Raman Spectroscopic Studies of Halide-ion Complexes of Carbon Tetrahalides in Solution

By J. A. Creighton • and K. M. Thomas, Chemical Laboratory, University of Kent at Canterbury

The Raman spectra of solutions containing tetra-alkylammonium chlorides or bromides and CCI_4 or CBr_4 in nonhydrogen bonding solvents show evidence of 1:1 complexes X⁻, CBr₄ present in ion pairs with the cation. From Raman intensity measurements the formation constant for $[Bu_4N]^+CBr_4CI^-$ at 20 °C is 4.8 I mol⁻¹ in MeCN and 2.0 I mol⁻¹ in CH₂Cl₂ solution. Evidence is presented from changes in vibration frequencies and Raman depolarization ratios of CBr₄ on complexing that in CBr₄CI⁻ the chloride ion is bound to a face rather than an apex or edge of the CBr₄ tetrahedron.

ELECTRONIC absorption studies of dilute solutions of tetra-alkylammonium halides in mixed solvents containing carbon tetrachloride have provided evidence for weak 1:1 complexes between a halide ion (probably present as an intimate ion pair with the cation in solvents of low polarity) and a CCl_4 molecule.^{1,2} The stability constants measured in acetonitrile solution showed the expected decrease from the iodide to the bromide ion complex, consistent with their formulation as donoracceptor complexes with halide ion as donor.² Recently the vibrational spectra and structures of crystalline complexes of tetra-alkylammonium halides with CCl₄, CBr_4 , and CI_4 have been reported and further evidence provided that these are predominantly donor-acceptor rather than electrostatic complexes.³ This paper reports Raman observations on solutions containing halide ions and CCl_4 or CBr_4 . The results for the CBr_4 solutions clearly demonstrate the presence of a 1:1 halide ion-CBr₄ complex and provide stability-constant data and evidence of its structure.

RESULTS

While tetrainethyl-, tetraethyl-, and tetrapropyl-ammonium halides have low solubilities in carbon tetrachloride, tetrabutylammonium chloride and bromide give viscous saturated solutions containing ca. 2 mol l⁻¹ at room temperature. The Raman spectra of these solutions show small differences from the spectrum of pure CCl₄ and more closely resemble the spectra of the solid compounds Et₄NX,CCl₄ (X = Cl, Br, or I). Thus as shown in Figure 1, the v₁ band is broadened on the low-frequency side, and may be curveresolved into a broad v₁ band of complexed CCl₄ at 453 cm⁻¹ superimposed on the isotope components of v₁ of free solvent CCl₄. There is also a change in the Fermi doublet v₃, v₁ + v₄, the upper component becoming more intense than the lower (see Figure 1), and the v₂ band is less intense relative to v₁ and v₄ than in the spectrum of pure CCl₄.

The previous studies³ showed that the crystalline halide-ion complexes of CBr_4 are more stable than those of CCl_4 and show greater changes in the vibrational spectra when compared with the spectra of the free carbon tetra-halides. Raman spectra of solutions of CBr_4 and tetra-propyl- or tetrabutyl-ammonium chloride or bromide in carbon tetrachloride, chloroform, dichloromethane, nitromethane, acetonitrile, and methanol have therefore been examined, and except in methanol these all show a new

sharp polarized band at ca. 260 cm^{-1} due to v_1 of complexed CBr₄. Although this band is clearly resolved from the v_1 band of free CBr₄ (269 cm^{-1}) as shown in Figure 1, the other modes of complexed CBr₄ overlap the modes of the free molecule, as was readily shown by intensity measurements

FIGURE 1 Raman bands of carbon tetrahalides in solutions containing halide ions: (a) v_3 CBr₄ + Cl⁻; Bu₄NCl (1.6M), CBr₄ (1.3M) in MeCN; (b) v_1 CBr₄ + Cl⁻; Pr₄NCl (0.54M), CBr₄ (0.24M) in MeCN; (c) v_3 CCl₄ + Cl⁻; (d) v_1 CCl + Cl⁻; (c) and (d) Bu₄NCl (2.0M) in CCl₄. In (a) the depolarization ratio ρ is also shown; the peak marked A is due to neon at 6598.95 Å

relative to the free $CBr_4 v_1$ band. Further evidence of this overlapping may also be seen in the small shifts in the band maxima of v_2 and v_4 compared with their frequencies in pure CBr_4 solutions. The frequencies measured for the solutions are given in the Table, and were obtained from spectra of solutions in which the concentration of free CBr_4 , as judged from the intensity of v_1 , was very low relative to that of the complexes.

The v_1 bands of the free and complexed CBr₄ were sufficiently well resolved to enable accurate peak height measurements to be made on both bands. Job plots of the peak height of the v_1 band of the chloride or bromide ion complex were therefore made by use of solutions of CBr₄ and Bu₄NCl

³ J. A. Creighton and K. M. Thomas, (a) J.C.S. Dalton, 1972, 403; (b) J. Mol. Structure, 1971, 7, 173.

¹ M. J. Blandamer, T. E. Gough, and M. C. R. Symons, Trans. Faraday Soc., 1964, 60, 488.

² P. C. Dwivedi and C. N. R. Rao, Spectrochim. Acta, 1970, **26**, A, 1535.

or Bu_4NBr in carbon tetrachloride, in which the sum of the concentrations of CBr_4 and Bu_4NX was 0.31M for X = Cl and 0.19M for X = Br. The v_2 band of the solvent was used as an internal intensity standard. These measurements clearly showed that both the chloride- and bromide-ion complexes of CBr_4 are n:n in these solutions and this was

Raman frequencies/cm⁻¹ of carbon tetrahalide complexes in solution

	ν ₁	V2	ν ₃	Vs
CCl4	459	218	762, 790	314
Cl ⁻ ,CCl ₄ ^a	453	220	758, 792	313
Br-,CCl ₁ a	453	220	757, 789	313
CBr ₄ »	267	128	675	183
Cl [_] ,CBr ₄ ^b	260	d	673 ¢	182
Br-,CBr4 b	259	d	667	180

• Solution in CCl₄. • Solution in MeCN. • Curve resolution gives $v_3(a_1) = 666$ cm⁻¹, $v_3(e) = 675$ cm⁻¹. • Not observed.

confirmed by Job plots of electrical conductances by use of similar solutions of total concentrations 0.08 and 0.19m respectively. [The specific conductances at the Job maxima were 0.56×10^{-6} and 0.30×10^{-6} ohm⁻¹ respectively, consistent with the expected high degree of ion association of these concentrations.] Job plots were also made of peak heights of the complexed CBr₄ v₁ band for solutions of Bu₄NCl and CBr₄ in acetonitrile, nitromethane, and dichloromethane of total solute concentrations 0.25, 0.24, and 0.28M respectively, and of Bu₄NBr and CBr₄ in acetonitrile of total concentration 0.20M. These measurements also indicated n: n stoicheiometry for the halide ion-CBr₄ complex in each solution.

In order to demonstrate that at these concentrations of 0.1-0.3M the complexes are the simplest species 1:1, equilibrium studies were carried out by use of Raman peak height measurements on the v_1 bands of both free and complexed CBr₄. The measurements were made on a series of 12 solutions of different molar ratios of Bu₄NCl and CBr₄ in acetonitrile at 20 °C in which the total solute concentration was 0.29M, and on a similar series of 12 solutions in dichloromethane in which the total solute concentration was 0.33M. The solvent bands at 380 cm^{-1} (MeCN) and 283 cm^{-1} (CH₂Cl₂) were used as internal intensity standards.

For each solution the equilibrium concentration of free CBr₄ was first calculated by comparison of the height of the free $CBr_4 v_1$ band with that from a standard solution of CBr_4 in the same solvent. The number of moles l^{-1} of complexed CBr₄ was then given by the difference between the initial and equilibrium concentrations of free CBr₄, and this was fitted by a least-squares procedure to a linear function of the height of the complexed $\operatorname{CBr}_4\nu_1$ band to give the constant relating the v_1 peak height to the concentration of complexed CBr₄. It was thus found that the molar intensity of the v_1 band of complexed CBr₄ is 3.27 ± 1.56 times that of free CBr_4 in dichloromethane solution and 2.67 ± 0.63 in acetonitrile. From these averaged values for the molar intensities of the v_1 band of complexed CBr₄ and also that for free CBr₄, the concentrations of free and complexed CBr₄ for each solution were calculated from the experimental peak heights, and Figure 2 shows a plot of $[CBr_4]_{complexed}/[CBr_4]_{free}$ against $[Bu_4NCl]_{free}$ with the best least-squares lines through the calculated points. It is clear from the linearity of the plots that at these concentrations the equilibrium is $Bu_4NCl + CBr_4 \Longrightarrow Bu_4NCl, CBr_4$, and from the gradients the formation constants of the 1:1 complex at 20 °C are 2.03 and 4.78 1 mol⁻¹ in dichloromethane and acetonitrile respectively. This difference in the formation constants in the two solvents parallels that reported previously for the iodide-ion complex of CCl_{4} .² The least-squares standard deviation in both the formation constants from the linear plots in Figure 2 was $0.05 \ lmol^{-1}$, but in view of the large standard deviation in the molar intensity of the complexed $CBr_4 v_1$ band, somewhat larger error limits should probably be placed on the formation constants.

The 1:1 stoicheiometry requires that the symmetry of CBr₄ in the complexes is lower than T_d , and likely configurations are those in which a chloride ion is bound to a face, edge, or apex of a CBr₄ tetrahedron, whose symmetry is then C_{3v} , C_{2v} , and C_{3v} respectively. A distinction between these symmetries may be made by examining the contour of the v_3 band of the complex. The effect of a C_{2v} distortion is to split v_3 into three components $[f_2(T_d) \longrightarrow a_1 + b_1 + b_2(C_{2v})]$, and it can be shown 4 that, for a small

FIGURE 2 A plot of the ratio of concentrations of complexed and free CBr_4 , $[CBr_4]_e/[CBr]_1$, against the free Bu_4NCl concentration at equilibrium (20 °C) in solutions in A, MeCN; and B, CH_2Cl_2

perturbation, the $a_{\mathbf{r}}$ component always lies approximately centrally between the b_1 and b_2 components, *i.e.*, the overall band contour remains symmetric. A C_{3v} distortion however splits v_3 into two components $[f_2(T_d) \longrightarrow a_1 + e(C_{3v})]$, and since for a small effect the intensity of the *e* is approximately twice that of the a_1 component, the overall contour of v_3 is then asymmetric. As shown in Figure 1(a), which is a trace of the v_3 band of the complex in a solution in which the concentration of free CBr₄ (as judged by the intensity of v_1) was too low to contribute measurable intensity to v_3 , the observed contour of v_3 is asymmetric, and is consistent with a C_{3v} perturbation but not in accord with C_{2v} .

In order to investigate further whether the chloride ion is bound to an apex or face, the effect of the chloride ion on the stretching force constants of CBr_4 was studied. It was first necessary to assign the a_1 and e components of v_3 , and though the lower and weaker component may be presumed to be a_1 on intensity grounds, this assignment was conclusively established by measuring the depolarization ratio ρ through the v_3 band. The results for several separate scans are shown in the lower part of Figure 1(a), and it may be seen that ρ is less on the low-frequency side of the

⁴ J. A. Creighton, to be published.

band, due to the a_1 component, than it is at the bandmaximum. The observed band was therefore decomposed by use of a Dupont Curve Analyser into two bands of the same half-width and with heights in the ratio 1:2 as shown in Figure 1(a), giving $v_3(a_1) = 666$ cm⁻¹ and $v_3(e) = 675$ cm⁻¹. The curve analysis showed that though $\rho < 6/7$ at the band maximum, this is due to a contribution at this frequency from the side of the a_1 component, and does not indicate that the more intense component is a_1 as was previously believed.^{3b}

It can be shown ⁴ that if the changes in the stretchstretch interaction force constants on complex formation is very small and the a_1 component of v_3 is *lower* than the *e* component, then the stretching force constant of the bond along the C_3 axis is *less* than that of the other three bonds, consistent with apical binding of the tetrahedral molecule. Such a situation has recently been found for example for the contact ion pair Na⁺[Co(CO)₄⁻] in tetrahydrofuran solution.⁵ One may test the importance of the stretch-stretch interaction force constant changes with the relationship (1)

$$3\Delta\lambda_1(\mu_{\rm Br} + \frac{4}{3}\mu_{\rm C}) = [\Delta\lambda_3(a_1) + 2\Delta\lambda_3(e)]\mu_{\rm Br} \qquad (1)$$

which holds approximately ⁴ only if the interaction constant changes are negligible, where $\lambda_i = 4\pi^2 v_i^2$ and μ_C and μ_{Br} are the inverse masses. It is thus clear that on formation of CBr₄,Cl⁻ there is a considerable change in the stretchstretch interaction force constants of CBr₄. The simple argument indicated above for deducing the configuration from the relative positions of the a_1 and e components of v_3 is therefore not applicable to CBr₄,Cl⁻, and indeed as shown below the conclusion which would be drawn is probably erroneous.

The observed frequencies (Table) were used to calculate the fractional changes α_{VF} and a in the bond stretching and stretch-stretch interaction constants involving the C-Br bond along the C_3 axis, and the corresponding changes $\gamma_{\rm VF}$ and c in the force constants involving only the three equivalent bonds. There are only three C-Br stretching frequencies from which to calculate four force constants, and it was therefore necessary to use one force constant as a variable parameter. The off-diagonal element f_{12} in the a_1 block of the \mathcal{F} matrix of CBr_4, Cl^- was chosen for this purpose, since it must be small for a small perturbation and its value may therefore be used to define the limits of acceptable solutions. Details of the calculation are given in the Appendix, and Figure 3 shows the variation of α_{VF} , γ_{VF} , a, and c within a range of assumed values of f_{12} of roughly $\pm 5\%$ of the diagonal elements of \mathscr{F} . It may be seen that close to $f_{12} = 0.09$ mdyne Å⁻¹ there are solutions with $\alpha_{\rm VF} \simeq a \simeq 0$ and $\gamma_{\rm VF}$ and c negative, consistent with facecentred co-ordination of CBr_4 , but also close to $f_{12} =$ -0.16 mdyne Å⁻¹ are solutions consistent with apical coordination with $\gamma_{VF} \simeq c \simeq 0$ and α_{VF} and a negative. Two arguments favour the solutions in the range consistent with the face-centred configuration. First, off-diagonal elements of symmetrized force constant matrices, such as f_{12} , are normally positive. Secondly α_{VF} and γ_{VF} are of course fractional changes in force constants of a valence force field. It has been suggested ⁶ that a Urey-Bradley force field provides a better description of the vibrations of CBr4, and α_{VF} and γ_{VF} were therefore analysed in terms of *a* and *c*, which are also the fractional changes in the non-bonded repulsion constants F, and of the fractional changes α_{UB} and

⁶ W. F. Edgell and J. Lyford, J. Amer. Chem. Soc., 1971, 93, 6407.

 $\gamma_{\rm UB}$ in the Urey-Bradley bond-stretching constant K (see Appendix). As Figure 3 shows, solutions near $f_{12} = 0.09$ mdyne Å⁻¹ have $\alpha_{\rm UB} \simeq a \simeq 0$ and thus correspond to facecentred co-ordination also in a Urey-Bradley field, whereas there is no solution with small values of both $\gamma_{\rm UB}$ and c. Indeed $|\gamma_{\rm UB}| > |\alpha_{\rm UB}|$ throughout the whole range of Figure 3, and the small values of $\gamma_{\rm VF}$ near $f_{12} = -0.16$ mdyne Å⁻¹ are interpreted in the Urey-Bradley field as due to fairly large but opposing values of $\gamma_{\rm UB}$ and α .

Clearly a detailed interpretation of the force-constant changes depends on the type of force field assumed, but the valence-force and Urey-Bradley fields represent two extremes in which respectively none and all the stretchstretch interaction is attributed to non-bonded repulsions. It thus seems clear that with intermediate force fields, as with the two extremes, the force-constant changes indicate a face-centred structure as the more probable configuration of CBr_4 , Cl^- in solution.

Attempts were also made to study solutions of tetraalkylammonium iodides with CBr_4 , but new strong bands

FIGURE 3 The fractional changes in the force constants of CBr_4 on complexing with chloride ions in solution in acetonitrile (see text)

appeared in the Raman spectra during a few hours owing to halogen-exchange. In contrast the tetra-alkylammonium chloride solutions with CBr_4 showed no evidence of halogenexchange at room temperature during several weeks. The exchange reaction with iodide ions was more rapid in methanol than in acetonitrile solution, and initially the spectra of the acetonitrile solutions showed a band at 259 cm⁻¹ due to v_1 of I⁻, CBr₄, which was not present in the solutions in methanol. There was evidence from the spectra of two exchange products formed at different rates,⁷ but the exchange was not studied in detail.

DISCUSSION

The configuration of CBr_4, Cl^- and presumably also of the other halide ion-carbon tetrahalide complexes in solution thus appears to be similar to that of the halide ion complexes of iodoform in solution, where it has been

- ⁶ T. Shimanouchi, Pure Appl. Chem., 1963, 7, 131.
- ⁷ K. M. Thomas, Ph.D. Thesis, University of Kent, 1971.

shown⁸ that a halide ion is facially bound to all three iodine atoms of an HCI3 molecule, rather than to the configuration of the solid tetra-alkylammonium halide- CBr_4 complexes, where the halide ions interact with the apices of the CBr₄ tetrahedra.³ The order of stability of the iodoform complexes, $Cl^- > Br^- > I^-$, indicates that the interaction there is mainly electrostatic,⁸ whereas in the solution complexes of CCl₄ (and presumably also of CBr_4) the order of stability is $I^- > Br^-$,² showing that here the interaction is due mainly to either donor-acceptor or dispersion forces. It thus appears that facial binding of a halide ion to a tri- or tetrahalogenomethane is more stable than apical binding whichever of these forces is dominant. It is perhaps surprising therefore that apical binding is found in the solid CBr_4 complexes, but this is probably forced in the lattice structure by the bulky R_4N^+ ions. The greater shifts in the CBr_4 vibration frequencies in these solid complexes than in those observed in the solutions may simply be a consequence of the greater number of halide ions per CBr₄ molecule,³ and not an indication of a stronger interaction.

APPENDIX

If the same symmetry co-ordinates are used for both free and complexed CBr_4 we may define $\mathscr{F}_1 = \mathscr{F}(CBr_4Cl^-)$ $-\mathscr{F}(CBr_4)$. The changes in the individual valence force constants are then the elements of $\mathbf{F}_1 = \mathbf{\tilde{U}} \mathscr{F}_1 \mathbf{U}$, where all the components of degenerate symmetry coordinates must be included in \mathbf{U} .

⁸ R. D. Green and J. S. Martin, J. Amer. Chem. Soc., 1968, 90, 3659.

For the purpose of deducing the configuration of CBr₄Cl⁻, the mixing of stretching and bending motion was neglected. This seemed justified here since v_3 and v_4 are well separated for CBr₄ and since only large differences in the elements of \mathbf{F}_1 were taken as significant evidence in support of a particular configuration. The \mathscr{G} matrix elements used to evaluate the elements f_{ij} of \mathscr{F}_1 were $g_{11} = \mu_{\text{Br}}$, $g_{12} = 0$, $g_{22} = g_{33} = \mu_{\text{Br}} + 4/3 \ \mu_{\text{C}}$, and from the symmetry co-ordinates $S_1(a_1) = \frac{1}{2}(r_1 + r_2 + r_3 + r_4)$, $S_2(a_1) = (3r_1 - r_2 - r_3 - r_4)/\sqrt{12}$, $S_3(e) = (2r_2 - r_3 - r_4)/\sqrt{6}$, and $S_3'(e) = (r_3 - r_4)/\sqrt{2}$ where r_k are bond-length displacements, relationships (2)—(5) follow from $\mathbf{F}_1 = \mathbf{\tilde{U}} \mathscr{F}_1 \mathbf{U}$.

$$\alpha_{\nabla F} f_r = f_{11}/4 + 3f_{22}/4 + 3f_{12}/\sqrt{12} \tag{2}$$

$$\gamma_{\nabla F} f_r = f_{11}/4 + f_{22}/12 - f_{12}/\sqrt{12} + 2f_{33}/3 \qquad (3)$$

$$a_{\nabla F} f_{rr} = f_{11}/4 - f_{22}/4 + f_{12}/\sqrt{12}$$
(4)

$$c_{\rm VF} f_{\rm rr} = f_{11}/4 + f_{22}/12 - f_{12}/\sqrt{12} - f_{33}/3 \qquad (5)$$

The changes in the valence-force constants can be reinterpreted in terms of a Urey-Bradley force field by use of the relationships for a tetrahedral XY₄ molecule ⁹ $f_r = K + 1.9F$, $3f_{rr} = 2.1F$. We thus find: $a_{\rm UB} = a_{\rm VF} = a$, $c_{\rm UB} = c_{\rm VF} = c$, $K\alpha_{\rm UB} = f_r\alpha - 1.9Fa$, and $K\gamma_{\rm UB} = f_r\gamma - 1.9F(a + 2c)/3$, where f_r , K, and F are the force constants for free CBr₄.

We thank the S.R.C. for a research studentship (to K. M. T.).

[1/2370 Received, 10th December, 1971]

⁹ G. W. Chantry and L. A. Woodward, Trans. Faraday Soc., 1960, 56, 1110.