Crystal and Molecular Structure of Tricarbonyl- π-[1,1,1-tricarbonyl-2,3-dimethoxy-5-(diphenyImethyl)ferracyclopentadiene]iron(Fe-Fe), a Product from the Reaction between Diphenyldiazomethane and Tricarbonyl-π-[1,1,1-tricarbonyl-2,5-dimethoxyferracyclopentadiene]iron($\mathrm{Fe}-\mathrm{Fe}$)

By J. A. D. Jeffreys * and (Mrs.) C. M. Willis (née Mansell), Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL

Abstract

The crystal and molecular structure of the title compound (2) have been determined by X-ray diffraction methods from photographic data. Crystals are monoclinic prisms, space group $P 2_{1} / c$, with $Z=4$ in a cell with $a=14.75$, $b=8.95, c=19.58 \AA, \beta=108.2^{\circ}$. The structure was solved by Patterson and Fourier methods and refined by least-squares techniques to $R 0.125$ for 1547 reflections. Both iron atoms have distorted octahedral co-ordination. The $\mathrm{Fe}-\mathrm{C}-\mathrm{O}$ systems are all slightly bent. The three $\mathrm{C}-\mathrm{C}$ bond lengths in the five-membered ring are all $1.40 \pm$ $0.01 \AA$, the iron atom lying $0.18 \AA$ out of the plane through the other four atoms on the side away from the other iron atom. $\mathrm{Fe}-\mathrm{Fe}$ is 2.54 A .

Irradiation of a mixture of diphenyldiazomethane and tricarbonyl- π-[1,1,1-tricarbonyl-2,5-dimethoxyferracyclopentadiene]iron (la) produces a complex mixture of compounds. The crystal structure determination of one of these, tricarbonyl- π-[1,1,1-tricarbonyl-2,3-di-methoxy-5-(diphenylmethyl)ferracyclopentadiene]iron, (2), is described here. The results have been summarised in an earlier publication. ${ }^{1}$

(1)

(2)

$$
\begin{array}{lll}
\mathrm{a} ; \mathrm{H} & \mathrm{Me} \\
\mathrm{~b} ; \mathrm{Me} & \mathrm{H}
\end{array}
$$

EXPERIMENTAL

The compound separated from light petroleum as prisms, m.p. $148{ }^{\circ} \mathrm{C}$, elongated along b with (100) prominent.

Crystal Data. $-\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{Fe}_{2} \mathrm{O}_{8}, M=558$, Monoclinic, $a=$ $14.75, \quad b=8.95, \quad c=19.58 \AA, \quad \beta=108 \cdot 2^{\circ}, \quad U=2455 \AA$,

[^0]$D_{\mathrm{m}}=1.495 \pm 0.005$ (by flotation), $Z=4, D_{\mathrm{c}}=1.509$, $F(000)=$ 1136. Space group $P 2_{1} / c$ (No. 14) from systematic absences. $\quad \mathrm{Cu}-K_{\alpha}$ radiation, $\lambda=1.542 \AA ; \mu\left(\mathrm{Cu}-K_{\alpha}\right) 105 \cdot 8$ cm^{-1}. Crystal dimensions, $0.1 \times 0.55 \times 0.3 \mathrm{~mm}$.

Crystallographic Measurements.-The symmetry and cell dimensions were obtained from rotation and Weissenberg photographs about b with $\mathrm{Cu}-K_{\alpha}$ radiation, and from precession photographs with Mo- $K_{\alpha}(\lambda=0.7107 \AA)$ radiation. The intensity data for the layers $h 0-7 l$ were collected as equi-inclination multiple-film Weissenberg photographs and estimated visually; accidentally absent reflections were included at one third of the locally observable minimum. ${ }^{2}$ The intensities were corrected for time of exposure, polarisation and Lorentz factors, but not for absorption, and 1582 independent structure factors were evaluated of which 250 were unobserved.

Structure Determination.-A three-dimensional Patterson map yielded co-ordinates for the two iron atoms, and successive rounds of structure-factor calculations and Fourier syntheses revealed the remaining atom positions. Whenever structure factors were calculated with isotropic temperature parameters, the data were rescaled so that for each layer $\Sigma K\left|F_{\mathrm{o}}\right|=\Sigma\left|F_{\mathrm{c}}\right|$, where K is a scaling factor. Initially, the summations were based on observed F-values. Later, a program was written (see Appendix) providing automatic refinement for a difference synthesis. When all the atoms had been located, three rounds of block-diagonal least-squares refinement of co-ordinates and isotropic temperature factors (but not layer scale-factors) gave R $0 \cdot 151$, but the largest values of $\left|F_{\mathrm{c}}\right|$ were systematically greater than the corresponding $\left|F_{0}\right|$ values. After three

Table 1
Convergence of the refinement

Least-squares round no.	R (overall)	R^{\prime}
(9)	0.1253	0.0238^{*}
(10)	0.1246	0.0235

further such rounds, using a correction for the real part of the anomalous dispersion for iron, and with anisotropic temperature factors for these atoms, R was $0 \cdot 134$; however, the discrepancy between $\left|F_{\mathrm{o}}\right|$ and $\left|F_{\mathrm{c}}\right|$ persisted. This was assumed to be due to secondary extinction, and all reflections with $\left|F_{\mathrm{c}}\right|>100 \cdot 0$ were removed from the file, ${ }^{3}$ leaving 1547. Structure factors were recalculated using atomic co-ordinates and isotropic temperature factors from the latest least-squares round (for the iron atoms, the mean values of $U_{11}+U_{22}+U_{33}$ was used), and the layers rescaled. After four more rounds of least-squares refinement, as already described, refinement had converged at $R 0.125$. The weighting scheme used in the refinement was $\sqrt{ } w=1$ if $\left|F_{0}\right| \gtrless F_{0}{ }^{*} ; \quad \sqrt{ } w=F_{0}{ }^{*} /\left|F_{\mathrm{o}}\right|$ if $F_{\mathrm{o}} \mid>F_{\mathrm{o}}{ }^{*}$. The value of $F_{0}{ }^{*}$ was adjusted during the refinement, and during the last four rounds F_{0} * was $\mathbf{4 0 \cdot 0}$. In the structurefactor calculations the atomic scattering factors were taken from ref. 4. Observed and calculated structure factors are listed in Supplementary Publication No. SUP 20400 (8 pp., 1 microfiche). \dagger

RESULTS AND DISCUSSION

Table 1 shows the final weighting scheme analysis and the convergence of the refinement. Table 2 gives the final co-ordinates of the atoms, their temperature factors, and standard deviations derived from the final leastsquares matrix. Figure la shows one molecule projected on the ac plane. The numbering system used is shown in Figure 1b. Table 3 lists interatomic distances, valency angles, and some non-bonded interactions. Table 4 gives the mean values for the lengths and angles for selected types of bond, together with the means of some previously measured values, and the mean estimated standard deviations for bond lengths and angles. Our values for bond lengths and angles are similar to those already determined, and all the values for the bond lengths averaged in this table lie within 1.5σ of the appropriate mean.

The $\mathrm{Fe}(1)-\mathrm{Fe}(2)$ separation, $2.54 \AA$, lies within the usual range for a bonded distance. ${ }^{5}$ Formal bond angles at each iron atom are listed in Table 3. If the links between $\mathrm{Fe}(1)$ and the π-electrons of the diene

[^1]system $C(30)-(33)$ are considered as equivalent to bonding to two pseudo-atoms, $\mathrm{M}(1)$, and $\mathrm{M}(2)$, re-

Table 2
Final co-ordinates and isotropic temperature parameters with standard deviations in parentheses

Atom	$10^{4} x / a$	$10^{4} y / b$	$10^{4} \mathrm{z} / \mathrm{c}$	$10^{4} U_{\text {iso }}$
$\mathrm{Fe}(1)$	2125(1)	3391 (3)	282(1)	
$\mathrm{Fe}(2)$	3096(1)	1003(3)	430(1)	*
$\mathrm{O}(3)$	889(9)	5624(16)	583(7)	988(46)
$\mathrm{O}(4)$	2323(14)	4483(24)	-996(11)	1616(74)
$\mathrm{O}(5)$	578 (10)	1446(17)	-507(8)	1121(57)
O (6)	4836(10)	-274(17)	1401(8)	1059(48)
O(7)	3168(10)	290 (17)	-1010(8)	1085(49)
$\mathrm{O}(8)$	1920(11)	-1708(18)	233(8)	1166(54)
$\mathrm{O}(9)$	4318(8)	3616(13)	273(6)	$694(35)$
$\mathrm{O}(10)$	3923(8)	5225(14)	1209(6)	793(38)
$\mathrm{C}(11)$	1376(13)	4723(21)	477(10)	707(56)
C(12)	2257(17)	4255(28)	-440(13)	1136(80)
C(13)	1216(13)	2175(23)	-221(11)	823(62)
$\mathrm{C}(14)$	4132(13)	227(22)	1018(10)	764(58)
$\mathrm{C}(15)$	$3175(13)$	593(22)	-423(10)	787(59)
$\mathrm{C}(16)$	2329(13)	-583(21)	320 (10)	746 (58)
C (17)	3291(12)	178(20)	2478(9)	656(53)
$\mathrm{C}(18)$	3771 (15)	-832(24)	3059(11)	910 (67)
$\mathrm{C}(19)$	$3305(14)$	-2064(24)	3126(11)	862 (63)
$\mathrm{C}(20)$	2395(14)	-2411(24)	2702(11)	$899(66)$
$\mathrm{C}(21)$	1912(14)	-1381(22)	2121(11)	825 (62)
C(22)	2412(11)	-86(19)	2025(9)	599(50)
$\mathrm{C}(23)$	1582(13)	2684(21)	2405(10)	$746(57)$
$\mathrm{C}(24)$	960 (15)	3694(24)	2644(11)	927 (68)
C(25)	21(16)	3888(26)	2163(12)	1014(73)
$\mathrm{C}(26)$	-321(16)	3202(27)	1529(13)	1088(77)
$\mathrm{C}(27)$	$277(13)$	$2189(21)$	1307(10)	$761(58)$
$\mathrm{C}(28)$	1243(12)	2024(19)	1749(9)	636(51)
C (29)	1858(12)	1003(20)	1464(9)	$664(53)$
$\mathrm{C}(30)$	2541(11)	1870(18)	1124(8)	527 (46)
C(31)	2883(12)	3254(20)	1418(9)	660(53)
C(32)	3476(12)	3853(18)	1057(9)	589(49)
C(33)	3665(12)	2911(19)	538 (9)	609(50)
C(34)	4675(14)	2815(24)	-250(11)	920(67)
$\mathrm{C}(35)$	3724(14)	6137(22)	1787(11)	803(62)

* An anisotropic temperature factor was used in the form: $T=\exp \left[-2 \pi^{2}\left(U_{11} h^{2} a^{* 2}+U_{22} k^{2} b^{* 2}+U_{33} l^{2} c^{* 2}+2 U_{12} h k a^{*} b^{*}\right.\right.$ $\left.\left.+2 U_{13} h l a^{*} c^{*}+2 U_{23} k l b^{*} c^{*}\right)\right]$.
Final values $\left(\times 10^{4}\right)$ for the components of the tensor:

Atom	U_{11}	U_{22}	U_{33}
$\mathrm{Fe}(1)$	$592(19)$	$665(19)$	$580(20)$
$\mathrm{Fe}(2)$	$566(19)$	$579(18)$	$564(20)$
Atom	$2 U_{12}$	$2 U_{13}$	$2 U_{23}$
$\mathrm{Fe}(1)$	$175(30)$	$530(31)$	$225(30)$
$\mathrm{Fe}(2)$	$-32(30)$	$470(31)$	$-104(29)$

[^2]Table 3
Selected valency parameters
(a) Bond lengths (\AA)

$\mathrm{Fe}(1)-\mathrm{Fe}(2)$	2.54
$\mathrm{Fe}(1)-\mathrm{C}(11)$	1.75
$\mathrm{Fe}(1)-\mathrm{C}(12)$	1.68
$\mathrm{Fe}(1)-\mathrm{C}(13)$	$1 \cdot 77$
$\mathrm{Fe}(1)-\mathrm{C}(30)$	$2 \cdot 08$
le(1)-C(31)	$2 \cdot 16$
$\mathrm{Fe}(1)-\mathrm{C}(32)$	$2 \cdot 13$
$\mathrm{Fe}(1)-\mathrm{C}(33)$	$2 \cdot 21$
$\mathrm{F}(2)-\mathrm{C}(14)$	1.74
$\mathrm{Fe}(2)-\mathrm{C}(15)$	1.75
$\mathrm{Fe}(2)-\mathrm{C}(16)$	1.79
$\mathrm{Fe}(2)-\mathrm{C}(30)$	1.95
$\mathrm{Fe}(2)-\mathrm{C}(33)$	1.89
$\mathrm{C}(11)-\mathrm{O}(3)$	1-14
$\mathrm{C}(12)-\mathrm{O}(4)$	$1 \cdot 19$
$\mathrm{C}(13)-\mathrm{O}(5)$	$1 \cdot 14$
$\mathrm{C}(14)-\mathrm{O}(6)$	$1 \cdot 16$
$\mathrm{C}(15)-\mathrm{O}(7)$	$1 \cdot 18$
$\mathrm{C}(16)-\mathrm{O}(8)$	$1 \cdot 16$
$\mathrm{C}(17)-\mathrm{C}(18)$	1.45
$\mathrm{C}(17)-\mathrm{C}(22)$	$1 \cdot 34$
$\mathrm{C}(18)-\mathrm{C}(19)$	1.33
$\mathrm{C}(19)-\mathrm{Cl}(20)$	$1 \cdot 38$
$\mathrm{C}(20)-\mathrm{C}(21)$	1.46
$\mathrm{C}(21)-\mathrm{C}(22)$	$1 \cdot 42$

(b) Valency angles (${ }^{\circ}$)

Around $\mathrm{Fe}(1)$
$\mathrm{Fe}(2)-\mathrm{Fe}(1)-\mathrm{C}(11)$ $\mathrm{Fe}(2)-\mathrm{Fe}(1)-\mathrm{C}(12)$ $\mathrm{Fe}(2)-\mathrm{Fe}(1)-\mathrm{C}(13)$ $\mathrm{Fe}(2)-\mathrm{Fe}(1)-\mathrm{C}(30)$ $\mathrm{Fe}(2)-\mathrm{Fe}(1)-\mathrm{C}(31)$ $\mathrm{Fe}(2)-\mathrm{Fe}(1)-\mathrm{C}(32)$ $\mathrm{Fe}(2)-\mathrm{Fe}(1)-\mathrm{C}(33)$ $\mathrm{C}(11)-\mathrm{Fe}(1)-\mathrm{C}(12)$ $\mathrm{C}(11)-\mathrm{Fe}(1)-\mathrm{C}(13)$ $\mathrm{C}(11)-\mathrm{Fe}(1)-\mathrm{C}(30)$ $\mathrm{C}(11)-\mathrm{Fe}(1)-\mathrm{C}(31)$
$\mathrm{C}(11)-\mathrm{Fe}(1)-\mathrm{C}(32)$ $\mathrm{C}(11)-\mathrm{Fe}(1)-\mathrm{C}(32$ $\mathrm{C}(11)-\mathrm{Fe}(1)-\mathrm{C}(33)$
$\mathrm{C}(12)-\mathrm{Fe}(1)-\mathrm{C}(13)$ $\mathrm{C}(12)-\mathrm{Fe}(1)-\mathrm{C}(30)$ $\mathrm{C}(12)-\mathrm{Fe}(1)-\mathrm{C}(31)$ $\mathrm{C}(12)-\mathrm{Fe}(1)-\mathrm{C}(32)$ $\mathrm{C}(12)-\mathrm{Fe}(1)-\mathrm{C}(33)$ $\mathrm{C}(13)-\mathrm{Fe}(1)-\mathrm{C}(30)$ $\mathrm{C}(13)-\mathrm{Fe}(1)-\mathrm{C}(31)$ $\mathrm{C}(13)-\mathrm{Fe}(1)-\mathrm{C}(32)$ $\mathrm{C}(13)-\mathrm{Fe}(1)-\mathrm{C}(33)$ $\mathrm{C}(30)-\mathrm{Fe}(1)-\mathrm{C}(31)$ $\mathrm{C}(30)-\mathrm{Fe}(1)-\mathrm{C}(32)$ $\mathrm{C}(30)-\mathrm{Fe}(1)-\mathrm{C}(33)$ $\mathrm{C}(31)-\mathrm{Fe}(1)-\mathrm{C}(32)$ $\mathrm{C}(31)-\mathrm{Fe}(1)-\mathrm{C}(33)$ $\mathrm{C}(32)-\mathrm{Fe}(1)-\mathrm{C}(33)$ $\mathrm{Fe}(2)-\mathrm{Fe}(1)-\mathrm{M}(1)$ $\mathrm{Fe}(2)-\mathrm{Fe}(1)-\mathrm{M}(2)$ $\mathrm{C}(11)-\mathrm{Fe}(1)-\mathrm{M}(1)$ $\mathrm{C}(11)-\mathrm{Fe}(1)-\mathrm{M}(2)$ $\mathrm{C}(12)-\mathrm{Fe}(1)-\mathrm{M}(1)$ $\mathrm{C}(12)-\mathrm{Fe}(1)-\mathrm{M}(2)$ $\mathrm{C}(13)-\mathrm{Fe}(1)-\mathrm{M}(1)$ $\mathrm{C}(13)-\mathrm{Fe}(1)-\mathrm{M}(2)$

$\mathrm{C}(23)-\mathrm{C}(24)$	1.46
$\mathrm{C}(23)-\mathrm{C}(28)$	1.36
$\mathrm{C}(24)-\mathrm{C}(25)$	1.42
$\mathrm{C}(25)-\mathrm{C}(26)$	1.33
$\mathrm{C}(26)-\mathrm{C}(27)$	1.42
$\mathrm{C}(27)-\mathrm{C}(28)$	1.42
$\mathrm{C}(22)-\mathrm{C}(29)$	1.51
$\mathrm{C}(28)-\mathrm{C}(29)$	1.51
$\mathrm{C}(29)-\mathrm{C}(30)$	1.57
$\mathrm{C}(30)-\mathrm{C}(31)$	1.39
$\mathrm{C}(31)-\mathrm{C}(32)$	1.39
$\mathrm{C}(32)-\mathrm{C}(33)$	1.41
$\mathrm{C}(32)-\mathrm{O}(10)$	1.38
$\mathrm{O}(10)-\mathrm{C}(35)$	1.50
$\mathrm{C}(33)-\mathrm{O}(9)$	1.38
$\mathrm{O}(9)-\mathrm{C}(34)$	1.48

$\mathrm{M}(1) \mathrm{M}(2)$ are the mid-points of bonds $\mathrm{C}(30)-\mathrm{C}(31)$, and $\mathrm{C}(32)-\mathrm{C}(33)$, respectively

$\mathrm{Fe}(1)-\mathrm{M}(1)$	2.00
$\mathrm{Fe}(1)-\mathrm{M}(2)$	2.05

Around $\mathrm{Fe}(2)$	
$\mathrm{Fe}(1)-\mathrm{Fe}(2)-\mathrm{C}(14)$	139
$\mathrm{Fe}(1)-\mathrm{Fe}(2)-\mathrm{C}(15)$	106
$\mathrm{Fe}(1)-\mathrm{Fe}(2)-\mathrm{C}(16)$	110
$\mathrm{Fe}(1)-\mathrm{Fe}(2)-\mathrm{C}(30)$	53
$\mathrm{Fe}(1)-\mathrm{Fe}(2)-\mathrm{C}(33)$	58
$\mathrm{C}(14)-\mathrm{Fe}(2)-\mathrm{C}(15)$	104
$\mathrm{C}(14)-\mathrm{Fe}(2)-\mathrm{C}(16)$	99
$\mathrm{C}(14)-\mathrm{Fe}(2)-\mathrm{C}(30)$	100
$\mathrm{C}(14)-\mathrm{Fe}(2)-\mathrm{C}(33)$	91
$\mathrm{C}(15)-\mathrm{Fe}(2)-\mathrm{C}(16)$	87
$\mathrm{C}(15)-\mathrm{Fe}(2)-\mathrm{C}(30)$	156
$\mathrm{C}(15)-\mathrm{Fe}(2)-\mathrm{C}(33)$	98
$\mathrm{C}(16)-\mathrm{Fe}(2)-\mathrm{C}(30)$	91
$\mathrm{C}(16)-\mathrm{Fe}(2)-\mathrm{C}(33)$	168
$\mathrm{C}(30)-\mathrm{Fe}(2)-\mathrm{C}(33)$	80
Carbonyl	
$\mathrm{Fe}(1)-\mathrm{C}(11)-\mathrm{O}(3)$	178
$\mathrm{Fe}(1)-\mathrm{C}(12)-\mathrm{O}(4)$	171
$\mathrm{Fe}(1)-\mathrm{C}(13)-\mathrm{O}(5)$	173
$\mathrm{Fe}(2)-\mathrm{C}(14)-\mathrm{O}(6)$	178
$\mathrm{Fe}(2)-\mathrm{C}(15)-\mathrm{O}(7)$	176
$\mathrm{Fe}(2)-\mathrm{C}(16)-\mathrm{O}(8)$	172

Internal angles in the	
benzene rings	
$\mathrm{C}(17)$	123
$\mathrm{C}(18)$	117
$\mathrm{C}(19)$	124
$\mathrm{C}(20)$	118
$\mathrm{C}(21)$	118
$\mathrm{C}(22)$	122
$\mathrm{C}(23)$	119
$\mathrm{C}(24)$	116
$\mathrm{C}(25)$	125
$\mathrm{C}(26)$	119
$\mathrm{C}(27)$	119
$\mathrm{C}(28)$	122

${ }^{6}$ Program SCXR STER 01: a listing is available from J. A. D. J.

7 A. A. Hock and O. S. Mills, Acta Cryst., 1961, 14, 139.
${ }^{8}$ (a) G. F. Epstein and L. F. Dahl, J. Amer. Chem. Soc., 1970, 92, 493; (b) p. 502.
${ }^{9}$ O. S. Mills and G. Robinson, Acta Cryst., 1963, 16, 758.

Table 3 (Continued)
(c) Other angles

$\mathrm{C}(17)-\mathrm{C}(22)-\mathrm{C}(29)$	124	$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)$	116
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(29)$	116	$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{Fe}(2)$	116
$\mathrm{C}(23)-\mathrm{C}(28)-\mathrm{C}(29)$	122	$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{O}(10)$	124
$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(29)$	116	$\mathrm{C}(33)-\mathrm{C}(32)-\mathrm{O}(10)$	120
$\mathrm{C}(22)-\mathrm{C}(29)-\mathrm{C}(28)$	112	$\mathrm{C}(32)-\mathrm{O}(10)-\mathrm{C}(35)$	117
$\mathrm{C}(22)-\mathrm{C}(29)-\mathrm{C}(30)$	111	$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{O}(9)$	108
$\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(30)$	113	$\mathrm{Fe}(2)-\mathrm{C}(33)-\mathrm{O}(9)$	135
$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{Fe}(2)$	124	$\mathrm{C}(33)-\mathrm{O}(9)-\mathrm{C}(34)$	119
$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(31)$	117		
$\mathrm{Fe}(2)-\mathrm{C}(30)-\mathrm{C}(31)$	118	$\mathrm{C}(19)-\mathrm{C}(22)-\mathrm{C}(29)$	175
$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(32)$	110	$\mathrm{C}(25)-\mathrm{C}(28)-\mathrm{C}(29)$	176

(d) Intermolecular contacts $<\mathbf{3 . 6} \AA$

$\mathrm{O}(3) \cdot \cdots \mathrm{O}\left(8^{\mathbf{I}}\right)$	$3 \cdot 02$	$\mathrm{C}(11) \cdots \mathrm{O}\left(8^{1}\right)$	$3 \cdot 36$
$\mathrm{O}(3) \cdots \mathrm{O}\left(3^{\text {III }}\right)$	$3 \cdot 10$	$\mathrm{O}(3) \cdots \mathrm{O}\left(5^{\text {III }}\right)$	$3 \cdot 37$
$\mathrm{O}(6) \cdots \mathrm{O}\left(7^{\text {II }}\right)$	$3 \cdot 27$	$\mathrm{O}(4) \cdots \mathrm{C}\left(26^{\text {III }}\right)$	$3 \cdot 39$
		$\mathrm{C}(18) \cdots \mathrm{O}\left(4^{\mathbf{v}}\right)$	$3 \cdot 39$
$\mathrm{C}(35) \cdots \mathrm{C}\left(19^{\text {I }}\right.$)	$3 \cdot 29$	$\mathrm{O}(10) \cdots \mathrm{C}\left(18^{\text {VII }}\right)$	$3 \cdot 39$
$\mathrm{C}(35) \cdots \mathrm{C}\left(20{ }^{\text {I }}\right.$)	3-31	$\mathrm{O}(6) \cdots \mathrm{C}\left(34^{\text {II }}\right)$	$3 \cdot 43$
$\mathrm{C}(19) \cdots \mathrm{O}\left(2^{\mathrm{V}}\right)$	$3 \cdot 34$	$\mathrm{O}(9) \cdots \mathrm{C}\left(34^{\text {IV }}\right)$	$3 \cdot 53$
$\mathrm{O}(3) \cdots \mathrm{C}\left(11^{\text {III }}\right)$	3.35	$\mathrm{C}(20) \cdots \mathrm{O}\left(4^{\text {v }}\right)$	$3 \cdot 55$
		$\mathrm{O}(3) \cdots \mathrm{C}\left(13^{\text {III }}\right)$	$3 \cdot 56$
		$\mathrm{C}(25) \cdots \mathrm{C}\left(21^{\text {VI }}\right)$	$3 \cdot 56$

The Roman numerals as superscripts refer to the following equivalent positions:

$$
\begin{aligned}
& \text { I } x, 1+y, z \\
& \text { II } 1-x, \bar{y}, \bar{z} \\
& \text { III } \bar{x}, 1-y, \bar{z} \\
& \text { IV 1-x,1-y,z}
\end{aligned}
$$

$$
\mathrm{V} x, \frac{1}{2}-y, \frac{1}{2}+z
$$

$$
\text { VI } x, \frac{1}{2}+y, \frac{1}{2}-z
$$

$$
\text { VII } 1-x, \frac{1}{2}+y, \frac{1}{2}-z
$$

spectively, at the mid-points of the bonds $\mathrm{C}(30)-\mathrm{C}(31)$, and $\mathrm{C}(32)-\mathrm{C}(33)$, then each iron atom has distorted octahedral co-ordination. A program ${ }^{6}$ was written to compute (r, θ) values for the stereographic projection of

Table 4
Means of selected valency parameters. Values in parentheses are the means of previously published values ${ }^{a}$
Bond lengths (\AA)
$\mathrm{C}(\mathrm{ar})-\mathrm{C}(\mathrm{ar})$
$\mathrm{C}\left(\mathrm{sp}^{2}\right) \mathrm{C}\left(\mathrm{sp}^{2}\right)$
$\mathrm{C}\left(\mathrm{sp}^{3}\right) \mathrm{C}\left(\mathrm{unsat}^{2}\right)$
$\mathrm{Fe}-\mathrm{C}($ carbonyl $)$
$\mathrm{Fe}(2)-\mathrm{C}($ alkyl) $; \sigma$
$\mathrm{Fe}(1)-\mathrm{C}($ unsat. $) ; \pi$
$\mathrm{C}-\mathrm{O}$ (carbonyl)
1.40 (1.39)
$1.40(1.42)^{b-1}$
$1.53(1.51)^{-1}$
$1.74(1.77)^{b-d, \theta}$
$1.92(1.97)^{b-d}$
$2 \cdot 15(2 \cdot 11) b, c$
$1 \cdot 16$ ($1 \cdot 15$)
Bond angle at carbonyl carbon 175°
Mean estimated standard deviations, over all values
$\begin{array}{lll}\text { Bond lengths, }(\AA) & \mathrm{Fe}-\mathrm{C} & 0.020 \\ & \mathrm{C}-\mathrm{O} & 0.026 \\ & \mathrm{C}-\mathrm{C} & 0.028\end{array}$
Bond angles (a) $\mathrm{Fe}-\mathrm{C}-\mathrm{O} \quad 2.7^{\circ}$
(b) All other types $2 \cdot 4^{\circ}$
a Taken from Chem. Soc. Special Publ., No. 18, 1965, unless otherwise stated. ${ }^{b}$ Ref. 7. © Ref. 8a. ${ }^{d}$ Ref. 8b. © Ref. 9. f Ref. 10. \quad Ref. 11.
bond vectors around a central atom, taking each vector in turn as the polar axis. Figure 2 shows stereographic projections of the bond vectors about $\mathrm{Fe}(1)$ and $\mathrm{Fe}(2)$. The pair of views was selected to show that the departures from octahedral co-ordination are similar for the two iron atoms; but, as the sites occupied by the $\mathrm{Fe}-\mathrm{Fe}$ vector in the two diagrams are different, the
${ }^{10}$ R. L. Beddoes, P. F. Lindley, and O. S. Mills, Angew. Chem. Internat. Edn., 1970, 9, 304.

11 J. P. van Vuuren, R. J. Fletterick, J. Meinwald, and R. E. Hughes, J. Amer. Chem. Soc., 1971, 93, 4394, and references therein.
distortions of the symmetry along the $\mathrm{Fe}-\mathrm{Fe}$ bond are different for the two iron atoms.

The bond angles of the $\mathrm{Fe}-\mathrm{C}-\mathrm{O}$ systems are slightly less than 180° and are unexceptional. The mean $\mathrm{Fe}-\mathrm{C}$
that the π electrons are delocalised. Such delocalisation has been observed in compound (lb), ${ }^{7}$ butadiene(tricarbonyl)iron, ${ }^{9}$ and in more complex compounds containing the latter ligand system. ${ }^{8 b, 9,10}$ The $\mathrm{Fe}-\mathrm{C}$

Figure la The molecule projected on the ac plane
and $\mathrm{C}-\mathrm{O}$ distances, and mean valency angle are similar to those found in other iron carbonyl compounds. The shortest non-bonded distance between an iron atom and a carbonyl carbon atom is $2.86 \AA[\mathrm{Fe}(2) \cdots \mathrm{C}(13)]$, the

Figure lb
bond angle at the carbonyl group being 173°. These values suggest that there is no interaction between one iron atom and a carbonyl group attached to the other

Figure 2 Stereographic projections of the bond vectors round (a) $\mathrm{Fe}(1)$, and (b) $\mathrm{Fe}(2)$
iron atom, unlike the case of compound (lb) [ref. 7; $c f$. ref. $8(a)]$.

The three carbon-carbon bonds of the (formal) butadiene system are nearly the same length, showing
σ bonds (mean $1.92 \AA$) are short; a recent publication ${ }^{11}$ quotes a range $1.94-2.10 \AA$, and the mean value for related compounds (Table 4) is also longer than our value. The bond $\mathrm{Fe}(1)-\mathrm{C}(33)(2 \cdot 21 \AA)$ is long for this type of bond, but the other three values are unexceptional.
Table 5 gives some out-of-plane distances. The atoms of the benzene ring $\mathrm{C}(17)-(22)$ are coplanar;

Table 5

Out-of-plane distances (\AA)
Plane (1): C(17)-(22)
$[\mathrm{C}(17) 0.00, \mathrm{C}(18)-0.01, \mathrm{C}(19) 0.01, \mathrm{C}(20) 0.00, \mathrm{C}(21)-0.01$, $\mathrm{C}(22) 0.01, \mathrm{C}(29)-0.11]$
Plane (2): C(23)-(28)
$[\mathrm{C}(23)-0.01, \mathrm{C}(24)-0.01, \mathrm{C}(25) 0.01, \mathrm{C}(26) 0.01, \mathrm{C}(27)-0.03$, $\mathrm{C}(28) 0.03, \mathrm{C}(29) 0.07]$
Plane (3): C(30)-(33)
$[\mathrm{C}(30) 0.01, \mathrm{C}(31)-0.03, \mathrm{C}(32) 0.03, \mathrm{C}(33)-0.01, \mathrm{Fe}(2)-0.15$, $C(29)-0.05, O(9)-0.06, O(10) 0.02]$
those of benzene ring $\mathrm{C}(23)-(28)$ are nearly so, but $\mathrm{C}(29)$ lies out of the plane of either ring. This distortion is probably due to forces resulting from crystal packing, as ring $C(17)$-(22) is involved in two carbon-carbon non-bonded distances of $3 \cdot 30 \pm 0.01 \AA$. This distance is less than the sum of the van der Waals radius of a $\geq \mathrm{CH}_{2}$ group $(2.0 \AA)$ and half the spacing distance in graphite $(1.7 \AA)$. The next closest such contact is $\mathrm{C}(25) \cdots \mathrm{C}\left(21^{\mathrm{IV}}\right)(3.56 \AA)$. The angle between the planes of the two phenyl residues is 80°. The system $\mathrm{C}(30)$-(33) is nearly planar, but the adjacent atoms, except for $\mathrm{O}(10)$ lie outside this plane; $\mathrm{Fe}(2)$ lies $0.15 \AA$ out of the plane, on the side remote from $\mathrm{Fe}(1)$. This situation also holds in compound (1b), in which the
atoms corresponding to $\mathrm{C}(30)-(33)$ are accurately coplanar, and the iron atom is $0.18 \AA$ from this plane on the side away from the other iron atom (results calculated from data given in ref. 7); larger departures of the iron
grid point nearest x_{0}, then adequate correction was obtained by making the correction equal to $\left[\left(\rho_{+1}-\rho_{-1}\right)\right.$ multiplied by grid spacing in $\AA / 10 Z_{0}$ multiplied by length of all cell edge in $\AA]$, where Z_{0} is the atomic number of the atom

\section*{| 0 | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- |}

Figure 3 The packing of the molecules, seen down a. Heavy lining indicates proximity to the observer
atom from the mean plane of a ferracyclopentadiene system have been observed, associated with a longer $\mathrm{Fe}-\mathrm{C} \sigma$ bond (0.24 and $1.97,{ }^{8 b}$ and 0.31 and $1.98 \AA^{8 a}$).

Figure 3 shows the arrangement of the molecules seen down the a-axis. These are packed with the carbonyl groups of one molecule facing the carbonyl groups of neighbouring molecules. With the exception of the close approaches mentioned above, the contacts between different molecules are of the order of the sums of the van der Waals radii of the atoms concerned.

APPENDIX

Difference Fourier Synthesis with Automatic Refinement.If x_{0} is the postulated site of an atom, then the correction to the x co-ordinate is approximately proportional to (slope of electron density at $x=x_{0}$) over (curvature of the electron density at the centre of the atom). ${ }^{12}$ If p_{-1}, p_{0}, p_{+1} are the electron-densities at successive grid points, with ρ_{0} at the
concerned, and, for the temperature parameter, empirically, the correction is equal to $-\rho_{0} / 50$. Trials of this program with the compound described in this paper have shown that when R is $c a .0 \cdot 20, R$ was reduced by $c a .0 \cdot 02$ in each round of structure-factor and Fourier calculations, refinement converging at $R c a \cdot 0 \cdot 15$. Similar results were obtained with the isomeric compound described in a preliminary communication. ${ }^{1}$

Calculations were performed on the ICL 1905 computer at the University of Strathclyde. We thank Professor Pauson for suggesting the problem, and Mrs. C. Metters (née Tuladhar) for the drawings.
[1/2205 Received, November 22nd, 1971]

[^3]
[^0]: ${ }^{1}$ M. M. Bagga, G. Ferguson, J. A. D. Jeffreys, Miss C. M. Mansell, P. L. Pauson, I. C. Robertson, and J. G. Sime, Chem. Comm., 1970, 672.
 ${ }_{2}$ W. C. Hamilton, Acta Cryst., 1955, 8, 185.

[^1]: \dagger For details see Notice to Authors No. 7 in J. Chem. Soc. (A), 1970, Issue No. 20 (items less than 10 pp . are sent as full size copies).
 ${ }^{3}$ B. G. Brandt and A. C. Skapski, Acta Cryst., 1968, A24, 699.

[^2]: ${ }^{4}$ ' International Tables for X-Ray Crystallography,' vol. III, Kynoch Press, Birmingham, 1962.
 ${ }^{5}$ M. I. Bruce, Organometallic Chem. Rev., B, 1970, 6, 937, and references therein.

[^3]: ${ }^{12}$ G. H. Stout and L. H. Jensen, ' X-Ray Structure Determination,' Collier-Macmillan, London, 1968, Pp. 376-381, and references therein.

