Bonding Studies of Compounds of Boron and the Group IV Elements. Part VIII.¹ Heats of Hydrolysis and Bond Energies for Some Trimethylmetalyl Derivatives Me_3M-X (M = Si, Ge, and Sn)

By J. C. Baldwin, M. F. Lappert, J. B. Pedley,* and J. S. Poland, School of Molecular Sciences, University of Sussex, Brighton BN1 9QJ

The heats of hydrolysis, in aqueous 1M-hydrochloric acid, of one silicon, five germanium, and eight tin(IV) compounds of type (Me₃M)_nX (where M = Si, Ge, or Sn, n = 1-3, and X is a univalent ligand in which the donor atom adjacent to M is N, O, S, CI, Br, or I) to give (Me₃Si)₂O, (Me₃Ge)₂O, and (Me₃SnOH)₂ have been measured. atom adjacent to M is N, O, S, Ci, Br, or I) to give (Me₃Si)₂O, (Me₃Ge)₂O, and (Me₃SiOH)₂ have been measured. From these, standard heats of formation have been calculated as follows: ΔH_t° (Me₃SiOEt), $I = -126 \cdot 4 \pm 0.7$; ΔH_t° [(Me₃Ge)₂O], $I = -136 \cdot 0 \pm 4 \cdot 0$; ΔH_t° (Me₃GeCl), $I = -71 \cdot 6 \pm 2 \cdot 1$; ΔH_t° (Me₃GeBr), $I = -62 \cdot 1 \pm 2 \cdot 1$; ΔH_t° (Me₃GeOEt), $I = -95 \cdot 8 \pm 2 \cdot 2$; ΔH_t° (Me₃GeCSBⁿ), $I = -64 \cdot 7 \pm 2 \cdot 1$; ΔH_t° (Me₃GeOEt), $I = -37 \cdot 1 \pm 2 \cdot 2$; ΔH_t° (Me₃SnCl), $c = -58 \cdot 4 \pm 1 \cdot 2$; ΔH_t° (Me₃SnBr), $c = -48 \cdot 8 \pm 1 \cdot 3$; ΔH_t° (Me₃SnI), $I = -31 \cdot 2 \pm 1 \cdot 1$; ΔH_t° (Me₃SnOH), $c = -90 \cdot 8 \pm 1 \cdot 2$; ΔH_t° (Me₃SnOEt), $I = -73 \cdot 1 \pm 1 \cdot 5$; ΔH_t° (Me₃Sn·SBⁿ), $I = -47 \cdot 1 \pm 1 \cdot 6$; ΔH_t° (Me₃Sn·NMe₂), $I = -13 \cdot 3 \pm 1 \cdot 4$; ΔH_t° [(Me₃Sn)₂NMe], $I = -31 \cdot 5 \pm 2 \cdot 5$; ΔH_t° (Me₃Sn₃N], $c = -29 \cdot 2 \pm 3 \cdot 6 \text{ kcal mol}^{-1}$. Gas-phase enthalpies of formation of these compounds and thermochemical bond energy terms E(M-X) have been calculated. Group trade show that for constant $X = E(C-X) \leq E(S-Y)$ energy terms E(M-X) have been calculated. Group trends show that, for constant X, E(C-X) < E(Si-X) > EE(Ge-X) > E(Sn-X), whereas E(C-Y) > E(Si-Y) (Y = H or Me). Another conclusion is that the 'softness' (in terms of ΔH of reactions) of the acids Me₃M⁺ increase in the order C < Si < Ge < Sn; several chemical reaction types are examined in this light.

IN Part I we described calorimetric experiments which furnished heats of hydrolysis of some compounds of general formula $(Me_3Si)_nX$, namely those in which n = 1, with X = Cl, Br, OH, OBuⁿ, NHMe, and NMe_2 ; n = 2, with X = NH or NMe; and n = 3, with $X = \text{N.}^2$ We now report extensions of this work to n = 1, with X = OEt, and n = 2, with X = O, as well as to some germanium and tin(IV) analogues of these silicon compounds. The two papers should in many ways be seen as a single whole. The work is also related to (i) mass spectrometric studies on the compounds Me_4M^1 and $Me_3M^1-M^2Me_3$ (M¹ and $M^2 = C$, Si, Ge, Sn, and Pb), which yielded gas-phase enthalpies of formation $[\Delta H_{f}^{\circ}(g)]$ of these two classes of compound

and of radicals and ions derived from them; ³ (ii) rotating bomb calorimetric studies on Et₄Si and Me₆Si₂;¹ and (iii) other thermochemical data on Group IV compounds.4,5

The compounds studied are $(Me_3M)_nX$, where M = Si, Ge, or Sn, and X is a univalent ligand in which the atom adjacent to M has one or more formally non-bonding electron pairs (*i.e.*, N, O, S, Hal). Spectroscopy (¹H n.m.r.) revealed that, under calorimetric conditions, acid hydrolysis was rapid and quantitative to afford (Me₃Si)₂O, (Me₃Ge)₂O, and (Me₃Sn·OH)₂, respectively. For simplicity, thermochemical data for (Me₃SnOH)₂ refer to the monomer formula: strictly, they therefore relate to g.f.w.⁻¹, (gram-formula weight)⁻¹, rather than

¹ Part VII, B. S. Iseard, J. B. Pedley, and J. A. Treverton, J. Chem. Soc. (A), 1971, 3095. ² Part I, J. C. Baldwin, M. F. Lappert, J. B. Pedley, and

J. A. Treverton, J. Chem. Soc. (A), 1967, 1980. ³ Part VI, M. F. Lappert, J. B. Pedley, J. Simpson, and T. R. Spalding, J. Organometallic Chem., 1971, 29, 195.

⁴ J. D. Cox and G. Pilcher, 'Thermochemistry of Organic and Organometallic Compounds,' Academic Press, London-New York, 1970. ⁵ 'Selected Values of Chemical Thermodynamic Properties',

Nat. Bur. Stand. Tech. Note 270-3, U.S. Government Printing Office, Washington D.C., 1968.

mol⁻¹. The compounds Me₃SiF and Me₃SnF were also examined: the silicon compound (b.p. 17 °C) proved inacceptably volatile for use in the calorimeter, while the tin fluoride did not react. In the hope of obtaining \bar{E} (Si-Hg), the reaction of (Me₃Si)₂Hg with oxygen in benzene was investigated but was found to be nonstoicheiometric.

From subsidiary data,^{4,5} heats of hydrolysis thus provide standard enthalpies of formation ΔH_{f}° (c or l) which, with literature or calculated heats of vaporisation ΔH_{vap} , lead to ΔH_{f}° (g). From ΔH_{f}° (g), thermochemical bond energy terms E(M-X) become available.

Apart from obtaining basic thermochemical data, our primary objectives were to examine in a thermochemical context (i) the concept of $p_{\pi}-d_{\pi}$ (N-Si) bonding, (ii) group trends, and (iii) the relative 'softness' or class 'b' ⁶ behaviour of the cations Me₃M⁺. As for (i), we found that E(Si-N) was rather insensitive (76.6 \pm 2.5 kcal mol⁻¹) to environment in the five compounds (see above) studied, and hence concluded that π -bonding for SiN was not thermochemically important.² Problems (ii) and (iii) are discussed in this paper.

EXPERIMENTAL

Preparation of Organometallic Compounds.—These, with three exceptions, were made by standard procedures and details are in Table 1. Compounds were shown to be pure, after rigorous fractional distillation, by g.l.c. Details for the three exceptions follow.

Chlorotrimethylgermane was made by the method briefly described by Mironov and Kravchenko.⁷ A suspension of aluminium trichloride (0.3 g) in 2-chloropropane (12.0 g) was added dropwise to tetramethylgermane ⁸ (20.0 g) at 0 °C, whereafter the mixture was gradually $(1\frac{1}{2} \text{ h})$ warmed to 90 °C. Distillation afforded chlorotrimethylgermane (19.0 g, 82%).

Attempts to prepare ethoxytrimethylgermane by a similar method to that used for the silicon analogue (see Table 1) failed, owing to formation of an amine complex. The following route was therefore devised. Bromotrimethylgermane ⁸ (15.0 g, 1 mol) was added to ethanol-free sodium ethoxide (6.1 g, 1.27 mol) in diethyl ether (50 ml), whereafter the mixture was heated (12 h) under reflux. Distillation afforded *ethoxytrimethylgermane* (6.3 g, 51%) (Found: C, 34.5; H, 8.75. C_5H_{14} GeO requires C, 39.9; H, 8.65%); v_{max} (cap. film): 2987vs, 2925s, 2880s, 1410w, 1380s, 1240s, 1110s, 1070s, 830vsb, 660w, and 612s cm⁻¹; ¹H n.m.r. (τ): 9.71 (singlet, Me₃Ge), 8.83 (triplet, Me), and 6.35 (quartet, CH₂).

Chlorotrimethylgermane (10.0 g, 2.2 mol) in diethyl ether (10 ml) was slowly added to di-n-butylthioplumbane (8.8 g, 1 mol) in the same solvent (10 ml), whereafter the mixture was heated (24 h) under reflux. The colour changed from yellow to white. The mixture was filtered and the precipitate was washed with ether (2 × 10 ml). Distillation of the combined filtrate and washings afforded *n-butylthiotrimethylgermane* (4.34 g, 47%) (Found: C, 41.2; H, 8.75. C₇H₁₈GeS requires C, 40.6; H, 8.75%); $\nu_{max.}$ (cap. film): 2978s, 2940s, 2885m, 1462m, 1405w, 1290w, 1255s, 830vsb, 598s, and 560m cm⁻¹; ¹H n.m.r. (τ): 9.55 (singlet, Me₃Ge),

⁶ S. Ahrland, J. Chatt, and N. R. Davies, *Quart. Rev.*, 1958, 12, 265.

9.08 (multiplet, Me), 8.47 (multiplet, β - and γ -CH₂), 7.48 (multiplet, α -CH₂).

The Stoicheiometry of the Hydrolyses.—This was established [equations (1) and (2)] by ¹H n.m.r. spectroscopic examination of (a) pure starting materials, (b) all possible

TABLE 1

Preparation of compounds

	1 1		
Compound	Reagents	B.p./(°C/mmHg)	Ref.
Me ₃ Si•OEt	Me ₃ SiCl-EtOH-Et ₃ N	76/760	a
Me ₃ GeCl	Me ₃ GeCl-Me ₂ CHCl-AlCl ₃	98/750	7
Me ₃ GeBr	Me_4Ge-Br_2	113.7/760	b
Me ₃ Ge•OEt	Me ₃ GeBr–EtONa	101 - 102/750	See
			text
Me₃Ge•SBu ⁿ	$Me_{3}GeCl-Pb(SBu^{n})_{2}$	66/6	See
			text
Me₃Ge•NMe₂	Me ₃ GeCl–LiNMe ₂	103/760	С
Me ₃ SnCl	Me ₄ Sn–SnCl ₄	154/760	d
Me₃SnBr	Me_4Sn-Br_2	164 - 165 / 750	е
Me ₃ SnI	Me_4Sn-I_2	64/10	f
Me ₃ Sn•OEt	Me ₃ Sn•NMe ₂ –EtOH	80/0.1	g h
Me ₃ Sn•SBu ⁿ	Me ₃ SnOH–Bu ⁿ SH	44/0.05	h
Me₃Sn•NMe₂	$Me_3SnCl-LiNMe_2$	126/760	i
(Me ₃ Sn) ₂ NMe		64/3	i
(Me ₃ Sn) ₃ N	$(Me_3Sn)_2NMe-NH_3$	70/2	i

R. O. Sauer, J. Amer. Chem. Soc., 1944, 66, 1707.
L. M. Dennis and W. I. Patnode, J. Amer. Chem. Soc., 1930, 52, 2779.
J. Satgé and M. Baudet, Compt. rend., 1966, 263, C, 435.
K. A. Kocheshkov, Ber., 1929, 62, 996.
C. A. Kraus and W. V. Sessions, J. Amer. Chem. Soc., 1925, 47, 2361.
S. N. Naumov and Z. M. Manulkin, Zhur. obshchei Khim., 1935, 5, 281.
J. Lorberth and M. R. Kula, Chem. Ber., 1964, 97, 3444.
E. W. Abel and D. B. Brady, J. Chem. Soc., 1965, 1944.

hydrolysis products (pure), and (c) actual calorimetric (hydrolysis) products in aqueous 1M-HCl. In each case (c), there was no evidence for either unchanged starting materials or unexpected products.

$$(Me_3M)_nX(l) + n H_2O (in lM-HCl soln.) \longrightarrow$$

$$\begin{bmatrix} \frac{n}{2} (Me_3M)_2 O + XH_n \end{bmatrix} IM-HCl \quad (1)$$

M = Si or Ge

 $(Me_3M)_nX(l \text{ or } c) + nH_2O$ (in 1M-HCl soln.) \longrightarrow

$$\begin{bmatrix} \frac{n}{2} (Me_3 Sn \cdot OH)_2 + XH_n \end{bmatrix} I_M - HCl \quad (2)$$
$$M = Sn$$

Calorimetry.—The heats of hydrolysis in 1M-hydrochloric acid were measured with the calorimeter described in ref. 2. The values of $\Delta H_{\rm obs}$ in Table 2 are the mean of at least six separate measurements, the uncertainties being twice the standard deviation of the mean.

RESULTS

Enthalpies of Formation.—Equation (3) corresponds to the hydrolysis process and was used to determine the standard enthalpies of formation of the compounds $Me_3Si \cdot OEt$ and Me_3GeX (X = Cl, Br, OEt, and SBuⁿ).

$$\begin{array}{ll} \mathrm{Me_3MX}(l) \ + \ \frac{1}{2}\mathrm{H_2O}(l) \longrightarrow \ \frac{1}{2}(\mathrm{Me_3M})_2\mathrm{O}(l) \ + \\ & \mathrm{HX}(55\mathrm{H_2O}) \quad (3) \end{array}$$

⁷ V. F. Mironov and A. L. Kravchenko, Izvest. Akad. Nauk S.S.S.R. Ser. khim., 1965, 6, 1026.
⁸ D. F. van de Vondel, J. Organometallic Chem., 1965, 3, 400. The use of equation (3) was justified because the enthalpies of mixing of (Me₃Si)₂O(l) and (Me₃Ge)₂O(l) with 1M-hydrochloric acid were found to be less than 0.1 kcal mol⁻¹, and the enthalpies of mixing the molar HX solutions with the molar HCl solution is negligible. For Me₃Ge-NMe₂(l), equation (4) is appropriate.

$$\frac{\operatorname{Me}_{3}\operatorname{Ge}\cdot\operatorname{NMe}_{2}(l) + \frac{1}{2}\operatorname{H}_{2}\operatorname{O}(l) + \operatorname{HCl}(55\operatorname{H}_{2}\operatorname{O})}{\frac{1}{2}(\operatorname{Me}_{3}\operatorname{Ge})_{2}\operatorname{O}(l) + \operatorname{Me}_{2}\operatorname{NH}\cdot\operatorname{HCl}(55\operatorname{H}_{2}\operatorname{O})}$$
(4)

The standard enthalpy of formation of Me₃Si•OEt was determined from the subsidiary data in Table 3. Unfortunately, none of the germanium compounds studied

was assumed to be ca. -136 kcal mol⁻¹. By use of data from refs. 4 and 5, the enthalpy change for reaction (5) is -9 kcal mol⁻¹ (M = Si, X = Cl), -8 kcal mol⁻¹ (M = Si, X = Br), -13 kcal mol⁻¹ (M = Sn, X = Cl), and -13kcal mol⁻¹ (M = Sn, X = Br). A value of ca. -10 kcal

$${}_{4}^{3}\mathrm{Me}_{4}\mathrm{M}(\mathrm{l}) + {}_{4}^{1}\mathrm{MX}_{4}(\mathrm{l}) \longrightarrow \mathrm{Me}_{3}\mathrm{MX}(\mathrm{l})$$
(5)

 mol^{-1} seemed appropriate for M = Ge and X = Cl or Br and, with use of values for $Me_4Ge(1)$ (-41 kcal mol⁻¹),³ $\operatorname{GeCl}_4(l)$ (-127 kcal mol⁻¹),⁵ and $\operatorname{GeBr}_4(l)$ (-83 kcal mol⁻¹),⁵ gives values of -72 and -62 kcal mol⁻¹ for $\Delta H_{\rm f}^{\circ}$ of Me₃-GeCl(l) and Me₃GeBr(l), respectively. Use of the appro-

Compound Ε Bond 105 $(Me_3Si)_2O(l)$ -194.7 ± 1.3 ° 8.90 $-185 \cdot 8$ Si-O Me₃SiĆl(l) -91.8 ± 0.7 b 7.2 0 -84.696 * Si-Cl $\begin{array}{c} -126 \cdot 4 \pm 0 \cdot 7 \\ -136 \cdot 0 \pm 4 \cdot 0 \end{array}$ Me₃Si•OEt(l) 5.7 ± 0.1 8 -118.4103 Si-O -127.0 $(Me_3Ge)_2O(l)$ 9 82 Ge-O $\begin{array}{c}
 1.7 \pm 0.1 \\
 0.5 \pm 0.1 \\
 6.9 \pm 0.2 \\
 -1.1 \pm 0.1 \\
 95 \pm 0.2$ Me₃GeĆl(l) -71.6 ± 2.1 8 -63.681 . Ge-Cl $-62\cdot1 \stackrel{-}{\pm} 2\cdot1$ 9 -53.168 Ge-Br Me₃GeBr(l) $\begin{array}{c} -95.8 \pm 2.2 \\ -64.7 \pm 2.1 \end{array}$ -87.8 8 79 Me₃Ge•OEt(l) Ge-O Me₃Ge·SBuⁿ(l) 10 -54.7 58 Ge-S Me₃Ge·NMe₂(l) $25\cdot 8 \pm 0\cdot 2$ -37.1 ± 2.2 8 -29.155Ge-N $Me_3Sn \cdot OH(c)$ -75.8 -90.8 ± 1.2 1577 Sn-O ${ 3 \cdot 3 \pm 0 \cdot 1 \atop 2 \cdot 4 \pm 0 \cdot 2 \atop \pm 0 \cdot 2 }$ Me₃SnCl(c) $-58\cdot4 \pm 1\cdot2$ 12-46.475 . Sn-Cl Sn-Br 14 0 -34.861 -48.8 ± 1.3 $Me_{3}SnBr(c)$ $4 \cdot 2 \pm 0 \cdot 1$ $18 \cdot 3 \pm 0 \cdot 4$ 11.5 0 $-31\cdot2\pm1\cdot1$ ° -19.7 $Me_{3}SnI(l)$ 45 Sn-I $-73 \cdot 1 \pm 1 \cdot 5$ 10 -63.166 $Me_3Sn \cdot OEt(l)$ Sn-O $\begin{array}{r}
 5 \cdot 1 \pm 0 \cdot 2 \\
 38 \cdot 2 \pm 0 \cdot 3 \\
 43 \cdot 6 \pm 0 \cdot 3
 \end{array}$ Me₃Sn·SBuⁿ(l) -47.1 ± 1.6 -13.3 ± 1.4 10 -37.152Sn-S $Me_3Sn \cdot NMe_2(l)$ $(Me_3Sn)_2NMe(l)$ 9 -4.341 Sn-N -31.5 ± 2.5 12-19.548 Sn-N 70.2 ± 0.3 -29.2 ± 3.6 15 -14.242 Sn-N $(Me_3Sn)_3N(c)$

• All values, except those specified, calculated from b.p.s by use of a Trouton's constant of 22 cal mol⁻¹ K⁻¹. Where the condensed state is crystalline a heat of fusion of 3 kcal mol⁻¹ has been assumed. The error limits on ΔH_{vap} are of order 2 to 3 kcal mol⁻¹. ^b Data from ref. 2, included to enable calculation of *E* values for Si compounds. ^c J. D. Cox and G. Pilcher, 'Thermochemistry of Organic and Organometallic Compounds,' Academic Press, New York, 1970. ^d See text for a discussion of this value. ^c Values calculated from enthalpies of formation of tetrahalides (see Table 4) and assumed appropriate for the metal-chlorine bonds in Me₃M-Cl.

here had an accurately known enthalpy of formation from which to derive the enthalpies of formation of the remaining compounds [cf. (Me₃Si)₂O for Me₃Si·OEt and other compounds in ref. 2]. However, the ethalpy of formation of

TABLE 3^a

Subsidiary $\Delta H_{\rm f}^{\circ}$ for calculation of $\Delta H_{\rm f}^{\circ}$ (c or l) (all values in kcal mol⁻¹)

		/	
Compound	ΔH_{t}°	Compound	ΔH_{t}°
$H_2O(l)$	-68.32	Bu ⁿ SH(l)	-29·72 b
EtOH(aq.)	-68.9	Me_2NH , $HCl(55H_2O)$	-68.57
HCl(55H ₂ O)	-39.55	$MeNH_2, HCl(55H_2O)$	-69.65
$HCl(53H_2O)$	-39.54	$NH_4Cl(55H_2O)$	71.48
$HBr(55H_2O)$	-28.72	$(Me_3Si)_2O(1)$	194·7 »
$HI(55H_2O)$	-12.96	$(Me_{3}Ge)_{2}O(l)$	-136·0 ¢
		$Me_{3}SnI(l)$	-31·2 »

^a All values, except those specified, taken from ref. 5. ^b J. D. Cox and G. Pilcher, 'Thermochemistry of Organic and Organometallic Compounds,' Academic Press, New York, 1970. An extrapolated value from other experimental data; see text.

(Me₃Ge)₂O(1) can be estimated reasonably accurately as follows.

The enthalpy of formation of $Et_6Ge_2O(l)$ is -148 kcal mol^{-1.4} The increment in $\Delta H_{\rm f}^{\circ}$ on changing from an ethyl group to a methyl group is ca. 2 kcal mol⁻¹ for most organometallic compounds,³ whence the value for $(Me_3Ge)_2O(1)$

priate enthalpies of hydrolysis for equation (3) gives values of -136.8 and -135.8 kcal mol⁻¹ for ΔH_{i}° [(Me₃Ge)₂O(l)]. A value of -136.0 + 4 kcal mol⁻¹ therefore seemed appropriate for (Me₃Ge)₂O(l), and with subsidiary data from Table 3 yields the enthalpies of formation of the Ge compounds listed in Table 2. [The enthalpy of solution of $Bu^{n}SH(l)$ in IM-HCl was found to be less than 0.1 kcal mol⁻¹].

The enthalpy of solution of Me₃Sn·OH(c) in 1M-HCl was measured and found to be less than $0.1 \text{ kcal mol}^{-1}$, so the enthalpies of hydrolysis of the Me₃SnX compounds are represented to within 0.1 kcal mol⁻¹ by equation (6). For the amido-compounds, equation (7) is appropriate. The

$$Me_{3}SnX(l \text{ or } c) + H_{2}O(l) \longrightarrow Me_{3}Sn \cdot OH(c) + HX(55H_{2}O) \quad (6)$$

$$(Me_{3}Sn) Me_{3} = (l e_{3}e_{3}) + e_{3}H_{3}O(l) + HO(l(55H_{2}O)) = 0$$

$$(\text{Me}_{3}\text{Sn})_{n}\text{NMe}_{3-n}(\text{l or c}) + n\text{H}_{2}\text{O}(\text{l}) + \text{HCl}(55\text{H}_{2}\text{O}) \longrightarrow n\text{Me}_{3}\text{Sn}\cdot\text{OH}(\text{c}) + \text{Me}_{3-n}\text{NH}_{n}\cdot\text{HCl}(55\text{H}_{2}\text{O})$$
(7)

enthalpy of formation of Me₃SnI(l) quoted in Table 3 was used to calculate ΔH_{f}° [Me₃SnOH(c)], whence the enthalpies of formation of the Sn compounds in Table 2 are derived. The values for crystalline Me_aSnCl and Me_aSnBr are consistent with the literature values of -50.9 ± 2.5 and $-44\cdot 3 \pm 1\cdot 0$ kcal mol⁻¹ for the corresponding *liquid* phases, since enthalpies of fusion in the range 3-5 kcal mol⁻¹ would probably be appropriate for these compounds.

TABLE 2 Enthelpion of formation and hand appropriate (all values in local mal-1)

Entimatples of formation	and bond energie	s (all values	m Kear mor -)
$-\Delta H_{\mathrm{obs}}$	ΔH_{t}° (c or l)	ΔH_{vap} .	$\Delta H_{t}^{\circ}(\mathbf{g})$	

Bond Energies.—The chemical significance of the thermochemical data is best described by the energies of appropriate bonds in the molecules. The derivation of bond energies automatically involves drastic approximations such as assuming that the contribution of the Me₃M group to the enthalpy of formation of Me₃MX is independent of the nature of X. Thus, the absolute values of E listed in Table 2 may not be significant, but the relative values probably have chemical relevance. The bond energies were derived from the gaseous enthalpies of formation by use of equation (8).*

$$\frac{1}{n} (Me_{3}M)_{n}X(g) + HCl(g) \longrightarrow Me_{3}MCl(g) + \frac{1}{n} H_{n}X(g)$$

$$\Delta H^{\circ} = \Delta H_{f}^{\circ} [Me_{3}MCl(g)] + \frac{1}{n} \Delta H_{f}^{\circ} [H_{n}X(g)] - \frac{1}{n} \Delta H_{f}^{\circ}$$

$$[(Me_{3}M)_{n}X(g)] - \Delta H_{f}^{\circ} [HCl(g)]$$

$$= E(M-X) + E(H-Cl) - E(M-Cl) - E(H-X) \quad (8)$$

As a basis for calculation, E(M-Cl) was taken to have the value in the corresponding tetrachloride (see Table 4). This was an arbitrary choice and the alternative of calculating E(M-Cl) in Me₃MCl from M-CH₃ bond energies from,

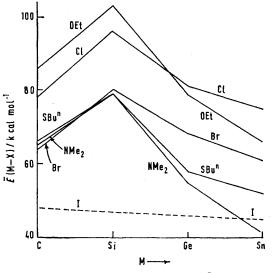
TABLE	4 a	
-------	-----	--

Subsidiary ΔH_{f}° and bond energies for calculation of E values in Table 2 (all values in kcal mol^{-1})

Compound	ΔH_{i}° (g)	$ar{E}$	Atom b	$\Delta H_{\mathbf{f}}^{\circ}$ (g)
HCl	-22.062	$103 \cdot 2$	н	52.095
HBr	8.70	87.5	0	59.553
			С	171-291
HI	6.33	71.3	Cl	29.082
H_2O	-57.796	110.8	Br	26.741
EtOH	-56.19		I	25.535
H ₂ S	-4.93	87.9	S	66.636
Bu ⁿ SH ⁰	-20.98		N	112.979
NH_3	-11.02	93 ·4	Si	108.9
MeNH ₂	-5.49		Ge	90.0
Me_2NH	-4.41		Sn	$72 \cdot 2$
CCl ₄ °	$-25 \cdot 2$	$78 \cdot 2$		
SiCl	-157.03	95 ·6		
GeCl ₄	-118.5	81.2		
$SnCl_4$	-112.7	75.3		

• All values, except that for BuⁿSH, taken from ref. 5. $\delta \Delta H_1$: of atoms required for calculation of bond energies, E. • J. D. Cox and G. Pilcher, 'Thermochemistry of Organic and Organometallic Compounds,' Academic Press, New York, 1970.

for example, the tetramethyl compounds, would lead to significantly different values for all the bond energies. However, the relative values would remain unchanged and the discussion in the following section depends on either their relative values or the orders of magnitude of the bond energies.


DISCUSSION

Comparison with Published Data.—Our results (Table 2) can in a few cases be compared with earlier data (for comments on Me₃SnCl and Me₃SnBr, see p. 1945).

The value of E(Si-O) of 103-105 kcal mol⁻¹ agrees reasonably with other estimates,⁹ and that of E(Ge-Br)of 68 kcal mol⁻¹ is close to the mean value based on GeBr₄, \bar{E} (Ge-Br) = 66 kcal mol^{-1.9}

The values for E(Sn-Br) and E(Sn-I) of 61 and 45 kcal mol⁻¹, which are relative to $\bar{E}(Sn-Cl)$ for $SnCl_4$, differ appreciably from those ¹⁰ calculated on the basis of $\overline{E}(Sn-C)$ in Me₄Sn. However, the ratios of E(Sn-Br): E(Sn-I) agree well.

Group Trends.—The Group IV trends for mean bond dissociation energies $\bar{D}(M-R)$ in MR₄ and $\bar{D}(M-H)$ reveal (data of refs. 9 and 11) a monotonic decrease with increasing atomic number of M (i.e., C > Si >Ge > Sn > Pb). Likewise, a similar trend is observed for E(M-Me) and E(M-H) for the compounds Me₃MX $(X = Me^3 \text{ or } H^{12})$. In contrast, for the tetrahalides (data of refs. 5, 9, and 13), there is an enhancement

Trends in mean bond energy terms $\bar{E}(M-X)$

for $\bar{E}(Si-X)$ (*i.e.*, C < Si > Ge > Sn > Pb). Similar trends are observed for E(M-X) values taken from Table 2, as shown in the Figure. It is tempting to attribute the enhancement of $\overline{E}(Si-X)$ when X is in principle lone-pair possessing to $p_{\pi}-d_{\pi}$ (Si-X) bonding, and to such π -bonding being more effective for Si than for Ge, Sn, or Pb analogues.

The Relative Softness of the Me₃M⁺ Ions.-The carbonium ion has been described as a 'borderline' acid.14 This concept can now be considered in terms of ΔH in a quantitative sense in relation to the other Me₃M⁺ ions. Three ideal systems could be taken. These are the F-Cl, OR-SR, and NR₂-PR₂ exchanges, as exemplified by equation (9); from Table 2 and ref. 5,

Values for carbon bonds were calculated from appropriate enthalpies of formation from ref. 4, some of the compounds being slightly different from those given in equation (8) (see legend to Figure 1).

⁹ T. L. Cottrell, 'The Strengths of Chemical Bonds,' 2nd

edn., Butterworths, London, 1958. ¹⁰ J. B. Pedley, H. A. Skinner, and C. L. Chernick, *Trans. Faraday Soc.*, 1957, **53**, 1612.

¹¹ H. A. Skinner, Adv. Organometallic Chem., 1964, 2, 49; A. E. Pope and H. A. Skinner, Trans. Faraday Soc., 1964, 60, 1404: J. V. Davis, A. E. Pope, and H. A. Skinner, ibid., 1963, **59**, 2233.

S. R. Gunn and L. Green, J. Phys. Chem., 1964, 68, 946.
 D. F. Evans and R. E. Richards, J. Chem. Soc., 1952, 1292. ¹⁴ R. B. Pearson, J. Amer. Chem. Soc., 1963, 85, 3533; Chem. in Britain, 1967, 3, 103.

enthalpies ΔH_{ideal} for reaction (9) are +2.0 (Si), -2.2 (Ge), and -9.4 (Sn) kcal mol⁻¹.

$$Me_{3}M \cdot OR(g) + RSH(g) \longrightarrow Me_{3}M \cdot SR(g) + ROH(g)$$
 (9)

From these data, it is clear that the degree of 'softness' for the species Me_3M^+ , based on ΔH , increases with increasing atomic number of M, and we predict that this is the probable trend for other Groups of the Periodic Table. The terms 'hard' and 'soft' are seen as providing an essentially phenomenological description rather than a rationalisation. Features such as polarising power or π -bonding may contribute significantly, but their relative value is unknown, and to some degree is irrelevant to the above conclusion.

Some Chemical and Thermochemical Correlations.— From the ΔH_i° data of Table 2 and elsewhere,⁵ it is possible to comment on the significance of thermochemical information in relation to chemical differences among the Group IV elements.

It is established that reactions of equation (9), but for compounds in their standard states, proceed from left-to-right for M = Sn or Pb, but conversely for M = Si or Ge.¹⁵ This is consistent with trends in $\Delta H/\text{kcal mol}^{-1}$ for reaction (10): -1.3 (Si), -5.6 (Ge),

$$Me_{3}M \cdot OEt(l) + Bu^{n}SH(l) \longrightarrow Me_{3}M \cdot SBu^{n}(l) + EtOH(l)$$
(10)

and -10.7 (Sn). Similar trends show that it is not unreasonable that alkylthio-derivatives may be formed

¹⁵ Cf. E. W. Abel and D. A. Armitage, Adv. Organometallic Chem., 1967, 5, 1; H. Schumann, I. Schumann-Ruidisch, and M. Schmidt, in 'Organotin Compounds,' ed. A. K. Sawyer, Marcel Dekker, New York, 1971, vol. 2, p. 297.

from aqueous solutions for Sn $[e.g. (Me_3SnOH)_2$ or $Me_3SnOR + RSH$ in H_2O but not Si or Ge.

Another difference between the Group IV elements is that chlorides Me₃MCl can be converted into Me₃MBr by heating under reflux with BBr₃, for M = Sn but not $M = Si.^{16}$ Consistent with this, the Sn reaction is more exothermic: ΔH for the condensed-phase reaction = -1.0 (Si) and -5.3 (Sn) kcal mol⁻¹.

Finally, aminostannanes cannot generally be obtained from corresponding halides and amines. Reactions between such compounds leads to 1,1-adduct formation [e.g., reaction (11a)], whereas for Si or Ge analogues equation (11b) is appropriate, although initial formation of an adduct is probable.¹⁷

$$\begin{array}{c} \text{Me}_{3}\text{MCl(l or c)} + \\ & & \\ & & \\ \text{Me}_{2}\text{NH(l)} - \\ & &$$

Trends in $\Delta H/\text{kcal mol}^{-1}$ for reaction (11b) are: $-22\cdot3$ (Si), $-13\cdot0$ (Ge), and $-2\cdot4$ (Sn). It is clear that equation (11b) is thermochemically much more favourable for M = Si than for M = Sn; the enthalpy of adduct formation [equation (11a)] is likely to be *ca.* -10 kcal mol⁻¹.

We thank Dr. J. A. Treverton for data on $(Me_3Sn)_3N$, and the D.S.I.R. (Studentship to J. C. B.) and the U.S. Air Force Office of Scientific Research for support.

[2/550 Received, 9th March, 1972]

¹⁶ P. M. Druce and M. F. Lappert, J. Chem. Soc. (A), 1971, 3595.
¹⁷ K. Jones and M. F. Lappert, J. Chem. Soc., 1965, 1944.