Vibrational and ¹H Nuclear Magnetic Resonance Spectra of Complexes of Gold(i), Palladium(ii), and Platinum(ii) Containing Dimethyl Sulphide as a Terminal Ligand

By P. L. Goggin,* R. J. Goodfellow, S. R. Haddock, F. J. S. Reed, J. G. Smith, and K. M. Thomas, Department of Inorganic Chemistry, The University, Bristol BS8 1TS

Vibrational (below 800 cm⁻¹) and ¹H n.m.r. spectra of complexes $AuXSMe_2$ (X = Cl or Br), $Pr_4^nNMX_3SMe_2$ (M = Pd or Pt), $Pd_2X_4(SMe_2)_2$, $PtX(SMe_2)_3BF_4$, trans- $MX_2(SMe_2)_2$ (including MX = PtI) and cis- $PtCl_2(SMe_2)_2$ are reported and assignments proposed. The last can be obtained in a number of solid forms which have markedly different vibrational spectra.

WE are currently engaged in a study of some platinum complexes in which dimethyl sulphide is a bridging, dibasic ligand and for comparison we required as firm an understanding as possible of the vibrational and ¹H n.m.r. spectra of complexes containing terminal, monobasic dimethyl sulphide groups. Coates ¹ has reported the i.r. absorptions only in the range 450-200 cm⁻¹ for AuXSMe₂ (X = Cl or Br). I.r. and Raman spectra of solid trans- $MX_2(SMe_2)_2$ (X = Cl, Br, or I) and their interpretation have been reported ² but aspects of these assignments have been questioned as a result of studies on complexes of other sulphide ligands.³ Less detailed (mainly i.r. only) accounts of the spectra of some of these complexes have been reported by other workers^{1,4} and also results for cis-PtX₂(SMe₂)₂ (X = Cl or Br),^{2,4} $[PdCl_3SMe_2]^-$, $[PtCl_3SMe_2]^{-5}$ and $Pd_2Cl_4(SMe_2)_2^{-6}$ (the platinum analogue contains bridging sulphur groups 7). Only for PtCl₂(SMe₂)₂ do details of ¹H n.m.r. seem to have been reported.⁸ Here we report more complete details for AuXSMe₂, [MX₃SMe₂]⁻, Pd₂X₄(SMe₂)₂, and [PtX- $(SMe_2)_3$ ⁺ as well as a re-examination of $MX_2(SMe_2)_2$.

Vibrational Spectra

Complexes AuXSMe₂.—Complexes of the type AuXL provide a useful guide for the interpretation of the spectra of more complicated molecules containing L. As the inorganic complex chemist is usually only interested in features related to the immediate metal-ligand skeleton, we restrict our considerations to frequencies below 800 cm⁻¹. These are listed in Table 1 with assignments based on C_s symmetry for the free molecule. The assignment of SC₂ stretching and bending vibrations follows from the free ligand 9 and the structurally similar ion, $[{\rm HgMeSMe}_2]^+$, where Raman polarisation data is particularly useful.¹⁰ There is no reason to dispute the assignments of Coates and Parkin¹ for Au-S and Au-X stretching and the assignment of the Au-Cl stretch is further verified by the observation of a shoulder at 319 cm⁻¹ due to the ³⁷Cl isotope. The L-Au-X bend in

- ¹ G. E. Coates and C. Parkin, *J. Chem. Soc.*, 1963, 421. ² J. R. Allkins and P. J. Hendra, *J. Chem. Soc.* (A), 1967, 1325.
- ³ R. J. H. Clark, G. Natile, U. Belluco, L. Cattalini, and C. Filippin, *J. Chem. Soc.* (*A*), 1970, 659. ⁴ D. M. Adams and P. J. Chandler, *J. Chem. Soc.* (*A*), 1969,
- 588. ⁵ R. J. Goodfellow, P. L. Goggin, and D. A. Duddell, J. Chem. Soc. (A), 1968, 504. ⁶ R. J. Goodfellow, P. L. Goggin, and L. M. Venanzi, J.
- Chem. Soc. (A), 1967, 1897.

the analogous trimethylphosphine complexes occurs below 100 cm⁻¹ and in the solid state is probably strongly mixed with lattice vibrations.¹¹ As dimethyl sulphide is of comparable mass to trimethylphosphine, the S-Au-X

TABLE 1

I.r. and Raman Spectra (below 800 cm⁻¹) of AuXSMe₂

	(X =	CI or Br)		
	AuCl	SMe_2	AuB	$rSMe_2$
SC ₂ str (asym) SC ₂ str (sym) Au–S str	I.r. mull 730vw 675vw 345s	Raman solid 725ms 675ms 34 3w	I.r. mull 730vw 677vw 331w	Raman solid 724m 676m 329m
Au–X str {	326s 319sh	324s	229s	229s
SC₂ def CSAu def	279m	$277\mathrm{m}$ $226\mathrm{m}$	277m	279m 197s
SAuX bend and lattice modes	198s 109m 93m 83m	200m	189s 102m 92m 81m 62s 40w	181sh
Other bands Limit of study	304vvw 20	180vw 150	20	120

bend may be assigned to one of the bands observed below 100 cm⁻¹ but as the complexes are not sufficiently soluble in a suitable solvent, we cannot distinguish it from the lattice vibrations. Thus, the strong bands observed around 200 cm⁻¹ are not so far accounted for and must arise from the ligands loss of rotational freedom *i.e.* AuSC deformations. This provides direct support for Clark et al.³ who disagreed with the previous assignment² of bands in this region of the spectra of $trans-PdX_2(SMe_2)_2$ to SPdS deformations.

Complex Anions MX₃SMe₂-.-Vibrational spectra and assignments for M = Pt or Pd, X = Cl or Br are summarised in Table 2. Although $(Pr_{a}^{n}N)_{2}Pt_{2}I_{6}$ reacts with the stoicheiometric amount of dimethyl sulphide to form a deep red solution which no doubt contains PtI₃SMe₂⁻, attempts to isolate the pure solid salt resulted in the loss of dimethyl sulphide and partial reversion to the

⁷ P. L. Goggin, R. J. Goodfellow, D. L. Sales, J. Stokes, and P. Woodward, *Chem. Comm.*, 1968, 31. ⁸ W. McFarlane and R. F. M. White, *Chem. Comm.*, 1969,

<sup>439.
&</sup>lt;sup>9</sup> J. R. Allkins and P. J. Hendra, Spectrochim. Acta, 1967, 22,

 ¹⁰ P. L. Goggin, R. J. Goodfellow, S. R. Haddock, and J. G. Eary, *J.C.S. Dalton*, 1972, 647.
 ¹¹ D. A. Duddell, P. L. Goggin, R. J. Goodfellow, M. G. Norton, J. C. Caritte J. Cham. Soc. (A), 1070, 545.

and J. G. Smith, J. Chem. Soc. (A), 1970, 545.

1905

starting material. We have, therefore, only made ¹H n.m.r. measurements on $PtI_3SMe_2^-$ (and its palladium analogue as a tetraphenylphosphonium salt). Raman spectra could not be obtained from $PdBr_3SMe_2^-$ because of its colour. As well as comparison between the four anions, we base our interpretation on the relationships between $MX_3PMe_3^-$, $AuXPMe_3$, and $AuXSMe_2$.

(cf. ref. 11, p. 550). The assignments in Table 3 make use of this and comparison with other halogen-bridged palladium complexes.

trans-Compounds $MX_2(SMe_2)_2$.—We have repeated the measurements of Allkins and Hendra.² In general we agree with their results but as we have observed some additional bands, have made solution measurements

Table	2
-------	----------

	Р	ANPdCLSI	líe₁	Pr.NPdB	Pr ₄ NPdBr ₃ SMe ₃ F		Pr ₄ NPt(Pr ₄ NPtCl ₂ SMe ₃			Pr ₄ NPtBr ₅ SMe ₇		
	I.r. mull	I.r.ª soln	Raman solid	I.r. mull	I.r.¢ soln	I.r. mull	I.r.b soln	Raman solid	Raman b soln	I.r. mull	I.r.b soln	Raman solid	Raman b soln
SC ₂ str (asym) SC ₂ str (sym) M-S str	735vw 687vw 322s	† 1 321s	732vw 683vw	723vvw 687w 321m	† 313m	722vw 682vw 348w	† † 344vw	726w 682w 349sh	730vw,dp † 344sh,p	722vw 688vw 336vvw	ŧ	727w 685w 339w	† † 334vvw,p
M-X ₂ str (asym)	342s	344vs		{265s } 258sh {	259vs	323vs	325s			239m	24 0m		
M-X ₂ str (sym) MX str SC- def	295sh 310s 278w	293m 307s 283m	297s 309s 279w	180w 218ms 288m	225m 286m	333sh 309s 301sh	3 08m	330vs 311s	328vs,p 308m,p	208sh 218m 295vw	218m	207s 217sh	207s,p
CSM def	227w 203w	20011	231m 200m.bd	204m.sh	2001	221w	ca. 222vw	22 0m	214m,p	194m 176vw		197s	198sh
In plane def (' scissors ') Other defs and lattice	162m 143sh 135m 53m		159s	134sh 125w 113vw 104vw 73w 50w		167w 134w 50w,bd		162s	168m,dp	134wm 103vw 53m,bd		132w 105ms 95m	
Cation and other bands	760ms 515wm 474vw			752ms 614vvw 515m 378vvw		752m 515m				753m 515w 316vw		313w	306vvw.p
Limit of study	40	200	140	344w 40	200	40	200	140	150	40	200	70	140

+ Not investigated or obscured by solvent.

Thus it is anticipated that v_{MX} trans to SMe₂ will be higher than when trans to PMe₃ but that the MX₂ frequencies will not be substantially different. In fact, the order of the symmetric and asymmetric PtCl₂ frequencies is the reverse of normal in PtCl₃SMe₂-, but this order is clearly established by the polarisation results. The M-S stretching vibration is most easily identified in the i.r. spectrum of PdBr₃SMe₂⁻ at 312 cm⁻¹. For the platinum analogue there are bands, at 334 and 306 cm⁻¹ both of which are close to features of the cation * but the relative intensity and polarised nature of the higher band indicates it has another origin and we assign it as the Pt-S stretching vibration. The MCl stretching modes occur in the same region as M-S but assigning the PtCl bands by comparison with MCl₃PMe₃⁻ leaves the M-S vibrations at 344 and 322 cm⁻¹ for platinum and palladium respectively. It is not clear why the latter frequency was not observed in the Raman spectrum but it would be more unreasonable not to observe PdCl₂ (sym) or PdCl (trans to S) stretching. As with $MX_3PMe_3^{-,11}$ the only deformation that can be identified with reasonable certainty is the in-plane vibration related to the 'scissors' vibration of trans-MX₂(SMe₂)₂ as this should be the strongest Raman active deformation.

Halogen Bridged Complexes $Pd_2X_4(SMe_2)_2$.—The deep colour prevented Raman studies of these complexes. The spectra of bridged complexes, $M_2X_4L_2$, show a strong, clear relationship to the related anion MX_3L^- and need to reassign some bands as PtSC deformations, we have reported the spectra in full in Table 4. Descriptions are based on C_i symmetry and the general lack of coincidence between i.r. and Raman spectra

TABLE 3

I.r. Spectra (below 800 cm⁻¹) of $Pd_2X_4(SMe_2)_2$

(X = Cl or Br) $Pd_2Cl_4(SMe_2)_2 Pd_2Br_4(SMe_2)_2$ SC₂ str (asym) SC₂ str (sym) PdS str 732vw 735vw 679vw 678vw 340ms 336s Pd-X str (terminal) 360s 274s Pd-X str (bridging, trans to X) 282s 195ms Pd-X str (bridging, trans to S) 308ms 223sSC. def 295ms 209m,bd CSPd def 185sh Skeletal def and lattice modes 151sh 124 sh148ms 119m 132wm 109vw,sh 93ms 73wm 85m 68wm Limit of study 40 40

suggest a centrosymmetric structure. However, whilst all Raman active vibrations are totally symmetric for this point group, in solution only those that would be totally symmetric for a structure with C_{2h} symmetry, *e.g.* with the methyl groups placed symmetrically above and below the plane of the molecule, are observed to be polarised. In view of the orientation of the dimethyl sulphide group in Pd₂Br₄(SMe₂)₂¹² such arrangements seem unlikely in the solid state. Our study of PdI₂-(SMe₂)₂ was confined to i.r. measurements below 250 cm⁻¹

¹² D. L. Sales, J. Stokes, and P. Woodward, J. Chem. Soc. (A), 1968, 1852.

^{*} Solid Pr_4NI shows i.r. bands 752ms, 721w, 614vw, 516wm, 370vw, and 340vw, whilst an aqueous solution of Pr_4NCl has Raman features at 781m,p, 762vw,sh, 518vw,dp, 375m,p, 334m,dp, and 311s,p.

as the higher sample temperature $(ca. 30^\circ)$ of the Perkin-Elmer 225 spectrometer caused this unstable complex to decompose. The compound was not analysed, its nature being inferred from the ¹H n.m.r. results and our observations are not entirely in agreement with those previously reported.

We have previously shown ¹¹ that the MI_2 asymmetric stretches in *trans*- MI_2L_2 cannot be reliably assigned to strong i.r. bands as they are frequently weak even to the extent of being unobservable. Allkins and Hendra appear to have assigned these vibrations by selecting strong bands and this results in a sequence 188, 179, and 147 cm⁻¹ for $PtI_2(SMe_2)_2$, $PtI_2(SeMe_2)_2$, and $PtI_2(TeMe_2)_2$ respectively, which is totally out of keeping with the almost Complex Cations $PtX(SMe_2)_3^+$.—These may be prepared from equimolar quantities of $PtX_2(SMe_2)_2$ and $AgNO_3SMe_2$. The vibrational spectra of the chloroand bromo-derivatives as their fluoroborate salts are given in Table 5. The band at 326 cm⁻¹ in the Raman spectrum of the bromo complex in nitromethane moves to lower frequency under the perpendicular polarisation conditions and hence includes a less polarised second band at lower frequency, as is found in the i.r. spectrum of the solid. These are probably the two PtL_2 stretching vibrations which are nearly coincident in other MXL_3^+ cations ¹¹ whilst the strong Raman band at 348 cm⁻¹ is the PtS (*trans* to Br) vibration. The strong polarised Raman band at 215 cm⁻¹, with corresponding feature in

TABLE 4										
I.r. and Raman Spectra	(below 800 cm ⁻¹) of trans $MX_2(SMe_2)_2$ (M = Pd or Pt;	X = Cl, Br, or I								

			Pc	ICl ₂ (SMe ₂) ₂		Pe	lBr ₂ (SMe	2)2	PdI ₂ -	PtCl ₂	(SMe ₂) ₂		PtI	Br ₂ (SMe ₂)2		PtI2(SMe2)2
	r	l.r. null	I.r.ª soln	Raman solid	Raman soln	I.r. mull	I.r. ^b soln	Raman solid	l.r. mull	1.r. mull	Raman solid	I.r. mull	I.r.¢ soln	Raman solid	Raman e soln	I.r. mull	Raman solid	Raman e soln
SC ₃ asym str	Ag Au 72	27vw	t	727wm	730w,bd,dp	723vw	†		†	726vw	725w	722vw	t	724W	728wm,ap	722vw	722wm	726wm,dp
SC ₂ sym str	$\begin{array}{c} A_{g} \\ A_{u} \end{array} 68$	80vw	†	683m	686m,p	677vw	†		t	679vw	684w	682vw	t	682wm	684ms,p	675vw	679m	683ms,p
MS ₂ str	Ag Au 30	0 8m	307m	323m	313s,p	315ms	313ms	317s	t	311m	343m	315m	30 3m	341m	339m,p	311m	336m	335m,p
MX ₂ str	Ag Au 33	59s	363s	304vs	305s,p	262ms	264ms	200vs	218wm	344s	329s	245s	250ms	213vs	208vs,p	218w	150vvs	150vvs,p
SC ₂ def	Ag			289wm				282s			293w			293wm	<i>ca.</i> 300w,bd		284wm	288w,p
CSM def	Au 2 Ag	92m	285m	193wm,bd	198wm,bd,p	302sh	277sh		T	301m	203w	301777	v 289w	202m,sl	h	295W	210ms,bd	<i>ca.</i>
	Au 2 Au	18wm	218m			226sh 210wm	211m,bc	1	238wm 202wm	231 w 219 wm	1	236wm 213m	222ms	•		236m 192m		20851,p
In plane def	Ag			167s	149m,dp			137sh			${170s \\ 158sh}$			140vs			131s	
Other defs and lat-	$A_{\rm u} = \frac{12}{A_{\rm u}} \frac{12}{16}$	72m 63sh				134m			126s	173m 138wn	a	134s	131ms			131s 103sh		
tice	Au 1 Au 9 8	27s)3m 39sh				114wm 76wm			102wm 63wn	131wm 118wn 95wm 71w	n 97sh 75s 63s 41vs	110wm 80m 70sh	115w	84sh 75sh 56m 46m 34vs		97w 67wm	69m 39ms 23vs	
Other bands	5							240sh 181sh								322vw,sh	299sh	
Limit of stu	idy -	40	200	100	135	4 0	200	120	40	4 0	25	40	4 0	28	180	40	15	135
					a +	In cis-1	:2 dichlo	roethyle	ne. b In	1 dibron	nometha	ne. 1	n benze	ne.				

invariant frequencies observed for the comparable MCl_2 and MBr_2 vibrations, *e.g.* the equivalent $PtBr_2$ frequencies are 240, 250 and 245 cm⁻¹. We would not expect that the MI_2 frequency would be substantially different in these sulphide complexes from that observed for phosphine and arsine complexes and hence should fall in the range 200—220 cm⁻¹. As the MSC deformations also occur here, there is bound to be some confusion and overlap.

For these compounds there is only one centrosymmetric in-plane deformation which is, hence, easily located in the Raman spectra and shows halogen dependence particularly between chloride and bromide. We feel that without polarised single crystal studies specific descriptions of the four i.r. active skeletal deformations are unjustified and, in any case, labels such as δX -M-X used by other workers are misleading since the bond angles being altered during in-plane vibrations are X-M-L.

the i.r., had no counterpart in the spectra of the chlorocomplex and must be PtBr stretching. The assignment of the chloro-complex follows from this but the strong band at 337 cm⁻¹ in both i.r. and Raman spectra, which is mainly due to PtCl stretching, must conceal the PtS₂ symmetric stretching vibration.

cis-PtX₂(SMe₂)₂.—We have found cis-PtCl₂(SMe₂)₂ to exist in several forms which give rise to different vibrational spectra (Table 6 and Figure). Dissolving the *trans*-isomer in hot water usually results in form A whilst redissolving the yellow solid formed by the reaction of aqueous K₂PtCl₄ and SMe₂ on refluxing the reaction mixture yields form B on cooling the filtered solution, but we have obtained both forms on recrystallisation from water on different occasions. Form A, as initially produced gives an i.r. spectrum corresponding to that reported by Adams and Chandler ⁴ but the trace of *trans*-isomer present (as in the case of form B) was removed by washing with benzene for the spectrum given

		$PtCl(SMe_2)_3BF_4$			$PtBr(SMe_2)_3BF_4$			
	I.r. mull	Raman solid	Raman soln."	I.r. mull	Raman solid	Raman soln.		
SC, asym str	722vw	723m	726wm.dp	722vw	726m	726m.dp		
SC, sym str	678m	679ms	680ms.p	679m	678ms	678ms.p		
PtŠ str	352w	353m	351m.p	351vw	348m	348ms.p		
PtS, str (svm)			,1	329w.bd	323m	326wm.p		
PtS, str (asym)	329m.sh	329m.sh	328dp?	323w.bd		323?		
PtX str	3375	336s	335s p	218ms bd	214s	215s p		
SC. def	303wm	306wm	occostb.	210110,00	305vw	302w p		
	289w	287vw	288vw n	290yw bd	285vw	284w dp		
CSPt def		247vw	1 001.1.,p	2001,ba	226sh	230sh n		
	237w bd	231vw		202ms	220011	2005ii,p		
	215wm bd	205vs	203m bd p	198ms	195vs	196s dp		
	208sh		2 00111,54,P	100110	100.0	roos, ap		
Skeletal def and	173w	173ms	165sh.dp	147w.bd	145m	145sh.dp		
lattice modes		1.0110	1000ii,ap	137m.sh		- 10011, aP		
	147wm	146m		131ms				
	132wm	130wm bd		122w sh	121m sh			
	104w bd	1000000,000		60s bd	12111,511			
	72wm bd			003,04				
BF -	766yw	764w	764wm n	764ww	763w	764m n		
	5216	1011	.oi,p	5916		10 IIII, P		
Other bands	0215		703w n	0215		700w n		
Limit of study	40	100	150	40	100	105		
Dimit of Study	*•	100	100	10	100	100		

 $\label{eq:TABLE 5} TABLE \ 5 \\ I.r. \ and \ Raman \ Spectra \ (below \ 800 \ cm^{-1}) \ of \ PtX(SMe_2)_3BF_4 \ (X = Cl \ or \ Br)$

a	In	nitromethane.	
---	----	---------------	--

TABLE 6 I.r. (below 1100 cm⁻¹) and Raman Spectra of cis-PtCl₂(SMe₂)₂

	Fo	orm A	Fo	rm B	Form C		
CH rocking	I.r. mull	Raman solid	I.r. mull	Raman solid	I.r. mull	Raman solid	
CII3 IOCKING	1029ms		10505		1029s		
			992s		992s		
	979s				987s		
	961w		957w		947vw		
			951sh				
	928vw		919w		925vw		
	908vw		914sh		914w		
SC ₂ asym str	720vw?	727m	729vw	726w 723m		727m	
SC ₂ sym str	684vw,bd	686ms,bd	690vw,sh	682m		682m	
			681w	676wm			
PtS ₂ str (sym)	349ms	352 ms	353w	353m	349w	353wm	
PtS ₂ str (asym)	338ms	338ms	339m	337wm	337 sh	336w	
PtCl ₂ str (sym)	325s	325vs	319s	316s	324vs	322s	
$PtCl_2 str (asym)$	312vs,bd	314m s,bd	305s, bd	305ms,bd	312vs, bd	310m,bd	
SC ₂ def			294sh		308sh		
		000 1	225	207.1	290sh	294w	
CSPt bend		233m,sh	235m	235sh		246w	
	216m,bd	217s,bd	226m	226ms	235m	232wm	
	105	100	100	206bd,sh	211wm	218m	
Skeletal def and	165m	163s	166m	165ms	180m	170s	
lattice modes		100	150vw		100		
	190	139W	141wm	190	138wm	144w	
	130w,bu	109	130VW,SII	130wiii,bu	127wm	132W	
		120W	11751	111.000			
			06wm	111 will	100m		
		91sh	JOWIII	80m	87ch	80	
	40-80w	01511		76m	76m	000	
	10 000		65m	63m	70111	65wm	
			00111	50m		59wm	
				32m		46sh	
						36sh	
Limit of study	40	80	40	25	40	30	

in Table 6. When form B is recrystallised from hot chloroform, the lustrous crystals initially produced become opaque on standing in air (form C). Previous workers state that the initial product contains one mole of solvent which is readily lost.¹³ If, after decanting the

solvent, the product is washed with benzene, further changes in the spectrum are observed (Figure). The ¹H n.m.r. spectra of dichloromethane solutions of all

¹³ C. W. Blomstrand and C. Enebuske, J. prakt. Chem., 1888, **38**, 358.

In view of the differences between form A and the other forms in the PtCl and PtS stretching region, it is possible that this is not just another crystal form but a different isomeric structure. We can exclude any sulphur bridged species from the absence of any vibrational features in the 450—360 cm⁻¹ region ⁷. The ¹H n.m.r. spectrum of the *cis*-isomer in D₂O does show *ca*. 10% of the PtCl(SMe₂)₃⁺ cation and [PtCl(SMe₂)₃]-[PtCl₃SMe₂] would be isomeric with PtCl₂(SMe₂)₂ but there is no evidence for [PtCl₃SMe₂]⁻ in the D₂O solution. An aqueous solution of PtCl(SMe₂)₃NO₃, prepared *in situ* does produce a precipitate of form A (together with some

I.r. spectra of cis-PtCl₂(SMe₂)₂; a, form A; b, form B; c, form C; d, form C after washing with benzene

trans-isomer) when added to aqueous Prⁿ₄NPtCl₃SMe₂. As the spectra of form A do not completely correspond to the sum of those of $Pr_4^n NPtCl_3SMe_2$ (Table 2) and $PtCl(SMe_2)_{a}BF_{4}$ (Table 5), we cannot reach any definite conclusion and include form A amongst the forms of $cis-PtCl_2(SMe_2)_2$. Amongst the other forms, the most notable differences in the spectra are in the methyl rocking and CSPt bending regions (Figure). This supports the conjecture that these different forms involve different orientations of the dimethyl sulphide groups. The existence of different orientations of ligands which lack axial symmetry has been suggested as the cause of two crystal forms of cis-mer-[MoOCl₂(PMe₂Ph)₃]¹⁴ and three species of trans-[RhCl(CO)(PBut₂Et)₂] in solution.¹⁵ The three-fold symmetry of the YMe_3 (Y = N, P, or As) group probably explains why we have not observed multiple crystal habits with complexes of these ligands.

The skeletal frequencies reported by Allkins and Hendra² for cis-PtCl₂(SMe₂)₂ do not agree with any form prepared by us but they do not give enough information ¹⁴ J. Chatt, L. Manojlović-Muir, and K. W. Muir, *Chem. Comm.*, 1971, 655.

to justify any comment on its nature. These authors also report results for cis-PtBr₂(SMe₂)₂. The yellow solid obtained by recrystallisation of trans-PtBr₂(SMe₂)₂ from hot water contains some trans-isomer which can be removed by washing with benzene. The residue has i.r. absorptions at 440 and 376 cm⁻¹ which imply the presence of bridging dimethyl sulphide groups and accordingly its nature will be discussed in a subsequent paper. However, the ¹H n.m.r. of a deuteriochloroform solution is essentially that of cis-PtBr₂(SMe₂)₂ which isomerises to the trans-isomer.

¹H N.m.r. Spectra

The results are listed in Tables 7 and 8. In general, methylene chloride solutions showed a sharp methyl

TABLE 7

¹H N.m.r. shifts (in τ) for dimethyl sulphide complexes of palladium(II) and gold(I)

4		0 ()	
	X = Cl	$\mathbf{X} = \mathbf{Br}$	$\mathbf{X} = \mathbf{I}$
$Ph_4PPdX_3SMe_2$	7.78	7.63	7.47
Pr ⁿ ₄ NPdX ₃ SMe ₂	7.74	7.60	
$Pd_2X_4(SMe_2)_2$	7.72	7.54	
trans-PdX ₂ (SMe ₂) ₂	7.62	7.48	7.26
AuXSMe ₂	7.33	7.31	
=			

TABLE 8

¹H N.m.r. data for some dimethyl sulphide complexes of platinum(II)

		L					
	$\mathbf{X} = \mathbf{Cl}$		X =	= Br	$\mathbf{X} = \mathbf{I}$		
	τ_{Me}	${}^{3}J_{\rm PtH}$	τ_{Me}	³ J _{PtH}	τ_{Me}	³ J _{PtH}	
Ph ₄ PPtX ₃ SMe ₂	7.70	47.3	7.63	47.9	7.52	50.3	
Prn4NPtX3SMe2	7.66	47.3	7.58	48.2	7.47	51.5	
trans-PtX ₂ (SMe ₂) ₂	7.56	41.6	7.47	41.5	7.31	44 ·4	
cis-PtX ₂ (SMe ₂) ₂	7.46	49.3	7.43	50.1			
D+V/SMa) BE	∫ 7·37	51·0 ª	7.39	51·4 ª			
$\Gamma tA(SMe_2)_3 DF_4$	l 7·38	43.8	7.32	44.5			
	a	trans to	эΧ.				

resonance in the τ 7—8 region with satellites in the case of platinum complexes. Dimethyl sulphide itself in dichloromethane has the methyl resonance at τ 7.88. The spectra of PtCl₂(SMe₂)₂ and PtBr₂(SMe₂)₂ showed both *cis*- and *trans*-isomers, the ratios being about 1:2 and 1:6 respectively at equilibrium at 30°. The cations, PtX(SMe₂)₃⁺, show resonances due to the SMe₂ (*trans* to SMe₂) and SMe₂ (*trans* to X) groups which integrate as 2:1.

The dark red complex, $PdI_2(SMe_2)_2$ which tends to decompose to a black insoluble material (presumably PdI_2) was freshly prepared and recrystallised from cold dichloromethane but on redissolving in this solvent some black residue remained. The observed resonance was broad at 30° but gave a single sharp line at -20° . As the complex appears to be dissociating, one might have expected the bridged dimer, $Pd_2I_4(SMe_2)_2$ to be involved but we have not found a resonance that could be attributed to this species in the ¹H n.m.r. spectra of SMe_2 - PdI_2 systems. In the past, we have examined the anions MX_3L^- as tetraphenylphosphonium salts pre-

¹⁵ B. E. Mann, C. Masters, B. L. Shaw, and R. E. Stainbank, *Chem. Comm.*, 1971, 1103.

pared in situ by dissolving stoicheiometric quantities of Ph_4PX and $M_2X_4L_2$ in dichloromethane.¹⁶ With the dimethylsulphide complexes, this only gave the expected result for PdCl₃SMe₂⁻. The reaction of Ph₄PX with the sulphur bridged Pt₂Cl₄(SMe₂)₂ and its bromo-analogue produces several species including some with sulphur bridges which we are studying in more detail. However, a fivefold excess of Ph₄PX suppresses side reactions and appears to give the desired product. Surprisingly, the tetrapropylammonium salts can be prepared using only a small excess of Pr_4^nNX and the data for these is also included in the Tables. The spectrum of $Pr_{4}^{n}NPtI_{3}SMe_{2}$ showed in addition, the resonances of $trans-PtI_2(SMe_2)_2$, the lines being rather broad at 30° but much sharper at -20° . A 1:1 mixture of Ph₄PBr and Pd₂Br₄(SMe₂)₂ showed a broad doublet which resolves at -40° into two almost equal peaks corresponding to PdBr₃SMe₂⁻ and trans-PdBr₂(SMe₂)₂. The formation of the transcompound was suppressed by a fivefold excess of Ph₄PBr. The spectra of Prⁿ₄NPdCl₃SMe₂ and Prⁿ₄NPdBr₃SMe₂ also showed a small amount of the trans-complex. In the absence of $Pd_2I_4(SMe_2)_2$, $PdI_3SMe_2^-$ was formed from $PdI_2(SMe_2)_2$, excess of PdI_2 and a fivefold excess of Ph_4PI and examined at -60° to slow the exchange of sulphide groups between the anion and the *trans*-complex. The tendency to form the *trans*-compound is greater than for the bromide as under these conditions only about one third of the ligand is present as the anion.

DISCUSSION

In trimethylphosphine complexes, the mean of the primarily M-P stretching frequencies were in the order $cis-MCl_2(PMe_3)_2 > MCl_3PMe_3^- > trans-MCl_2(PMe_3)_2$ and for the platinum complexes ${}^{3}J_{PtH}$ followed the same order with ratios 1:0.86:0.60 for cis: anion: trans. For the dimethyl sulphide complexes the order of M-S stretching frequencies broadly follows this pattern but these are 30-50 cm⁻¹ lower even though the effective mass of the ligand must be lower than for trimethylphosphine. Whilst ${}^{3}J_{PtH}$ follows the same order, the ratios are much closer, 1:0.96:0.84 and the two couplings in $PtCl(SMe_2)_3^+$ are much closer (43.8 and 51.0 Hz) than in the trimethylphosphine (24.0 and 43.0 Hz) or trimethylarsine (18.0 and 26.5 Hz) equivalents.¹⁷ This is in keeping with a much lower trans-influence of SMe2 compared to PMe3, previously deduced from vibrational studies.⁵ It also implies that sulphur has a greater trans-influence than chloride. The mean M-S frequencies are above the M-Cl frequencies for the anion and cis-complexes in spite of the fact that dimethyl sulphide can hardly have an effective mass less than that of chloride: however, the order is reversed for the transcomplex.

The shift of the methyl resonance on change of halide shows the same dependence on cis-halides as observed for PMe₃ and AsMe₃ complexes ¹⁶ and can presumably be ascribed to the same causes.

EXPERIMENTAL

We have described the general methods for the i.r.,11 Raman,¹⁸ and ¹H n.m.r.¹⁶ measurements previously. For the ¹H n.m.r. spectra, 0.1M solutions in dichloromethane were used except for the gold complexes and the dimeric palladium complexes which were not soluble to this extent and saturated solutions were used. For PtX₃SMe₂-, the solutions were 0.1M in Ph₄PX but 0.01M in Pt₂X₄(SMe₂)₂.

Preparation of the Complexes.-Many of the complexes have been described previously and were verified by elemental analysis and m.p.^{5, 13, 19, 20} The halogen bridged palladium compounds were prepared by the method of Chatt and Venanzi.²¹ $Pd_2Cl_4(SMe_2)_2$, m.p. 183–185°d. (Found: C, 10·20; H, 2·50. $C_4H_{12}Cl_4Pd_2S_2$ requires C, 10·05; H, 2·55%). $Pd_2Br_4(SMe_2)_2$, m.p. 169° (Found: C, 7.40; H, 1.80. $C_4H_{12}Br_4Pd_2S_2$ requires C, 7.30; H, 1.85%). AuBrSMe₂ was prepared by a method similar to that for the corresponding chloride 19 starting from NaAuBr₄: preparation via halogen exchange from the chloride was not satisfactory, m.p. 130-140°d. (Found: C, 7.20; H, 1.70. C₂H₆AuBrS requires C, 7.00; H, 1.80%). Prⁿ₄NPdBr₃-SMe₂ was prepared in 90% yield by the analogous method to that used for the chloride 5 and is dark red, m.p. 99-100° (decomp.) (Found: C, 28.20; H, 5.60; N, 2.30. $C_{14}H_{34}$ -Br₃NPdS requires C, 28.30; H, 5.75; N, 2.35%). Prⁿ₄- $NPtX_3SMe_2$ (X = Cl or Br) was prepared by stirring SMe₂ with $(Pr_4^nN)_2Pt_2X_6$ (mole ratio, 2.2:1) in dimethylformamide for 3 h. The crude product was precipitated by addition of ether and extracted with cold acetone. After drying the solution with MgSO4, the product crystallised out on slow addition of ether. Prⁿ₄NPtCl₃SMe₂, orangeyellow needles, m.p. 117° yield 40% (Found: C, 30.60; H, 6.10; N, 2.65; Cl, 19.30; S, 6.15. C14H34Cl3NPtS requires C, 30.55; H, 6.25; N, 2.55; Cl, 19.35; S, 5.80%). Prn₄NPtBr₃SMe₂, orange-red needles, m.p. 132-133°, yield 85% (Found: C, 24.85; H, 4.95; N, 2.10; Br, 35.50; S, 4.65. $C_{14}H_{34}Br_{3}NPtS$ requires C, 24.60; H, 5.00; N, 2.05; Br, 35.10; S, 4.70%). The complexes, $PtX(SMe_2)_3$ -BF4 were prepared by stirring equimolar quantities of $PtX_2(SMe_2)_2$ and $AgNO_3SMe_2$ in acetone for 3 h. The silver halide precipitated was filtered off and the solvent removed in vacuo. The crude PtX(SMe₂)₃NO₃ was dissolved in a minimum of cold water and addition of 40% aqueous fluoroboric acid precipitated PtX(SMe2)3BF4 which was recrystallised from water, keeping heating to a minimum. PtCl- $(SMe_2)_3BF_4$, off-white needles, m.p. 106-107° (Found: C, 14.65; H, 3.70; S, 19.10; Cl, 7.15; F, 14.90. C₆H₁₈-BClF₄S₃Pt requires C, 14.30; H, 3.60; S, 19.10; Cl, 7.05; F, 15·10%). PtBr(SMe₂)₃BF₄, off-white needles, m.p. 108-110° (Found: C, 13.25; H, 3.30; S, 17.40; Br, 14.70; F, 13.50. C₆H₁₈BBrF₄S₃Pt requires C, 13.15; H, 3.30; S, 17.50; Br, 14.60; F, 13.90%).

We thank the S.R.C. for a grant to purchase the laser and Raman Spectrometer, and for a research studentship (to J. G. S.).

[2/623 Received, 17th March, 1972]

¹⁸ P. L. Goggin, R. J. Goodfellow, and F. J. S. Reed, J.C.S. Dalton, 1972, 1298.

- ²¹⁰ P. C. Ray and D. C. Sen, J. Indian Chem. Soc., 1930, 7, 67.
 ²⁰ E. Ardell, Z. anorg. Chem., 1897, 14, 143.
 ²¹ J. Chatt and L. M. Venanzi, J. Chem. Soc., 1955, 2787.

¹⁶ D. A. Duddell, J. G. Evans, P. L. Goggin, R. J. Goodfellow,

A. J. Rest, and J. G. Smith, J. Chem. Soc. (A), 1969, 2134. ¹⁷ P. L. Goggin, R. J. Goodfellow, J. R. Knight, M. G. Norton, and B. F. Taylor, in preparation.