Phosphine–Borane Derivatives. Part V.¹ Phosphine Adducts of Mixed **Boron Trihalides**

By J. E. Drake • and B. Rapp, Department of Chemistry, University of Windsor, Windsor, Ontario, Canada

The investigation by proton nuclear magnetic resonance spectroscopy of the sparingly soluble adducts formed between phosphine and boron trihalides has led to the identification of the mixed species PH₃, BX₂Y (X \neq Y = Cl, Br, I) PH₃BClBrI, and probably PH₃BBr₂F and PH₃,BBrF₂. The n.m.r. parameters of PH₃,BX₃ are also reported as are those of the mixed $[^{2}H_{3}]$ methylphosphine-boron trihalide adducts, $CD_{3}PH_{2}$, $BY_{2}Z$ ($Y \neq Z = F$, Cl, Br, I) and of $CD_{3}PH_{2}$, BY₃ for comparison.

THE properties of the phosphorus-boron dative bond have been the object of several recent investigations.¹⁻⁸ Attempts have been made to obtain an estimate of the strength of the P-B bond by utilising vibrational spectra in conjunction with normal co-ordinate analyses. Some of these studies have resulted in considerable differences in the values assigned to the P-B stretching force constant.^{6,7} In investigations involving the use of n.m.r. spectroscopy, the trends in the changes of n.m.r. parameters have at least been fairly consistent.1-4 This has recently been shown to be particularly true for the value of the J_{PB} coupling constant.^{9,10} In addition, studies of amine adducts of mixed boron trihalides show changes in n.m.r. parameters consistent with established orders of Lewis acidity.^{11,12} In view of this, we present an extension of our studies on mixed hydrogen halide adducts of boron of the type $\rm PH_3, BH_2X$ and $\rm PH_3, PHX_2$ 2 (X = Cl, Br) to the mixed trihalide adducts PH_3, BX_2Y $(X \neq Y = Cl, Br, I)$, PH_3 , BClBrI, PH_3 , BF_2Br , and PH₃, PFBr₂. Also presented are the results of our parallel investigation of the analogous series CD₃PH₂,- BY_2Z (Y $\neq Z = F$, Cl, Br, I) undertaken to ascertain the effects of the stronger Lewis base on the nature of the P-B interaction.

EXPERIMENTAL

Apparatus.—Reactions were carried out in n.m.r. tubes (4 mm o.d.) with fittings to accommodate the conventional Pyrex-glass vacuum system. Greaseless stopcocks (G. Springham and Co. Ltd., Harlow, Essex; Viton A diaphragm) were used. The ¹H n.m.r. spectra of the PH₃,-BX₂Y adducts dissolved in CD₃I and the CD₃PH₂,BY₂Z adducts dissolved in CH_2Cl_2 were recorded at -70 °C (in sealed tubes) on a Jeol C60HL high-resolution spectrometer. Typically, the instrument was operated at -36 db r.f. gain and 0.1×1 a.f. amplitude with scale setting 9×2 p.p.m. All chemical shifts were reported relative to tetramethylsilane as internal standard.

¹ Part IV, J. Davis and J. E. Drake, J. Chem. Soc. (A), 1971, 2094.

- ² J. E. Drake and J. Simpson, J. Chem. Soc. (A), 1968, 974. ³ G. Jugie, J. P. Pouyanne, and J. P. Laurent, Compt. rend.,
- ⁴ J. P. Laurent, G. Jugie, and G. Commenges, J. Inorg. Nuclear Chem., 1969, **31**, 1353.
 ⁵ R. W. Rudolph, R. W. Parry, and C. F. Farran, Inorg.
- Chem., 1966, 5, 723.
- ⁶ G. W. Chantry, A. Finch, P. N. Gates, and D. Steele, J. Chem. Soc. (A), 1966, 896.
- ⁷ W. Sawodny and J. Goubeau, Z. anorg. Chem., 1968, 356, 289.
 - ⁸ J. Davis and J. E. Drake, *J. Chem. Soc.* (*A*), 1970, 2959. ⁹ A. H. Cowley and M. C. Damasco, *J. Amer. Chem. Soc.*,
- 1971, 93, 6815.

Starting Materials .-- Phosphine (Matheson) was distilled through a trap at -126 °C and its i.r. spectrum was identical to that of the pure material.13 Deuteriated methyl phosphine was prepared by means of the deprotonisationmethylation procedure.¹⁴ A CD₃ content in excess of 96% was ascertained through the n.m.r. spectrum of the purified product. Boron trichloride (Matheson) and boron tribromide (Alpha Inorganics) were distilled through traps at -65 °C and -45 °C respectively; their i.r. spectra and vapour pressures indicated a high degree of purity.^{15,16} Boron tri-iodide (Alpha Inorganics), in the appropriate molar quantities, was purified by agitation of a CH₂Cl₂ solution with elemental mercury in a closed vessel under moisture-free conditions. The solution was then decanted (in a dry-box) into an n.m.r. tube fitted for connection to the vacuum line. Before interaction with phosphine, the solvent was pumped away from the purified BI3. Deuteriated methyl iodide (Stohler Isotope Chemicals, Montreal; 1% ¹H impurity) was used as obtained.

Formation of the Adducts PH_{3} , BX_{3} (X = Cl, Br, I).-Equimolar quantities (typically ca. 0.5 mmol) of phosphine and boron trichloride or boron tribromide were distilled into an n.m.r. tube at -196 °C. (With boron tri-iodide, the purification procedure made it impossible to know the exact quantity of BI₃ present; consequently PH₃ was added in an amount to ensure that there was excess of PH₃). As the contents were allowed to warm to room temperature the formation of a white solid adduct was evident. After 1 h at ambient temperature, excess of PH₃ was pumped away. The solvent, CD_3I (ca. 5 mmol) and a trace of tetramethylsilane were distilled onto the product at -196 °C and the tube was then sealed. The ¹H n.m.r. spectra were then recorded from temperatures ranging from room temperature down to -70 °C. The solubility of the adducts was estimated to be less than 1% by comparison of the respective peak heights of the PH₃ resonance with that of the ¹H impurity of the solvent. The n.m.r. parameters are recorded (Table 1). Attempts to form an addition compound with BF₃ indicated that no such adduct formed under these experimental conditions. The variations of both $J_{\rm PH}$ and δ with temperature from -70 °C to +30 °C are reported (Table 2).

¹⁰ R. W. Rudolph and C. W. Schultz, J. Amer. Chem. Soc., 1971, 93, 6821.

¹¹ J. S. Hartman and J. M. Miller, *Inorg. Nuclear Chem.* Letters, 1969, 5, 831; M. J. Bula, D. E. Hamilton, and J. S. Hartman, *J.C.S Dalton*, 1972, 1405. ¹² S. S. Krishnamurthy and M. F. Lappert, *Inorg. Nuclear*

Chem. Letters, 1971, 7, 919

13 V. M. McConaghie and H. H. Nielsen, J. Chem. Phys., 1953, 21, 1836.

 W. L. Jolly, Inorganic Synth., 1968, 11, 124.
 T. Wentick and V. H. Tiensu, J. Chem. Phys., 1958, 28, 826. ¹⁶ A. Finch, I. J. Hyams, and D. Steele, Trans. Faraday Soc.,

1965, 61, 398.

Formation of Mixed Adducts PH_3, BX_2I and PH_3, BXI_2 (X = Cl, Br).—An estimated quantity of purified boron triiodide (ca. 0.5 mmol) was transferred to an n.m.r. tube as described under starting materials. Boron tribromide or boron trichloride (0.5 mmol) and phosphine (ca. 1.0 mmol) procedures as described above were carried out for the systems $PH_3-BF_3-BCl_3$, $PH_3-BF_3-BBr_3$, and $PH_3-BF_3-BI_3$. In all systems resonances attributable to PH_3, BX_3 (X = Cl, Br, I) were observed, although that of PH_3, BCl_3 was much less evident than that of PH_3, BI_3 . Only for $PH_3-BF_3-BBr_3$

TABLE 1

Observed ¹H n.m.r. parameters (δ in p.p.m. ± 0.05 p.p.m. downfield from tetramethylsilane; J_{PH} in Hz ± 2 Hz) for the various boron trihalide adducts of phosphine and $[{}^{2}H_{3}]$ methylphosphine

Compound ^a	Mixed		Single			Mixed		Single	
	δ	J_{PH}	δ	Јрн	Compound ^b	δ	J_{PH}	δ	Јрн
$\mathrm{PH}_3,\mathrm{BI}_3$	7.40	436	7·50 7·05	432 434 •	CD ₃ PH ₂ ,BI ₃	6·20	434	6.20	432
PH, BBrI,	7.10	434			CD,PH,BBrI,	5.95	432		
PH, BCIL	6.90	432			CD,PH, BCIL	5.90	430		
PH, BBr, I	6.70	432			CD ₃ PH ₂ ,BBr ₂ I	5.80	430		
PH ₃ , BUBH	6.99	430				F 00	490		
	0.40	430	0.45	480	CD ₃ PH ₂ , BCl ₂ I	5.00	420		400
PH ₃ ,BBr ₃	0.49	428	6·45 6·05	430 432 °	CD ₃ PH ₂ ,BBr ₃	5.60	430	9.00	428
PH ₃ BClBr ₂	6.30	426			CD,PH,BClBr,	5.50	426		
PH, BCl Br	6.00	424			CD,PH,BCl,Br	5.40	426		
PH ₃ ,BCl ₃	5.90	420	5.90	420	CD ₃ PH ₃ ,BCl ₃	5.35	428	5·30 5·40	422 426 d
PH3,BFBr2	6.00	410			$CD_3PH_2, BFBr_2$	5.30	422	0 10	120
					CD ₃ PH ₂ ,BFCl ₂	5.15	420		
$PH_{3}, BF_{2}Br$	5.90	404			CD ₃ PH ₂ ,BF ₂ Br	5.00	406		
					CD ₃ PH ₉ ,BF ₉ Cl	4.95	406		
					CD ₃ PH ₂ ,BF ₃	4.50	378	4·3 0	355

" Recorded at -70 °C in CD₃I. ^b Recorded at -70 °C in CH₂Cl₂. ^c Recorded at -70 °C in CH₂Cl₂. ^d Recorded at -40 °C in CD₃I.

were then distilled into the n.m.r. tube at -196 °C. The contents were allowed to warm to room temperature during which time a white solid was formed. After 1 h at ambient temperature excess of reactant was pumped away, CD₃I (*ca.* 5 mmol) and a trace of tetramethylsilane were distilled onto the remaining solid at -196 °C, and the tube was sealed.

TABLE 2

Observed ¹H n.m.r. parameters, δ_{PH} and J_{PH} , of CD_3PH_2 , BF₃ ^a and PH₃, BX₃ ^b at various temperatures

	CD_3F	PH₂BF	°₃ PH	3,BCl3	PH₃,BBr₃		PH3,BI3	
t/°C	брн	Лен	δ _{PH}	Лен	брн	Лрн	брн	Ірн
-70	4.28	355	5.92	426	6.44	429	7.40	432
- 65	4.28	350	5.90	424	6.44	429	$7 \cdot 40$	432
-40	4.26	350	ca. 5.6 °	ca. 412	6 ∙ 4 0	428	7.40	430
-20	4.22	346	ca. 5·4 °	ca. 400	6.34	428	7.40	430
25	3.72	301	5.37	396	6.20	424	7.26	428
¢ R	ecorde	d in C	H ₂ Cl ₂ .	Record	ed in C	D₃I.	• Esti	mate

value of resonance located within proton impurity peak of solvent.

The ¹H n.m.r. spectra were recorded from temperatures varying from ambient to -70 °C. Both the high- and low-field resonances of the series of widely separated doublets are shown for the system PH₃-BBr₃-BI₃ (Figure 1). For convenience, only the low-field resonances are shown for the system PH₃-BCl₃-BI₃ (Figure 2). The n.m.r. parameters are displayed in Table 1.

Formation of the Mixed Adducts PH_3 , BCl_2Br and PH_3 , $BClBr_2$.—Boron tribromide (0.5 mmol), boron trichloride (0.5 mmol), and phosphine (1.0 mmol) were distilled into an n.m.r. tube at -196 °C. Essentially the same procedure was then followed as described for the PH_3 , BX_2I and PH_3 , BXI_2 system. The low-field resonances of the ¹H n.m.r. spectra at various temperatures are shown in Figure 3 and the n.m.r. parameters displayed in Table 1.

Formation of Mixed Adducts involving BF3.-The same

were two additional doublets observed attributable to PH₃, BF₂, Br and PH₃, BFBr₂ (Table 1).

Formation of PH₃,BClBrI.—The resonances attributable to this adduct (Table 1) were clearly seen in the ¹H n.m.r.

FIGURE 1 ¹H N.m.r. spectrum of the PH₃ resonances of the system PH₃-BBr₃-BI₃ at A, -70 °C; B, -30 °C; C, -10 °C; and D, +25 °C; (a), PH₃,BJ₃; (b) PH₃,BBrI₂; (c) PH₃,BBr₂I; and (d) PH₃,BBr₃; (e) ¹H impurity of the solvent, CD₃I; TMS = tetramethylsilane

spectrum recorded at -70 °C of the mixture of adducts resulting from mixing PH₃, BCl₃, BBr₃, and BI₃ in the approximate ratio of 3:1:1:1.

FIGURE 2 ¹H N.m.r. spectrum of the low-field PH₃ resonances of system PH₃-BCl₃-BI₃ at A, -70 °C; B, -10 °C, and C, +25 °C. Peaks, from left to right at -70 °C, are attributable to PH₃,BI₃, PH₃,BCl₂, PH₃,BCl₂I, and PH₃,BCl₃

Formation of the Adducts CD_3PH_2 , BY_2Z ($Y \neq Z = F$, Cl, Br, I).—The single and mixed adducts of the boron trihalides with CD_3PH_2 were produced in the same manner as that described for the PH_3 system. Use of CD_3I as solvent had to be abandoned because of its tendency to solidify in the presence of these adducts at temperatures as high as -40 °C. CH_2Cl_2 was found to be a suitable solvent (*ca.* 1%) molar solution) for all adducts. The n.m.r. parameters recorded at -70 °C for the entire series are displayed in Table 1.

RESULTS AND DISCUSSION

Phosphine reacts with boron trichloride, tribromide, and tri-iodide, but not the trifluoride, to form the corresponding 1:1 adducts (1). The resulting solid

$$PH_3 + BX_3 \Longrightarrow PH_3BX_3 (X = Cl, Br, I)$$
 (1)

white adducts exhibit extremely low solubility in a wide range of solvents. This, so far, has prevented the determination of the ¹¹B n.m.r. parameters, $J_{\rm PB}$ and $\delta_{\rm PB}$. Nevertheless, the ¹H n.m.r. spectra of the complexes in very dilute solutions of deuteriated methyl iodide (*ca.* 1% molar) have been recorded. In the spectra the PH₃ resonance is observed as the widely separated doublet characteristic of four-co-ordinated phosphine bonded to boron ($J_{\rm PH}$ 420–436 Hz at -70 °C).² It is to be noted that in the spectrum of PH₃,BCl₃ a marked change occurs in the values of $J_{\rm PH}$ ¹⁷ H. S. Gutowsky and A. Saika, *J. Chem. Phys.*, 1953, **21**, 1688. and δ_{PH} as the system is warmed from -70 °C to +25 °C (Table 2). This is consistent with the rapid equilibrium in (1) resulting in an averaging of the signals of free PH₃ and PH₃,BCl₃.¹⁷ The PH₃,BCl₃ system is the only one in which extensive dissociation might be expected at ambient temperatures.¹⁸ Further, the convergence of $J_{\rm PH}$ and $\delta_{\rm PH}$ by -70 °C in all three systems (Table 2) suggests that these are probably the true parameters of the adducts.

When phosphine is mixed with approximately equimolar amounts of boron tribromide and boron tri-iodide the ¹H n.m.r. spectrum shows a series of four doublets attributable to the four adducts $PH_3,BBr_3(d)$, $PH_3,-BBr_2I(c)$, $PH_3B,BrI_2(b)$, and $PH_3,BI_3(a)$ (Figure 1 and Table 1). It is probable that appreciable halogen exchange between BBr_3 and BI_3 occurs before adduct formation.¹⁹ However, the peaks attributable to $PH_3,-BBr_3$ and PH_3,BI_3 are slightly broader at room temperature than in the binary systems. This suggests that some exchange still occurs after adduct formation,

FIGURE 3 ¹H N.m.r. spectrum of the low-field PH₃ resonances of the system PH₃-BCl₃-BBr₃ at A, -70 °C; B, -30 °C; C, -10 °C; and D, +25 °C. Peaks, from left to right at -70 °C attributable to PH₃,BBr₃, PH₃BClBr₂, PH₃BCl₂Br, and PH₃,BCl₃

possibly between adduct and free boron trihalide, because the peaks sharpen on lowering the temperature. Proton exchange at phosphorus was not observed in previous investigations of the systems PH_3,BD_3 , SiH_3 ,- PH_2BD_3 , and $CH_3PH_2,BD_3,^8$ so it is unlikely to be a factor in these studies.

¹⁸ P. A. Tierney, D. W. Lewis, and D. Burg, *J. Inorg. Nuclear Chem.*, 1962, **24**, 1163.

¹⁹ M. F. Lappert, M. R. Litzow, J. B. Pedley, T. R. Spalding, and H. Noth, *J. Chem. Soc.* (A), 1971, 383.

In the similar system PH₃-BCl₃-BI₃ indication of line-broadening due to exchange is even more evident as is illustrated for the low-field resonances of the four doublets in Figure 2. Indeed at room temperature, the two resonances of PH_3 , BCl_2I and PH_3 , BCl_3 have coalesced. In the system PH₃-BCl₃-BBr₃ exchange is so rapid at room temperature than the low-field series of doublets appears as one envelope. As the system is cooled the individual peaks progressively appear: those attributable to PH₃,BBr₃ and PH₃,BClBr₂ at -10 °C, PH₃,BCl₂Br at -30 °C, and PH₃,BCl₃ at -70 °C.

The relative integrated peak ratios for the spectra suggest that the tendency to form the mixed species is greatest in the PH₃-BCl₃-BBr₃ system and least in the PH₃-BCl₃-BI₃ system. The integration ratios are in good agreement with those obtained in an ¹¹B n.m.r. study of boron trihalide exchange in the order BCl₃-BBr₃ $> BBr_3-BI_3 > BCl_3-BI_3$.¹⁹ This supports the suggestion that in the phosphine adducts of these systems, exchange proceeds at least in part via free boron trihalide.

To investigate this further, an experiment was devised whereby PH₃,BI₃ and PH₃,BBr₃ were formed in separate portions of the tube and mixed in solution at -70 °C. In this way, the possibility of extensive exchange between BBr₃ and BI₃ before adduct formation was minimised. The ¹H n.m.r. spectrum was run immediately and gave no evidence for formation of the mixed adducts. The tube was warmed and the system held at room temperature for ca. 10 min. The spectrum run at -70 °C now exhibited small resonance peaks attributable to the formation of the mixed species.

In the free boron trihalide systems, the mixed BF₂Cl, $BFCl_2$, BF_2Br , and $BFBr_2$ species were observed but not BF_2I or BFI_2 .²⁰ It is not surprising therefore that attempts to form the mixed adducts PH₃,BF₂I and PH₃,BFI₂ are unsuccessful. There is also no evidence for the formation of the mixed complexes PH₃, BF₂Cl and PH₃,BFCl₂, but since PH₃,BF₃ itself does not form, this is not surprising. However, peaks are discerned in the mixed PH₃-BF₃-BBr₃ system which suggests that Lewis acidity is sufficiently enhanced by bromine substitution to allow for the formation of PH₃, BF₂Br and PH₃, BFBr₂. With this in mind it seemed appropriate to study a system in which a BF3 adduct could be formed. Methylphosphine is assumed to be a stronger Lewis base than PH₃ and therefore should form the adduct MePH₂,BF₃. To avoid complex spectra, n.m.r. parameters are obtained for deuteriated methylphosphine adducts. As can be seen (Table 1) all the binary adducts CD_3PH_2, BY_3 (Y = F, Cl, Br, I) are obtained and also the mixed species as with phosphine. In addition, CD₃PH₂,BF₂Cl and CD₃PH₂,BFCl₂ are obtained thereby confirming that CD₃PH₂ exhibits greater Lewis basicity in these systems than does PH₃. The complexes CD₃PH₂,BF₂I and CD₃PH₂,BFI₂ are not observed although both ²⁰ M. F. Lappert, M. R. Litzow, J. B. Pedley, and A. Tweedale,

J. Chem. Soc. (A), 1971, 2426. ²¹ J. M. Miller and M. Onyszchuk, Canad. J. Chem., 1964, **42**, 1518.

 CD_3PH_2 , BF₃ and CD_3PH_2 , BI₃ are seen in the system. This lack of mixed fluoride-iodide adducts is consistent with the study previously cited.²⁰

The n.m.r. parameters (Table 1) are an interesting study of regular trends. It was found necessary to use different solvents for the two systems. The CD₃PH₂,- BY_2Z systems solidify in CD_3I solution at -40 °C so a change of solvent to CH₂Cl₂ is necessary. Equally unfortunately, the PH₃,BCl₃ systems are not sufficiently soluble in CH_2Cl_2 to warrant its use in the phosphine system. Parameters were obtained in selected cases in both solvents for comparison (Table 1).

The spectra of PH₃,BBr₃-BI₃ system (Figure 1) neatly illustrate the successive chemical shifts to low field and the increase in the value of the $J_{\rm PH}$ coupling constant (Table 1) as the halogen changes from bromine to iodine. These trends are remarkably consistent for all of the adducts within the series PH_3, BCl_3 (δ_{PH} 5.90) to PH_{3}, BI_{3} (δ_{PH} 7.40). There is a similar trend in the more extensive series starting at CD_3PH_2 , BF_3 (δ_{PH} 4.50) to CD_3PH_2, BI_3 (δ_{PH} 6.20). Apparently, an increase in Lewis acidity of the boron halide results in a deshielding of the proton on phosphorus in both series so that the order of decreasing Lewis acidity, relative to these bases, $\mathrm{is}\,\mathrm{BI}_3 > \mathrm{BBrI}_2 > \mathrm{BClI}_2 > \mathrm{BBr}_2\mathrm{I} > \mathrm{BClBrI} > \mathrm{BCl}_2\mathrm{I} \simeq$ $BBr_3 > BClBr_2 > BCl_2Br > BCl_3 > BFBr_2 > BFCl_2 >$ $BF_2Br > BF_2Cl > BF_3$. This corresponds to the order suggested with respect to amines.^{11,21} The relative chemical shifts of the comparable PH₂,BX₂ and CD₃PH₂,BX₃ adducts suggest that there is a consistent shift to high field with the stronger Lewis base.

The increase in the value of $J_{\rm PH}$ coupling constant from 179 Hz in free phosphine ²² to 420 Hz in PH₃, BCl₃ is dramatic. As we suggested previously,² by analogy with $I(^{13}C-H)$ coupling,²³ this apparently reflects a marked increase in s-character of the phosphorus orbital bound to hydrogen. The trend from PH₂,BCl₂ to PH₃BI₃ also suggests that as the Lewis acidity of the boron adducts increases there is a further slight increase in the s-character of the P-H bonds. This is analogous to observations in terms of $I(^{13}C-H)$ where its value increases as the electronegativity of the moiety attached to carbon increases.²⁴ Thus for this series at least the assumption that the Fermi contact term is predominant seems to be fully justified.

In the CD₃PH₂,BY₂Z series there is a similar regular increase in the values of $J_{\rm PH}$. However, it is surprising that the value of J_{PH} is not very different in the corresponding adducts CD₃PH₂,BX₃ and PH₃,BX₃. This suggests that the overall effect of substituting a CD₃ group is to leave the s-character in the remaining P-H bonds essentially unaltered.

We thank the National Research Council of Canada for financial support.

[2/1067 Received, 11th May, 1972]

²² J. P. Van Wazer, C. F. Callis, J. N. Shoolery, and R. C. Jones, J. Amer. Chem. Soc., 1956, 78, 5715.
 ²³ N. Muller, J. Chem. Phys., 1962, 36, 359.
 ²⁴ H. A. Bent, Canad. J. Chem., 1960, 38, 1235.