# Carbon Compounds of the Transition Metals. Part XXVI. ${ }^{1}$ Crystal and Molecular Structure of Di- $\mu$-chloro-dicarbonylrhodium(1)bis(phenylazo-phenyl-2C, $N^{\prime}$ )rhodium(III) 

By R. J. Hoare and O. S. Mills,* Department of Chemistry, University of Manchester, Manchester M13 9PL

The crystal structure of the title compound (I) contains an octahedral bis(phenylazophenyl)rhodium moiety (with two five-membered $\mathrm{Rh}-\mathrm{C}-\mathrm{C}-\mathrm{N}-\mathrm{N}$ chelate rings) attached to a square planar dicarbonylrhodium group via two chlorine bridge atoms. The Rh $\cdots$ Rh distance is 3.551 (2) $\AA$ and the molecule is folded about the chlorine bridge by $27^{\circ}$. The $\mathrm{Rh}-\mathrm{Cl}$ distances trans to the $\mathrm{Rh}-\mathrm{C}(\mathrm{CO})$ and $\mathrm{Rh}-\mathrm{C}\left(\mathrm{Ph}_{2} \mathrm{~N}_{2}\right)$ bonds respectively are $2 \cdot 374(5)$ and $2 \cdot 532(5)$ $A$. The crystals are trigonal with $a=23 \cdot 363(7)$ and $c=17 \cdot 689(5) A$, space group $P \overline{3} c 1$. The structure was solved from diffractometer data by Patterson and Fourier methods and refined by large-block-diagonal least-squares techniques to $R 6.3 \%$ for 1797 unique reflections.

Amongst recently reported ${ }^{2}$ complexes of rhodium which contain azobenzene is di- $\mu$-chloro-dicarbonylrhodium(I) bis(phenylazophenyl-2C, $N^{\prime}$ )rhodium(III) (I). We have subjected (I) to structure analysis to confirm


the different environments of the rhodium atoms, for comparison of the bonded azobenzene ligands with those in acetatobis(phenylazophenyl- $2 C, N^{\prime}$ ), ${ }^{1,2 a}$ and to study
the nature of the chlorine bridge which, in other rhodium complexes, has been shown to be capable of considerable variation.

## EXPERIMENTAL

Crystal Data.- $\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Rh}_{2}, M=695 \cdot 2$, Trigonal, $a=23.363(7), \quad c=17.689(5) \quad \AA, \quad U=8361 \cdot 4 \AA^{3}, \quad D_{\mathrm{m}}=$ $1 \cdot 68(2), Z=12, D_{\mathrm{c}}=1 \cdot 66, F(000)=4080$. Space group $P \overline{3}_{c 1}\left(D_{3 d}^{4}\right.$, No. 165). $\quad \mathrm{Mo}-K_{\alpha}$ radiation, $\lambda=0.7107 \AA$; $\mu\left(\mathrm{Mo}-K_{\alpha}\right)=13.8 \mathrm{~cm}^{-1}$.

Fine yellow needles of (I) had hexagonal cross-section. Intensity data were collected on a Hilger and Watts
${ }^{1}$ Part XXV, R. J. Hoare and O. S. Mills, preceding paper.
${ }^{2}$ (a) A. R. M. Craik, G. R. Knox, P. L. Pauson, R. J. Hoare, and O. S. Mills, Chem. Comm., 1971, 168; (b) M. I. Bruce, B. L. Goodall, M. Z. Iqbal, and F. G. A. Stone, Chem. Comm., 1971, 661.
computer-controlled four-circle diffractometer ${ }^{3}$ as far as $\theta=25^{\circ}$ with Mo- $K_{\alpha}$ radiation. 1797 unique reflexions with intensities $>3 \sigma\left(F^{2}\right)$ were obtained in five shells which were scaled together by counting times. Corrections were applied for Lorentz and polarisation factors.

Solution and Refinement.-The diffraction symbol is $P . . c$ and the absence of a mirror plane perpendicular to the unique axis eliminated the hexagonal Laue groups $6 / \mathrm{m}$ and $6 / \mathrm{mmm}$ so that the only space groups to be considered were $P 3 c 1$ and $P \overline{3} c 1$ which contain 6 and 12 general positions respectively. As chemical evidence suggested that the molecule was at most a dimer of the unit [phenylazophenyl(chloro)carbonylrhodium], and the unit cell corresponded to 24 such units, the most likely situation involved one dimer per asymmetric unit of the space group $P \overline{3} c 1$, although the other possibilities were not excluded. The foregoing was confirmed from a Patterson synthesis which contained a complete vector set for two rhodium atoms $c a .3 \cdot 3 \AA$ apart in accord with the symmetry of the space group $P \overline{\mathbf{3}} c \mathbf{l}$. In addition vectors attributable to the chlorine atoms were recognised so that with these four atoms, phases sufficiently accurate for the heavy-atom method to be effective were available and all 32 light atoms were obtained from two successive difference-Fourier syntheses after the heavy-atom positions had been corrected.

The structure was refined by the large-block-diagonal least-squares method in which the function minimised was $\Sigma w\left(F_{\mathrm{o}}-k\left|F_{\mathrm{c}}\right|\right)^{2}$. Scattering factors used ${ }^{4,5}$ were corrected, where appropriate, for the real part of the anomalous dispersion effect. ${ }^{6}$ Isotropic refinement converged after 6 cycles (the first with heavy-atom parameters only) at $R 10.4 \%$. For this, the 145 parameters which were refined were arranged in three matrices.

A difference-Fourier synthesis contained peaks which corresponded to the phenyl protons and indications of markedly anisotropic distribution about the heavy-atom positions. On this basis, supplemented by high $B_{\text {iso }}$ values, anisotropic temperature factors were allowed for the rhodium and chlorine atoms and for the carbon and oxygen atoms in the two carbonyl groups in subsequent refinement. The eighteen phenyl protons were positioned geometrically assuming C-H $1.08 \AA$. The 186 parameters were grouped in six matrices for refinement. With weights given by $w^{-1}=147-2 \cdot 38\left(F_{0} / k\right)+0.0132\left(F_{0} / k\right)^{2}$, refinement converged in four cycles in which seven weak reflexions with $F_{\mathrm{o}}>2 \cdot 5 k . F_{\mathrm{c}}$ were omitted. The final $R$ was $6 \cdot 3 \%$ and there were 9.6 observed data per parameter refined. A final difference-Fourier synthesis contained no difference density $>0.6 \mathrm{e}^{-3}$ in the body of the cell except close to the rhodium positions and to the three-fold axis, where values of $c a .1 \mathrm{e}^{\AA^{-3}}$ occurred.

## RESULTS

Table 1 shows the atomic parameters after the final refinement, and Table 2 some results of molecular geometry calculations. A Table showing the agreement analyses and lists of observed and calculated structure factors are in Supplementary Publication No. SUP 20411 (13 pp., 1 microfiche).*

* For details see Notice to Authors No. 7 in J. Chem. Soc. (A), 1970, Issue No. 20.
${ }^{3}$ D. B. G. Edwards, K. Bowden, J. Standeven, and O. S. Mills, Computer Bulletin, 1966, 10, 54.
- R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem. Phys., 1965, 42, 3175.


## DISCUSSION

The structure of (I) can be considered as derived from those of (II) and $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}_{2}\right.$ (III) ${ }^{7}$ where the acetatogroup in (II) has been replaced by a square planar

(III)
$\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}_{2}$ unit. On this basis one can assign formal oxidation states of +1 and +3 to atoms $\mathrm{Rh}(2)$ and $\mathrm{Rh}(\mathrm{l})$ respectively (Figure 1).


Figure 1 View of the molecule with atom numbering scheme
The rhodium atoms, $3 \cdot 551(2) \AA$ apart, are bridged by two chlorine atoms in a ' folded ' configuration, like that in (III). The angle of fold, i.e. the dihedral angle


Figure 2 View of the molecule illustrating the folded Rh $\left.\rangle_{\mathrm{Cl}}^{\mathrm{Cl}}\right\rangle_{\mathrm{Rh}}$ group and the packing of the square planar $\mathrm{Cl}_{2} \mathrm{Rh}(\mathrm{CO})_{2}$ group between two phenyl groups

[^0]Table 1
Final atomic parameters, with estimated standard deviations in parentheses (in the units of the last decimal place)

| Atom | $x / a$ | $y / b$ | $z / c$ | $B / \AA^{2}$ |
| :---: | :---: | :---: | :---: | :---: |
| Rh(1) | 0•12650(7) | $0 \cdot 41065$ (7) | 0.08827(8) |  |
| $\mathrm{Rh}(2)$ | $0 \cdot 21425$ (8) | $0 \cdot 32338(8)$ | $0.07372(10)$ |  |
| $\mathrm{Cl}(1)$ | $0 \cdot 13375(25)$ | $0 \cdot 33034(24)$ | -0.00122(29) |  |
| $\mathrm{Cl}(2)$ | $0 \cdot 23719(21)$ | $0 \cdot 42533(23)$ | $0 \cdot 12931(28)$ |  |
| N(1) | 0.0015 (8) | 0.3011 (8) | $0 \cdot 1335(9)$ | 6.29(36) |
| $\mathrm{N}(2)$ | 0.0660 (8) | $0.3284(8)$ | $0 \cdot 1478(9)$ | 6.06(35) |
| C(1) | $-0.0125(9)$ | $0 \cdot 3387(9)$ | $0 \cdot 0844(10)$ | $5 \cdot 31(40)$ |
| C(2) | $0.0385(8)$ | $0 \cdot 3933$ (8) | $0 \cdot 0527(9)$ | $4 \cdot 42$ (35) |
| $\mathrm{C}(3)$ | $0 \cdot 00260(10)$ | $0 \cdot 4287(10)$ | $0 \cdot 0017(11)$ | 6.44 (45) |
| C(4) | -0.0401(11) | $0 \cdot 4095(12)$ | -0.0183(12) | 7-47(54) |
| C(5) | -0.0884(11) | 0.3561 (10) | 0.0186(11) | 6.61 (47) |
| C(6) | -0.0779(10) | $0 \cdot 3193(10)$ | $0 \cdot 0674(11)$ | 6.19(45) |
| C(7) | $0 \cdot 0833(10)$ | 0.2908(10) | $0 \cdot 1937(11)$ | 5.67(43) |
| C(8) | $0 \cdot 1257(11)$ | $0 \cdot 3199(11)$ | $0 \cdot 2520$ (12) | 6.83(49) |
| C(9) | $0 \cdot 1474(12)$ | $0 \cdot 2882(12)$ | $0 \cdot 2981$ (13) | 8.19(55) |
| C(10) | $0 \cdot 1277(12)$ | 0.2255(13) | $0 \cdot 2852(13)$ | 8.20(58) |
| C(11) | $0 \cdot 0852(13)$ | $0 \cdot 1933$ (13) | $0 \cdot 2245(14)$ | 8.78(61) |
| C(12) | $0 \cdot 0619(11)$ | $0 \cdot 2248(12)$ | $0 \cdot 1778(13)$ | 7-49(52) |
| N(3) | $0 \cdot 1960(8)$ | $0.5523(8)$ | $0.0673(9)$ | 6.62(38) |
| N(4) | $0 \cdot 1827(8)$ | $0 \cdot 4976$ (7) | 0.0322(9) | 5.87(35) |
| C(13) | $0 \cdot 1607(9)$ | $0.5407(10)$ | $0 \cdot 1333(11)$ | 5.64(41) |
| C(14) | $0 \cdot 1221$ (9) | 0.4738(9) | $0 \cdot 1594(10)$ | 4.83(37) |
| C(15) | $0.0888(10)$ | $0 \cdot 4594(10)$ | $0 \cdot 2279(11)$ | 5-97(43) |
| C(16) | $0 \cdot 0897(12)$ | $0.5122(12)$ | $0 \cdot 2693(12)$ | 7.78(56) |
| C(17) | $0 \cdot 1231(12)$ | 0.5751 (12) | 0.2406(13) | $8.01(56)$ |
| C(18) | $0 \cdot 1629(12)$ | 0.5918 (12) | $0 \cdot 1773(13)$ | 8.10(58) |
| C(19) | $0 \cdot 2145$ (9) | $0.5071(9)$ | -0.0378(11) | 5-29(40) |
| C(20) | $0 \cdot 1817(10)$ | $0 \cdot 4685$ (10) | -0.0970(12) | 6.31 (45) |
| C(21) | $0 \cdot 2133(11)$ | 0.4791 (11) | -0.1642(12) | $6.88(49)$ |
| $\mathrm{C}(22)$ | $0 \cdot 2772(11)$ | $0.5266(11)$ | -0.1724(11) | 6.78(49) |
| $\mathrm{C}(23)$ | $0.3115(11)$ | $0 \cdot 5640$ (11) | -0.1124(13) | 7.35(52) |
| $\mathrm{C}(24)$ | $0 \cdot 2840$ (11) | $0.5567(11)$ | -0.0422(11) | 6.87(47) |
| C(25) | 0.2790(11) | $0 \cdot 3197(11)$ | $0 \cdot 1281$ (12) |  |
| $\mathrm{C}(26)$ | $0 \cdot 1922(11)$ | $0 \cdot 2438(12)$ | $0 \cdot 0335(14)$ |  |
| $\mathrm{O}(1)$ | $0 \cdot 3191$ (10) | $0 \cdot 3181(10)$ | $0 \cdot 1613$ (11) |  |
| $\mathrm{O}(2)$ | $0 \cdot 1734(10)$ | $0 \cdot 1928(9)$ | $0 \cdot 0079(14)$ |  |
| $\mathrm{H}(3)$ | 0.0660 | 0.4721 | -0.0246 | 5 |
| H(4) | -0.0515 | $0 \cdot 4372$ | -0.0586 | 6 |
| H(5) | -0.1386 | $0 \cdot 3430$ | 0.0063 | 6 |
| $\mathrm{H}(6)$ | -0.1193 | $0 \cdot 2758$ | 0.0922 | 5 |
| $\mathrm{H}(8)$ | $0 \cdot 1427$ | 0.3718 | 0.2636 | 6 |
| $\mathrm{H}(9)$ | $0 \cdot 1821$ | $0 \cdot 3156$ | 0.3433 | 7 |
| $\mathrm{H}(10)$ | 0.0770 | $0 \cdot 1868$ | $0 \cdot 2816$ | 7 |
| H(11) | 0.0707 | $0 \cdot 1421$ | 0.2125 | 7 |
| H(12) | 0.0282 | $0 \cdot 2005$ | $0 \cdot 1315$ | 6 |
| H(15) | $0 \cdot 0629$ | $0 \cdot 4092$ | 0.2495 | 5 |
| $\mathrm{H}(16)$ | 0.0638 | $0 \cdot 5020$ | $0 \cdot 3218$ | 6 |
| H(17) | $0 \cdot 1192$ | $0 \cdot 6132$ | $0 \cdot 2702$ | 6 |
| $\mathrm{H}(18)$ | $0 \cdot 1954$ | $0 \cdot 6433$ | $0 \cdot 1611$ | 5 |
| $\mathrm{H}(20)$ | $0 \cdot 1308$ | 0.4295 | -0.0912 | 6 |
| $\mathrm{H}(21)$ | $0 \cdot 1865$ | $0 \cdot 4486$ | -0.2118 | 7 |
| H(22) | $0 \cdot 3011$ | 0.5357 | -0.2275 | 7 |
| $\mathrm{H}(23)$ | $0 \cdot 3628$ | $0 \cdot 6021$ | $-0.1203$ | 7 |
| H(24) | 0.3125 | $0 \cdot 5871$ | 0.0056 | 6 |

Table 2
Molecular geometry
(a) Bond distances ( $\AA$ )

| $\mathrm{Rh}(1)-\mathrm{Cl}(1)$ | 2.525(5) | $\mathrm{Rh}(1)-\mathrm{Cl}(2)$ | 2.539 |
| :---: | :---: | :---: | :---: |
| $\mathrm{Rh}(1)-\mathrm{N}(2)$ | 2.021(16) | $\mathrm{Rh}(1)-\mathrm{N}(4)$ | 2.042 (15) |
| $\mathrm{Rh}(1)-\mathrm{C}(2)$ | $1.988(16)$ | $\mathrm{Rh}(1)-\mathrm{C}(14)$ | 1.980(17) |
| $\mathrm{Rh}(2)-\mathrm{Cl}(1)$ | $2 \cdot 372$ (5) | $\mathrm{Rh}(2)-\mathrm{Cl}(2)$ | $2 \cdot 377(5)$ |
| $\mathrm{Rh}(2)-\mathrm{C}(25)$ | $1.830(23)$ | $\mathrm{Rh}(2)-\mathrm{C}(26)$ | $1 \cdot 809(23)$ |
| $\mathrm{N}(1)-\mathrm{C}(1)$ | 1.383(22) | $\mathrm{N}(3)-\mathrm{C}(13)$ | 1-376(22) |
| $\mathrm{N}(1)-\mathrm{N}(2)$ | $1.335(22)$ | $\mathrm{N}(3)-\mathrm{N}(4)$ | $1.311(22)$ |
| $\mathrm{N}(2)-\mathrm{C}(7)$ | 1-396(22) | $\mathrm{N}(4)-\mathrm{C}(19)$ | $1 \cdot 403(21)$ |
| $\mathrm{C}(1)-\mathrm{C}(6)$ | $1.393(25)$ | $\mathrm{C}(13)-\mathrm{C}(18)$ | $1 \cdot 405(27)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)$ | 1.358(22) | $\mathrm{C}(13)-\mathrm{C}(14)$ | $1 \cdot 435(24)$ |
| $\mathrm{C}(2)-\mathrm{C}(3)$ | 1.351(24) | $\mathrm{C}(14)$ - $\mathrm{C}(15)$ | $1.388(23)$ |
| $\mathrm{C}(3)-\mathrm{C}(4)$ | 1-419(27) | $\mathrm{C}(15)-\mathrm{C}(16)$ | $1 \cdot 425$ (27) |
| $\mathrm{C}(4)-\mathrm{C}(5)$ | $1 \cdot 358(28)$ | $\mathrm{C}(16)-\mathrm{C}(17)$ | $1 \cdot 373(29)$ |
| $\mathrm{C}(5)-\mathrm{C}(6)$ | 1.326(25) | $\mathrm{C}(17)-\mathrm{C}(18)$ | $1 \cdot 382(28)$ |
| $\mathrm{C}(7)-\mathrm{C}(12)$ | 1-392(27) | $\mathrm{C}(19)-\mathrm{C}(24)$ | $1 \cdot 452(26)$ |
| $\mathrm{C}(7)-\mathrm{C}(8)$ | 1.356(25) | $\mathrm{C}(19)-\mathrm{C}(20)$ | $1 \cdot 344(24)$ |
| $\mathrm{C}(8)-\mathrm{C}(9)$ | 1-358(28) | $\mathrm{C}(20)-\mathrm{C}(21)$ | $1 \cdot 354(25)$ |
| $\mathrm{C}(9)-\mathrm{C}(10)$ | 1-317(30) | $\mathrm{C}(21)-\mathrm{C}(22)$ | $1.351(26)$ |
| $\mathrm{C}(10)-\mathrm{C}(11)$ | 1-400(29) | $\mathrm{C}(22)-\mathrm{C}(23)$ | $1 \cdot 353(26)$ |
| $\mathrm{C}(11)-\mathrm{C}(12)$ | $1.384(30)$ | $\mathrm{C}(23)-\mathrm{C}(24)$ | $1 \cdot 369(26)$ |
| $\mathrm{C}(25)-\mathrm{O}(1)$ | 1-123(23) | $\mathrm{C}(26)-\mathrm{O}(2)$ | 1-138(24) |
| $\mathrm{Rh}(1)-\mathrm{Rh}(2)$ | 3.551(2) | $\mathrm{Cl}(1)-\mathrm{Cl}(2)$ | 3-276(7) |

(b) Bond Angles ( ${ }^{\circ}$ )

| $\mathrm{Cl}(1)-\mathrm{Rh}(1)-\mathrm{Cl}(2)$ | $80 \cdot 6(2)$ | $\mathrm{N}(2)-\mathrm{Rh}(1)-\mathrm{N}(4)$ | 174.6(6) |
| :---: | :---: | :---: | :---: |
| $\mathrm{N}(2)-\mathrm{Rh}(1)-\mathrm{C}(2)$ | 79-1(7) | $\mathrm{N}(4)-\mathrm{Rh}(1)-\mathrm{C}(14)$ | 79•3(7) |
| $\mathrm{Cl}(1)-\mathrm{Rh}(1)-\mathrm{C}(14)$ | 179.1(5) | $\mathrm{Cl}(2)-\mathrm{Rh}(1)-\mathrm{C}(2)$ | 176.0(5) |
| $\mathrm{C}(25)-\mathrm{Rh}(2)-\mathrm{C}(26)$ | 88.7(10) | $\mathrm{Cl}(1)-\mathrm{Rh}(2)-\mathrm{Cl}(2)$ | 87.2(2) |
| $\mathrm{C}(25)-\mathrm{Rh}(2)-\mathrm{Cl}(1)$ | $177 \cdot 5(7)$ | $\mathrm{C}(26)-\mathrm{Rh}(2)-\mathrm{Cl}(2)$ | 176•8(7) |
| $\mathrm{Rh}(1)-\mathrm{Cl}(1)-\mathrm{Rh}(2)$ | 92.9(2) | $\mathrm{Rh}(1)-\mathrm{Cl}(2)-\mathrm{Rh}(2)$ | 92-4(2) |
| $\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{N}(2)$ | 112.6(15) | $\mathrm{C}(13)-\mathrm{N}(3)-\mathrm{N}(4)$ | 112.6 |
| $\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{Rh}(1)$ | 116.2(12) | $\mathrm{N}(3)-\mathrm{N}(4)-\mathrm{Rh}(1)$ | 117.4(12) |
| $\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{C}(7)$ | 115.0(16) | $\mathrm{N}(3)-\mathrm{N}(4)-\mathrm{C}(19)$ | $114 \cdot 6(15)$ |
| $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$ | 118.8(17) | $\mathrm{N}(3)-\mathrm{C}(13)-\mathrm{C}(14)$ | $118 \cdot 4(17)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{Rh}(1)$ | 113-1(13) | $\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{Rh}(1)$ | 111.6(13) |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | 119.7(17) | $\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$ | $121.0(17)$ |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$ | 120.4(19) | $\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$ | 118.4(18) |
| $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$ | 116.4(20) | $\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$ | $119 \cdot 4(20)$ |
| $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$ | 124.7(22) | $\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$ | $123 \cdot 0(23)$ |
| $\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$ | 117.3(19) | $\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(13)$ | 118.4(22) |
| $\mathrm{N}(2)-\mathrm{C}(7)-\mathrm{C}(8)$ | 119.8(19) | $\mathrm{N}(4)-\mathrm{C}(19)-\mathrm{C}(20)$ | 120.2(18) |
| $\mathrm{N}(2)-\mathrm{C}(7)-\mathrm{C}(12)$ | 121.6(19) | $\mathrm{N}(4)-\mathrm{C}(19)-\mathrm{C}(24)$ | 117.7(17) |
| $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$ | 124.2(21) | $\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$ | 119.0(20) |
| $\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$ | $119 \cdot 0$ (23) | $\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$ | 121.5(21) |
| $\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$ | 119.3(24) | $\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$ | 120.0(21) |
| $\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$ | $122 \cdot 3(24)$ | $\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$ | $122 \cdot 8(21)$ |
| $\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(7)$ | 116.7(21) | $\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(19)$ | 114.6(19) |
| $\mathrm{Rh}(2)-\mathrm{C}(25)-\mathrm{O}(1)$ | 179•3(22) | $\mathrm{Rh}(2)-\mathrm{C}(26)-\mathrm{O}(2)$ | 174.8(22) |

(c) Least-squares planes defined by atomic positions,* with distances ( $\AA$ ) of relevant atoms from the plane given in square brackets

Plane (i):
$\mathrm{Rh}(1), \mathrm{Cl}(1), \quad-0.1122 X-0.7316 Y+0.6725 Z=-4.8219$ $\mathrm{Cl}(2)$

Plane (ii) :
$\mathrm{Rh}(2), \mathrm{Cl}(1), \quad-0.5101 X-0.4967 Y+0.7022 Z=-2.9606$ $\mathrm{Cl}(2)$

Plane (iii) :
$\mathbf{R h}(2), \mathrm{Cl}(1), \quad-0.4919 X-0.4608 Y+0.7387 Z=-2.6491$ $\mathrm{Cl}(2), \mathrm{C}(25)$
$\mathrm{C}(26), \mathrm{O}(1)$,
$\mathrm{O}(2)$
$[\mathrm{Rh}(2)-0.007, \mathrm{Cl}(1)-0.086, \mathrm{Cl}(2) 0.091, \mathrm{C}(25)-0.026$, $\mathrm{C}(26) 0.006, \mathrm{O}(1)-0.049, \mathrm{O}(2) 0.070, \mathrm{Rh}(1) 0.880]$

Table 2 (Continued)
Plane (iv):

$$
\begin{aligned}
& \mathrm{N}(1), \mathrm{N}(2), \quad-0.3794 X+0.5392 Y+0.7519 Z=6.4053 \\
& \mathrm{C}(1)-\mathrm{C}(2) \\
& \quad[\mathrm{N}(1)-0.023, \mathrm{~N}(2) \quad 0.012, \mathrm{C}(1) 0.023, \mathrm{C}(2)-0.013 \\
& \quad \operatorname{Rh}(1)-0.053]
\end{aligned}
$$

Plane (v) :

$[\mathrm{N}(3) 0.034, \mathrm{~N}(4)-0.018, \mathrm{C}(13)-0.033, \mathrm{C}(14) 0.017$, $\mathrm{Rh}(1) 0 \cdot 110]$

Plane (vi):

$$
C(1)-(6) \quad-0.3503 X+0.5736 Y+0.7404 Z=6.5364
$$

$$
[\mathrm{C}(1)-0.012, \mathrm{C}(2) 0.012, \mathrm{C}(3) 0.003, \mathrm{C}(4)-0.020, \mathrm{C}(5)
$$

$$
0.021, \mathrm{C}(6)-0.005, \mathrm{Rh}(1) 0.031, \mathrm{~N}(1)-0.073, \mathrm{~N}(2)
$$ $0.013]$

Plane (vii) :

$$
\begin{aligned}
& \mathrm{C}(7)-(12) \quad-0.7471 X-0.2717 Y+0.6066 Z=1.5537 \\
& {[\mathrm{C}(7) 0.010, \mathrm{C}(8)-0.011, \mathrm{C}(9) 0.002, \mathrm{C}(10) 0.007, \mathrm{C}(11)} \\
& -0.007, \mathrm{C}(12)-0.001, \mathrm{~N}(2)-0.060]
\end{aligned}
$$

Plane (viii):

$$
C(13)-(18) \quad 0.8537 X+0.1182 Y+0.5071 Z=0.3064
$$

$[\mathrm{C}(13)-0.003, \mathrm{C}(14)-0.033, \mathrm{C}(15) 0.028, \mathrm{C}(16) 0.016$, $\mathrm{C}(17)-0.053, \mathrm{C}(18) 0.046, \mathrm{Rh}(1)-0.104, \mathrm{~N}(3) 0.020$, $\mathrm{N}(4)-0 \cdot 145]$
Plane (ix) :
$\mathrm{C}(19)-(24) \quad 0.7019 X-0.6676 Y+0.2484 Z=-8.9412$
$[\mathrm{C}(19)-0.025, \mathrm{C}(20) 0.014, \mathrm{C}(21) 0.006, \mathrm{C}(22)-0.013$, $\mathrm{C}(23) 0.001, \mathrm{C}(24) 0.017, \mathrm{~N}(4)-0.034]$
(d) Dihedral angles between planes ( ${ }^{\circ}$ )

| (i)——(ii) | 26.77 | (i)——(iii) | 27.24 |
| :---: | ---: | :--- | ---: |
| (iv)——(vi) | 2.67 | (v)——(viii) | 4.98 |
| (iv)—(vii) | 53.63 | (v)—-(ix) | $45 \cdot 09$ |

* In the equations $X, Y, Z$ refer to orthogonal co-ordinates obtained by the transformation

$$
\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]=\left[\begin{array}{ccc}
a & b \cos \gamma & 0 \\
0 & b \sin \gamma & 0 \\
0 & 0 & c
\end{array}\right]\left[\begin{array}{c}
x / a \\
y / b \\
z / c
\end{array}\right]
$$

between the normals to the planes defined by $\mathrm{Rh}(1)$, $\mathrm{Cl}(1), \mathrm{Cl}(2)$ and $\mathrm{Rh}(2), \mathrm{Cl}(1), \mathrm{Cl}(2)$, is $26 \cdot 8^{\circ}$. Table 3 lists the angles of fold found for other compounds which contain the $\mathrm{Rh}^{\mathrm{Cl}} \mathrm{Rh}$ bridging arrangement. It is clear that considerable flexibility is possible and that this is not simply related to the formal oxidation state of the metal. It seems that the arrangement adopted reflects steric or crystal-packing factors rather than metal-metal bonding as suggested for the case of (III).

Within the square-co-ordinate $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}_{2}\right]$ group of (I), mean bond lengths of $1 \cdot 82(2)$ and $2 \cdot 374(5) \AA$ for $\mathrm{Rh}-\mathrm{C}$ and $\mathrm{Rh}-\mathrm{Cl}$ respectively agree well with values of 1.81 and $2.355 \AA$ reported for (III). ${ }^{7}$ The group is not strictly planar (Figure 2), with a maximum atomic deviation of $0.09 \AA$ from the least-squares plane (iii), Table 2(c).

The two azobenzene groups co-ordinate $\mathrm{Rh}(1)$ in a way similar to that reported for (II). Each azobenzene ligand forms a five-membered chelate ring with Rh ,
$\sigma$-bonding through an ortho-carbon and the lone pair of the nitrogen atom. The two $\mathrm{Rh}^{-\mathrm{C}}$ bonds are cis and the two $\mathrm{Rh}^{-} \mathrm{N}$ bonds trans to one another. Each free

Table 3


Angle of fold/deg.
(cyclo-octa-1,5-diene) $\mathrm{Rh}^{\mathrm{I}} \mathrm{Cl}_{2} \mathrm{Rh}^{\mathrm{I}}$ (cyclo-octa-1,5-diene) ca. $0^{a}$
(cyclo-octa-1,5-diene) $\mathrm{Rh}^{\mathrm{I}} \mathrm{Cl}_{2} \mathrm{Rh}^{\mathrm{I}}\left[(\mathrm{PhO})_{3} \mathrm{P}\right]_{2} \quad \mathbf{5 7 . 4}{ }^{\boldsymbol{b}}$
$(\mathrm{CO})_{2} \mathrm{Rh}^{\mathrm{I}} \mathrm{Cl}_{2} \mathrm{Rh}^{\mathrm{I}}(\mathrm{CO})_{2}$

a J. A. Ibers and R. G. Snyder, Acta Cryst., 1962, 15, 923. ${ }^{6}$ J. Coetzer and G. Gafner, Acta Cryst. 1970, B26, 985. - Ref. 7. J. A. Evans, D. R. Russell, A. Bright, and B. L. Shaw, Chem. Comm., 1971, 841. - A. Bright, J. F. Malone, J. K. Nicholson, J. Powell, and B. L. Shaw, Chem. Comm., 1971, 712. \& This work.
phenyl group is twisted out of the plane of the rest of the azobenzene ligand by rotation about the $\mathrm{C}-\mathrm{N}$ bond. The dihedral angles between the phenyl groups and the

Table 4
Some rhodium-chlorine distances with various trans-ligands

| trans-Ligand | $d(\mathrm{Rh}-\mathrm{Cl}) / \AA$ | Rh oxidn. state | Cl type |
| :---: | :---: | :---: | :---: |
| CO | $2 \cdot 374(5){ }^{\text {a }}$, | I | br |
| $\sigma-\mathrm{Ph}$ | $2.532(5){ }^{\text {a }}$ b | III | br |
| ROH | $2.301(6){ }^{\text {a c }}$ | III | term |
| Cl | 2.32(1) a,d | III | term |
| $\mathrm{R}_{3} \mathrm{~N}$ | $2 \cdot 33(1){ }^{\text {d }}$ | III | term |
| pyridine | $2.339(4){ }^{\text {® }}$ | III | term |
| Cl | $2 \cdot 340(7)$ a,r | III | term |
| Cl | 2.34(1) $a, g$ | III | term |
| Cl | 2.347(6) ${ }^{h}$ | III | term |
| Cl | $2 \cdot 365(6){ }^{\text {h }}$ | III | br |
| Cl | $2 \cdot 360(4){ }^{a, i}$ | III | term |
| $\pi$-olefin | $2 \cdot 386(4){ }^{\text {a,c }}$ | III | br |
| $\mathrm{R}_{3}$ As | $2 \cdot 39(1){ }^{\text {g }}$ | III | term |
| $\sigma$-alkyl | 2.531(4) ${ }^{\text {a }}$ | III | term |
| $\sigma$-alkyl | 2.616(4) a,c | III | br |
| $\sigma$-alkyl | $2 \cdot 632(6)^{h}$ | III | br |
| CO | $2 \cdot 355^{\text {a }}{ }^{\text {j }}$ | I | br |
| $\pi$-olefin | $2 \cdot 38{ }^{\text {k,l }}$ | I | br |
| $\pi$-olefin | $2 \cdot 387(5)^{\text {a,m }}$ | I | br |
| $(\mathrm{PhO})_{3} \mathrm{P}$ | 2.404(5) ${ }^{\text {a,m }}$ | I | br |

${ }^{a}$ Mean of two. ${ }^{b}$ Compound ( I ), this work. ${ }^{c}\left[\left(\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}\right)\right.$ $\left.\mathrm{Cl}_{2} \mathrm{Rh}^{\mathrm{III}}\right]_{2}, \mathrm{MeOH}$; Table 3, ref. e. ${ }^{d}\left(o-\mathrm{Me}_{2} \mathrm{~N}^{2} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{AsMe}_{2}\right)-$ $\mathrm{Cl}_{3}^{2} \mathrm{Rh}^{11 I}$; G. Bombieri, R. Graziani, C. Panattoni, and L. Volponi, Chem. Comm., 1967, 977. © $\left[0-\mathrm{CH}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{P}(p-\right.$ $\left.\left.\mathrm{MeC}_{6} \mathrm{H}_{4}\right)_{2}\right](\mathrm{py})_{2} \mathrm{Cl}_{2} \mathrm{Rh}^{1 \mathrm{III}}$; R. Mason and A. D.C.Towl, J. Chem. Soc. (A), 1970, 1601. ${ }^{f}\left[\right.$ trans- $\left.\left(\mathrm{py}^{2}\right)_{4} \mathrm{Cl}_{2} \mathrm{Rh} 1 \mathrm{II}\right]\left[\mathrm{H}\left(\mathrm{NO}_{3}\right)_{2}\right]$; G. C. Dobinson, R. Mason, and D. R. Russell, Chem. Comm., 1967, 62. ${ }^{g}\left(o-\mathrm{MeO} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{AsMe}_{2}\right) \mathrm{ClRh}^{\text {III }}$; G. Bombieri, R. Graziani, C. Panattoni, and L. Volponi, Chem. Comm., 1967, 1284. ${ }^{h}\left[\left(\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{O}\right)(4 \text {-picoline })_{2} \mathrm{Cl}_{2} \mathrm{Rh}^{\mathrm{III}}\right]_{2}$; Table 3, ref. $d .{ }^{i} \pi$ $\left[\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Me}^{\mathrm{Le}}\right) \mathrm{CH}_{2}\right]\left(\mathrm{Ph}_{3} \mathrm{As}\right)_{2} \mathrm{Cl}_{2} \mathrm{Rh}^{1 I I I}$; ${ }^{1}$ T. G. Hewitt, J. J. de Boer, and K. Anzenhofer, Acta Cryst. 1970, B26, 1244. [ ${ }^{\left[\mathrm{Rh}^{1}-\right.}$ $(\mathrm{CO})_{2} \mathrm{Cl}_{3}$; ref. 7. ${ }^{k}$ Mean of four. ${ }^{6}$ [(cyclo-octa-1,5-diene)$\left.\mathrm{Rh}^{\mathrm{I} C l}\right]_{2}$; Table 3, ref. $a$. ${ }^{m}$ (cyclo-octa-1,5-diene) $\mathrm{Rh}^{\mathrm{I}}$-bis-$(\mu-\mathrm{Cl})-\left[(\mathrm{PhO})_{3} \mathrm{P}_{2} \mathrm{Rh}^{\mathrm{I}}\right.$; Table 3, ref. $b$.
chelate rings to which they are attached are 53.6 and $45 \cdot 1^{\circ}$ for the two ligands [Table 2(c), planes (iv), (v), (vii), (ix)].

The two chlorine atoms complete an octahedral co-
ordination of $\mathrm{Rh}(1)$. As in (II), this part of the molecule has an idealised $C_{2 v}$ symmetry. However, the dihedral angles in (I) are much larger than the corresponding ones ( 21.4 and $13 \cdot 4^{\circ}$ ) in (II) and this reflects the greater bulk of the bridging chloro-group relative to the oxygen atoms of the acetato-group.

The chelating groups are planar [planes (iv) and (v), Table $2(c)]$ but $\mathrm{Rh}(1)$ lies slightly out of both planes. The bond distances and bond angles agree very well with those found in (II) and a detailed comparison and discussion is given elsewhere. ${ }^{1}$ There we conclude that the mean distances for $\mathrm{Rh}-\mathrm{C} 1 \cdot 984(6)$ and $\mathrm{Rh}-\mathrm{N}$ $2.031(16) \AA$ are both $0.05 \AA$ less than is found for similar single bonds which suggests some degree of metal-ligand multiple bonding in (I). The bond lengths between light atoms are also consistent with some redistribution of the $\pi$-electron density around the chelate rings.

The $\mathrm{Rh}-\mathrm{Cl}$ distances in (I) emphasise the large variations that occur with different trans-ligands. Table 4 compares $\mathrm{Rh}-\mathrm{Cl}$ distances for a number of compounds with a variety of trans-ligands, oxidation states, and chlorine types. It will be seen that the results from (I) agree with those from similar compounds and that for $\mathrm{Rh}^{\text {III }}$ compounds the ligands can be arranged according to their trans-bond lengthening effect in the series: $\mathrm{ROH} \sim$ amines $\sim$ chlorine $<\pi$-olefin $\sim$ arsine $\ll \sigma$-alkyl.

We thank Professor P. L. Pauson, who supplied us with a sample of the crystals, and for additional information before publication, the N.A.T.O. and the S.R.C. for awards towards this work, and Drs. L. I. Hodgson and F.S. Stephens who have contributed to the computer programmes used.


[^0]:    ${ }^{5}$ D. T. Cromer and J. T. Waber, Acta Cryst., 1965, 18, 104.
    ${ }^{6}$ D. T. Cromer, Acta Cryst., 1965, 18, 17.
    ${ }^{7}$ L. F. Dahl, C. Martell, and D. L. Wampler, J. Amer. Chem. Soc., 1961, 88, 1761.

