mathrm{Mo}-\mathrm{P}$		$137 \cdot 5(0 \cdot 2)$	$\mathrm{P}-\mathrm{O}(1)-\mathrm{C}(8)$
$\mathrm{I}-\mathrm{Mo}-\mathrm{C}(6)$	$78 \cdot 2(1 \cdot 0)$	$\mathrm{P}-\mathrm{O}(2)-\mathrm{C}(9)$	$123 \cdot 9(2 \cdot 3)$
$\mathrm{I}-\mathrm{Mo}-\mathrm{C}(7)$	$77 \cdot 2(1 \cdot 0)$	$\mathrm{P}-\mathrm{O}(3)-\mathrm{C}(10)$	$120 \cdot 2(2 \cdot 2)$
$\mathrm{P}-\mathrm{Mo}-\mathrm{C}(6)$	$77 \cdot 3(1 \cdot 0)$	$\mathrm{Mo}-\mathrm{C}(6)-\mathrm{O}(4)$	$173 \cdot 9(2 \cdot 3)$
$\mathrm{P}-\mathrm{Mo}-\mathrm{C}(7)$	$77 \cdot 8(1 \cdot 0)$	$\mathrm{Mo}-\mathrm{C}(7)-\mathrm{O}(5)$	$172 \cdot 4(3 \cdot 0)$
$\mathrm{C}(6)-\mathrm{Mo}-\mathrm{C}(7)$	$107 \cdot 3(1 \cdot 4)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(4)$	$106 \cdot 2(3 \cdot 1)$
$\mathrm{Mo}-\mathrm{P}-\mathrm{O}(1)$	$111 \cdot 5(1 \cdot 0)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(11)$	$131 \cdot 6(3 \cdot 3)$
$\mathrm{Mo}-\mathrm{P}-\mathrm{O}(2)$	$118 \cdot 5(0 \cdot 9)$	$\mathrm{C}(4)-\mathrm{C}(1)-\mathrm{C}(11)$	$122 \cdot 2(3 \cdot 2)$
$\mathrm{Mo}-\mathrm{P}-\mathrm{O}(3)$	$120 \cdot 8(1 \cdot 0)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$110 \cdot 7(3 \cdot 2)$
$\mathrm{O}(1)-\mathrm{P}-\mathrm{O}(2)$	$98 \cdot 8(1 \cdot 3)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(5)$	$106 \cdot 5(3 \cdot 0)$
$\mathrm{O}(1)-\mathrm{P}-\mathrm{O}(3)$	$106 \cdot 1(1 \cdot 4)$	$\mathrm{C}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	$109 \cdot 3(3 \cdot 0)$
$\mathrm{O}(2)-\mathrm{P}-\mathrm{O}(3)$	$98 \cdot 1(1 \cdot 3)$	$\mathrm{C}(3)-\mathrm{C}(5)-\mathrm{C}(4)$	$107 \cdot 0(3 \cdot 0)$

(c) Deviations (\AA) of the atoms from the mean plane through atoms $\mathrm{C}(1)-(5)$ of the π-methylcyclopentadienyl ring

$\mathrm{C}(1)$	-0.018	$\mathrm{C}(11)$	-0.086
$\mathrm{C}(2)$	-0.001	I	3.185
$\mathrm{C}(3)$	0.018	Mo	2.017
$\mathrm{C}(4)$	0.030	P	2.761
$\mathrm{C}(5)$	-0.030		

phenylphosphine-iridium complexes. ${ }^{9}$ Moreover, the Rh-P bond length ($2 \cdot 14 \AA$) in di- μ-chloro-bis(triphenyl
${ }^{8}$ J. M. Guss and R. Mason, Chem. Comm., 1971, 58.
© J. S. Ricci, J. A. Ibers, M. S. Fraser, and W. H. Baddley, J. Amer. Chem. Soc., 1970, 92, 3489; J. A. McGinnety, R. J. Doedens, and J. A. Ibers, Inorg. Chem., 1967, 6, 2243.
phosphite)(cyclo-octa-1,5-diene)dirhodium ${ }^{10}$ is appreciably shorter than the mean $(2 \cdot 32 \AA)$ in $\mathrm{RhH}(\mathrm{CO})$ $\left(\mathrm{PPh}_{3}\right)_{3}{ }^{11}$ It is also relevant that the $\mathrm{Co}-\mathrm{P}$ bond distances in $\mathrm{HCo}\left[\mathrm{P}(\mathrm{OEt})_{2} \mathrm{Ph}\right]_{4}{ }^{12}$ are $0.06-0.10 \AA$ shorter than those in $\mathrm{HCo}\left(\mathrm{N}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{3}{ }^{13}$ All these results are consistent with the π-bonding capability of the phosphite ligand being greater than that of the phosphine ligand.

The $\mathrm{Mo}-\mathrm{P}-\mathrm{O}$ and $\mathrm{O}-\mathrm{P}-\mathrm{O}$ angles in the trimethyl phosphite ligands have mean values of $117 \cdot 3$ and $100 \cdot 6^{\circ}$. The C-P-C angles in triphenylphosphine complexes are also substantially smaller than tetrahedral, e.g. $103 \cdot 4^{\circ}$ in $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}(\mathrm{CO})_{2}(\mathrm{COMe})\left(\mathrm{PPh}_{3}\right)^{14}$ and $103 \cdot 9^{\circ}$ in $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Cu}\right] \mathrm{BH}_{4},{ }^{15}$ but larger than the $\mathrm{O}-\mathrm{P}-\mathrm{O}$ angles in the phosphite complexes. These results suggest that the s component of the phosphorus orbital directed towards an atom is reduced as the electronegativity of the atom is increased. ${ }^{16}$ The $\mathrm{P}-\mathrm{O}$ bond lengths in the phosphite ligands (mean $1.59 \AA$) must have some double-bond character, for they are shorter than the $\mathrm{P}-\mathrm{C}$ bonds ($1.83 \AA$) in triphenylphosphine ${ }^{17}$ by an amount which cannot be accounted for by the difference between the covalent radii of oxygen ($0.66 \AA$) and carbon $(0.77 \AA)$ atoms.

Table 5
Intermolecular separations ($<3 \cdot 8 \AA$) in the crystal structure of (I)

$\mathrm{C}(1) \cdots \mathrm{O}\left(2^{\text {III }}\right)$	$3 \cdot 27$	$\mathrm{C}(10) \cdots \mathrm{C}\left(4^{\text {II }}\right.$)	$3 \cdot 66$
$\left.\mathrm{O}(1) \cdots \mathrm{O}{ }^{(1 \mathrm{II}}\right)$	$3 \cdot 28$	$\mathrm{O}(2) \cdots \mathrm{C}\left(5^{\text {II }}\right)$	$3 \cdot 68$
$\mathrm{C}(1) \cdots \mathrm{C}\left(9^{\text {III }}\right)$	$3 \cdot 38$	$\mathrm{O}(4) \cdots \mathrm{C}\left(3^{\text {I }}\right.$)	$3 \cdot 68$
$\mathrm{O}(4) \cdots \mathrm{C}\left(2^{\text {I }}\right.$)	$3 \cdot 39$	$\mathrm{C}(6) \cdots \mathrm{C}\left(8^{\text {I }}\right.$)	$3 \cdot 70$
$\mathrm{O}(5) \cdots \mathrm{C}\left(8^{\text {¹ }}\right)$	$3 \cdot 49$	$\mathrm{C}(8) \cdots \mathrm{O}\left(3^{\text {II }}\right)$	$3 \cdot 77$
$\mathrm{O}(4) \cdots \mathrm{C}\left(8^{\text {I }}\right.$)	3.57	$\mathrm{C}(2) \cdots \mathrm{O}\left(5^{\text {III }}\right)$	78
$\mathrm{C}(10) \cdots \mathrm{C}\left(5^{\text {II }}\right.$)	$3 \cdot 61$		

The superscripts refer to the following transformations of the atomic co-ordinates:

$$
\begin{array}{ll}
\text { I } \frac{3}{2}-x, 1-y, \frac{1}{2}+z & \text { III } 1-x, \frac{1}{2}+y, \frac{3}{2}-z
\end{array}
$$

Table 6

Intermolecular separations ($<3.8 \AA$) in the crystal structure of (II)

$\mathrm{O}(2) \cdots \mathrm{C}\left(4^{\text {r }}\right.$)	3.22	$\mathrm{O}(4) \cdots \mathrm{C}\left(5^{\text {I }}\right.$)	3.63
$\mathrm{O}(1) \cdots \mathrm{O}\left({ }^{\text {(1II }}\right)$	$3 \cdot 36$	$\mathrm{O}(1) \cdots \mathrm{C}\left(10^{\text {III }}\right)$	$3 \cdot 64$
$\mathrm{C}(9) \cdots \mathrm{C}\left(4^{\text {I }}\right.$)	$3 \cdot 52$	C(11) \cdots C (8171)	$3 \cdot 67$
$\mathrm{O}(4) \cdots \mathrm{O}\left(5^{\text {II }}\right.$)	3.58	$\mathrm{O}(4) \cdots \mathrm{C}\left(9^{\text {II }}\right)$	3.74
$\mathrm{C}(8) \cdots \mathrm{O}\left(5^{\text {II }}\right)$	3.58	$\mathrm{C}(8) \cdots \mathrm{O}\left(3^{\text {III }}\right)$	3.77

The superscripts refer to the following transformations of the atomic co-ordinates:

$$
\begin{aligned}
\text { I } & \frac{1}{2}+x, \frac{1}{2}-y, 1-z \\
\text { II }-1-x, \frac{1}{2}+y, \frac{1}{2}-z & \text { III }-1-x, \frac{1}{2}+y, \frac{3}{2}-z
\end{aligned}
$$

The mean Mo-CO distance in (I) and (II) is $2.011(15) \AA$, whereas in (III) it is $1.983(14) \AA$. Though the difference cannot properly be regarded as significant, nevertheless the change is in the direction demanded by the increased $\mathrm{M} \rightarrow \mathrm{P}$, and hence decreased $\mathrm{M} \rightarrow \mathrm{CO}, \pi$-bonding in the phosphite complexes. The Mo-I distance is ${ }^{10}$ J. Coetzer and G. Gafner, Acta Cryst,, 1970, B26, 985.
${ }_{12}^{11}$ S. J. La Placa and J. A. Ibers, Acta Cryst., 1965, 18, 511.
12 D. D. Titus, A. A. Orio, R. E. Marsh, and H. B. Gray, Chem. Comm., 1971, 322.
${ }_{13}$ B. R. Davis, N. C. Payne, and J. A. Ibers, Inorg. Chem., 1969, 8, 2719.
${ }^{14}$ M. R. Churchill and J. P. Fennessey, Inovg. Chem., 1968, 7, 953 .
essentially unaffected by interchange of the phosphite and phosphine ligands.
The mean $\mathrm{I}-\mathrm{Mo}-\mathrm{P}$ and $\mathrm{OC}-\mathrm{Mo}-\mathrm{CO}$ angles in (I) and (II) are $136 \cdot 6$ and $108 \cdot 1^{\circ}$, and the corresponding angles in (III) are $140 \cdot 9$ and $105 \cdot 3^{\circ}$. For comparison, the $\mathrm{P}-\mathrm{Mo}-\mathrm{P}$ and $\mathrm{OC}-\mathrm{Mo}-\mathrm{NCO}$ angles in $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}\left(\mathrm{PPh}_{3}\right)_{2}-$ (CO)NCO are 133 and 112°, ${ }^{18}$ the $\mathrm{P}-\mathrm{Mo}-\mathrm{COMe}$ and $\mathrm{OC}-\mathrm{Mo}-\mathrm{CO}$ angles in $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}(\mathrm{CO})_{2}\left(\mathrm{COMe}_{2}\right)\left(\mathrm{PPh}_{3}\right)$ are 133 and $108^{\circ}, 14$ and the $\mathrm{OC}-\mathrm{Mo}^{-}-\mathrm{C}_{3} \mathrm{~F}_{7}$ and $\mathrm{OC}-\mathrm{Mo}-\mathrm{CO}-$ (trans) angles in ($\left.\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}(\mathrm{CO})_{3}\left(\mathrm{C}_{3} \mathrm{~F}_{7}\right)$ are 132 and $117^{\circ} .{ }^{19}$ These results suggest that as one trans-angle at the metal is reduced in size the other increases, though it is by no means clear whether the effect is electronic or steric in origin. The $c i s$-valency angles in all these complexes lie in the range $73-80^{\circ}$.

The Mo- $\mathrm{C}\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right.$) distances in (I) range from 2.326 to $2 \cdot 435$, mean $2 \cdot 365 \AA$. The distances in (II) range from 2.288 to $2 \cdot 411$, mean $2.354 \AA$. The mean $\mathrm{Mo}-\mathrm{C}\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ distance is $2 \cdot 333 \AA$ in (III) and $2 \cdot 347 \AA$ in $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ $\mathrm{Mo}(\mathrm{CO})_{2}(\mathrm{COMe})\left(\mathrm{PPh}_{3}\right)$.

Figure 3 The crystal structure of (I) viewed in projection along the c axis

The arrangements of the molecules in the crystals are shown in Figures 3 and 4, and the intermolecular
${ }^{15}$ S. J. Lippard and K. H. Melmed, Inorg. Chem., 1967, 6, 2223.
${ }_{16}$ H. A. Bent, J. Inorg. Nuclear Chem., 1961, 19, 43.
17 J. J. Daly, J. Chem. Soc., 1964, 3799.
${ }^{18}$ A. T. McPhail, G. R. Knox, C. G. Robertson, and G. A. Sim, J. Chem. Soc., 1971, 205.
${ }^{19}$ M. R. Churchill and J. P. Fennessey, Inorg. Chem., 1967, 6, 1213.
approach distances are listed in Tables 5 and 6 . None of the distances is abnormal.

Figure 4 The crystal structure of (II) viewed in projection along c axis

EXPERIMENTAL

(i) π-Cyclopentadienyl-trans-iododicarbonyl(trimethyl phosphite)molybdenum, (I)
Crystal Data.- $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{IMoO}_{5} \mathrm{P}, \quad M=468 \cdot 1$, Orthorhombic, $a=10.75, b=16.60, c=8.57$ (all ± 0.01) \AA, $U=1528 \AA^{3}, D_{\mathrm{m}}=1.99, Z=4, D_{\mathrm{c}}=2 \cdot 03, F(000)=896$. Space group $P 2_{1} 2_{1} 2_{1}\left(D_{2}^{4}\right)$. $\quad \mathrm{Cu}-K_{\alpha}$ radiation, $\lambda=1.5418 \AA$; $\mu\left(\mathrm{Cu}-K_{\alpha}\right)=246.5 \mathrm{~cm}^{-1}$.

Crystallographic Measurements.-Cell dimensions were derived from precession photographs taken with Mo- K_{α} radiation. Intensity data were recorded as layers $h k 0-7$ on multiple-film equi-inclination Weissenberg photographs taken with nickel-filtered $\mathrm{Cu}-K_{\alpha}$ radiation, and the intensities of 906 independent reflections above background were measured by means of a Joyce-Deeley integrating microdensitometer. The crystal employed was $1.0 \times$ $0.15 \times 0.15 \mathrm{~mm}$, and absorption corrections appropriate to a cylindrical crystal were applied.

Structure Analysis.-Initial co-ordinates for the iodine and molybdenum atoms were deduced from a threedimensional Patterson function, and an electron-density distribution phased by these atoms ($R \quad 40.1 \%$) yielded positions for the phosphorus, carbon, and oxygen atoms of the trimethyl phosphite and carbonyl ligands. Three rounds of least-squares adjustment of the co-ordinates and isotropic thermal parameters of these atoms (with unit weights) converged at $R \quad 12 \cdot 8 \%$. A difference-Fourier electron-density distribution revealed the five carbon atoms of the cyclopentadienyl ring, and several further rounds of least-squares refinement gave $R \cdot \mathbf{9 \cdot 6} \%$.

At this stage corrections for anomalous dispersion were incorporated in the least-squares programme, with values of Δf^{\prime} and $\Delta f^{\prime \prime}$ for iodine, molybdenum, and phosphorus taken from ref. 20, and structure factors calculated on the

* For details see Notice to Authors No. 7 in J. Chem. Soc. (A), 1970, Issue No. 20.
basis of co-ordinates x, y, z and $\bar{x}, \bar{y}, \bar{z}$ favoured the former set. Anisotropic temperature factors were assigned successively to the iodine atom, the molybdenum and phosphorus atoms, and the carbonyl oxygen atoms, and a weighting scheme was adopted of the form $\sqrt{ } w=$ $\left(A+B\left|F_{\mathrm{o}}\right|+C\left|F_{\mathrm{o}}\right|^{2}\right)^{-1}$ where A, B, and C were chosen so that $w \Delta^{2}$ was approximately constant when averaged over various ranges of $\left|F_{0}\right|$. The calculations finally converged at $R 7.8 \%$, with $A 0.018, B-3 \cdot 28$, and $C 19.36$.

The calculations employed the ' X-Ray ' 63 ' system ${ }^{21}$ at the Atlas Computer Laboratory. Observed and calculated structure factors for (I) and (II) are listed in Supplementary Publication No. SUP 20443 (20 pp., 1 microfiche).*

(ii) π-Methylcyclopentadienyl-trans-iododicarbonyl(trimethyl phosphite)molybdenum, (II)

Crystal Data.- $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{IMOO}_{5} \mathrm{P}, M=481 \cdot 1$, Orthorhombic, $a=16.317(6), b=11.323(3), c=8.740(2) \AA, U=1615 \AA^{3}$, $D_{\mathrm{m}}=1 \cdot 99, Z=4, D_{\mathrm{c}}=1 \cdot 98, F(000)=928$. Space group $P 2_{1} 2_{1} 2_{1}\left(D_{2}^{4}\right) . \quad$ Mo- K_{α} radiation, $\lambda=0.7107 \AA ; \mu\left(\mathrm{Mo}-K_{\alpha}\right)=$ $28.4 \mathrm{~cm}^{-1}$.

Crystallographic Measurements.-Cell dimensions were initially determined from precession photographs and subsequently adjusted by least-squares treatment of the θ, χ, ϕ setting angles of twelve reflections measured on a Hilger and Watts' Y 290 automatic diffractometer controlled by a PDP 8 computer. The intensities were measured by the $\theta-2 \theta$ step scan procedure with zirconiumfiltered Mo- K_{α} radiation. Background counts were taken at each end of the scan range. The intensities of two standard reflections were monitored after every 40 intensity measurements, and the results used to place the reflections on a common scale; the changes in the standard intensities during data collection were small ($<5 \%$). Reflections with $h, k, l \geqslant 0$ were surveyed out to $\theta \leqslant 30^{\circ}$. Lorentzpolarization corrections were applied, but absorption was neglected. 1847 reflections with $I / \sigma(I)>3.0$ were obtained.

Structure Analysis.--Initial co-ordinates were obtained by Patterson and Fourier methods. The atomic parameters were subsequently adjusted by a series of leastsquares calculations with allowance for anomalous dispersion. The weighting scheme used was $w=1 / \sigma^{2}\left(\left|F_{\mathrm{o}}\right|\right)$. Structure factors calculated with co-ordinates x, y, z and $\bar{x}, \bar{y}, \bar{z}$ showed that the second set was correct in this case. With an anisotropic temperature factor assigned to the iodine atom the calculations converged at $R \mathbf{7 \cdot 4} \%$. When anisotropic temperature factors were extended to the molybdenum and phosphorus atoms, subsequent refinement reduced R to 6.4%, and when the carbonyl oxygen atoms were similarly treated R was further reduced to $6 \cdot 2 \%$.

The sixteen hydrogen atoms in the molecule were located in a difference electron-density distribution, and included in subsequent calculations at fixed positions. One additional round of least-squares adjustment of the atomic parameters of the non-hydrogen atoms gave $R 5.9 \%$, and the analysis was terminated.

We thank Dr D. E. Fenton for samples of the complexes and the S.R.C. for equipment grants.
[2/517 Received, 6th March, 1972]
20 ' International Tables for X-Ray Crystallography,' vol. III, Kynoch Press, Birmingham, 1962.
${ }_{21}$ ' X-Ray ' 63 ' system of programs, J. M. Stewart, University of Maryland Technical Report TR 646.

