Structures of Mercury(II) Halide Adducts with Transition-metal Lewis Bases. Part I. Crystal Structure of the Dicarbonyl-r-cyclopentadienylcobalt Complex with Mercury(II) Chloride

By I. W. Nowell and D. R. Russell,* Department of Chemistry, University of Leicester, Leicester LE1 7RH
Crystals of $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2} \mathrm{Cl}, \mathrm{HgCl}_{2}$ are monoclinic, $\mathrm{P} 2_{1} / n, a=7 \cdot 85, b=13 \cdot 90, c=9 \cdot 38 \mathrm{~A}, \beta=91 \cdot 1^{\circ}, Z=4$. The structure was solved from photographic data by Patterson and Fourier methods and refined by block-diagona! least-squares analysis to a final $R 0.093$ for 1002 non-equivalent reflexions. The complex is a $1: 1$ Lewis acidbase adduct bonded through the metal atoms, the resulting Hg -Co bond length of $2.578 \pm 0.004 \mathrm{~A}$ is that expected for a covalent single bond. The idealised co-ordination about mercury is trigonal planar, but two long intermolecular $\mathrm{Hg}-\mathrm{Cl}$ distances raise the effective co-ordination to trigonal bipyramidal.

Equimolar amounts of mercuric chloride and dicar-bonyl-(π-cyclopentadienyl)cobalt react to give the red crystaliine complex $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2} \mathrm{Co}, \mathrm{HgCl}_{2}$. Cook and Kemmitt found ${ }^{1}$ that the i.r. spectrum of the complex in nitrobenzene or o-chloroaniline solutions contains carbonyl bands due both to the complex and starting material, and postulated dissociation in solution [equation (1)]. The complex may be considered as either a

$$
\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2} \mathrm{Co}, \mathrm{HgCl}_{2} \rightleftharpoons \underset{\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}(\mathrm{CO})_{2}}{\rightleftharpoons}+\mathrm{HgCl}_{2}
$$

salt, $\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2} \mathrm{Co}\left(\mathrm{HgCl}_{1}\right]^{+} \mathrm{Cl}^{-}\right.$or a $\mathbf{1 : 1}$ adduct, $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2} \mathrm{Co}_{2} \mathrm{HgCl}_{2}$. Conductivity measurements are inconclusive ${ }^{2}$ and we have undertaken an X-ray analysis to determine the structure of the complex. A preliminary report of the structure has already appeared. ${ }^{3}$

EXPERIMENTAL

Accurate unit-cell dimensions were measured from precession photographs taken with Zr filtered $\mathrm{Mo}-\mathrm{K}_{\alpha}$ radiation.
Crystal Data.- $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{Cl}_{2} \mathrm{CoHgO}_{2}, M=451 \cdot 6$, Monoclinic, $a=7.85 \pm 0.01, \quad b=13.90 \pm 0.02, \quad c=9.38 \pm 0.01 \AA$, $\beta=91 \cdot 1 \pm 0 \cdot 1^{\circ}, \quad U=1023 \AA^{3}, D_{\mathrm{m}} \quad$ (by flotation) $=$ $2 \cdot 94, Z=4, D_{\mathrm{c}}=2 \cdot 90, F(000)=816$. Mo- K_{α} radiation, $\lambda=0.7107 \AA ; \mu\left(\mathrm{Mo}-K_{\alpha}\right)=176 \mathrm{~cm}^{-1}$. Space group $P 2_{1} / n$ (a nonstandard setting of $C_{2 h}^{5}$, No. 14) from systematic absences: $h 0 l$ for $h+l$ odd, $0 k 0$ for k odd.

Data Collection.-Integrated equi-inclination Weissenberg data was collected on a Nonius camera from a crystal of dimensions $0.06 \times 0.08 \times 0.1 \mathrm{~mm}$. Zr filtered $\mathrm{Mo}-K_{\alpha}$ radiation was used to collect the reciprocal layers $h k 0-6$ by the multiple-film technique. A Supper precession camera was used to collect a further 5 reciprocal layers (0 kl , $1 k l, 2 k l, h 0 l, h 1 l$), from a second crystal of dimensions $0.06 \times 0.08 \times 0.01 \mathrm{~mm}$. The reciprocal layers $h k 0$, $0 k l$, were estimated visually, while the remaining 10 layers were measured with a Joyce-Loebl integrating microdensitometer. Intensities were corrected for Lorentz and polarisation factors, and different layers were scaled together by common reflections ${ }^{4}$ to give 1002 independent reflections.

Structure Analysis. Positions of the mercury and
\dagger For details see Notice to Authors No. 7 in J. Chem. Soc. (A), 1970, Issue No. 20 (items less than 10 pp . are sent as full size copies).
${ }^{1}$ D. J. Cook and R. D. W. Kemmitt, Chem. and Ind., 1966, 946.
${ }^{2}$ D. J. Cook, J. L. Dawes, and R. D. W. Kemmitt, J. Chem. Soc. (A), 1967, 1547.
cobalt atoms were readily found from Patterson projections. Structure factors (scattering factors for all atoms and Δf^{\prime} for mercury, cobalt, and chlorine were taken from ref. 5) were calculated for these two atoms and two cycles of block-diagonal least-squares refinement gave R $0 \cdot 22$. A difference-Fourier map enabled the two chlorine atoms to be located. Inclusion of these in the leastsquares refinement reduced R to $0 \cdot 17$, and the positions of all carbon and oxygen atoms were found from a further difference-Fourier synthesis. All atoms were then refined for several least-squares cycles, initially with only mercury and cobalt treated anisotropically but finally with all atoms anisotropic. Absorption corrections ${ }^{6}$ were applied to all reflections and final refinement was carried out by use of the weighting scheme $\omega=1 /\left(a+b\left|K F_{0}\right|+c\left|K F_{0}\right|^{2}\right)$; a, b, c, were given the values $1600,1 \cdot 0,1 \cdot 22 \times 10^{-4}$ respectively. The matrix associated with the anisotropic temperature factors of $\mathrm{C}(2)$ was found to be non-positive definite, even after several cycles of refinement. A difference-Fourier synthesis, using values of F_{c} calculated without any contribution from this carbon atom, confirmed the position refined by the least-squares process. Consequently, an isotropic temperature factor was used for this atom during the last few cycles of refinement and a final R value of 0.093 was obtained. Observed and calculated structure factors have been deposited with the National Lending Library as Supplementary Publication No. SUP

Table 1
Atomic positional parameters (fractional) with estimated standard deviations in parentheses

	x	y	z
Hg	0-25266(2)	$0 \cdot 03715(1)$	$0 \cdot 05749(2)$
Co	$0 \cdot 24152(6)$	0.14486(3)	$0 \cdot 28084$ (4)
$\mathrm{Cl}(1)$	$0.09984(14)$	$-0 \cdot 11879(7)$	$0 \cdot 04661$ (12)
$\mathrm{Cl}(2)$	0.41086(15)	$0 \cdot 07514(8)$	-0.15817(11)
$\mathrm{O}(1)$	0.6009(4)	$0 \cdot 1687(2)$	$0 \cdot 2677(3)$
$\mathrm{O}(2)$	$0 \cdot 1663$ (5)	0.3036(2)	$0.0877(3)$
C(1)	$0 \cdot 4452(5)$	$0 \cdot 1561$ (3)	$0 \cdot 2660(4)$
C(2)	$0 \cdot 2030$ (5)	$0 \cdot 2318(3)$	$0 \cdot 1561$ (3)
$\mathrm{C}(3)$	$0.0013(6)$	$0 \cdot 1021$ (5)	$0 \cdot 3374$ (4)
C(4)	0.0616 (6)	0-1697(4)	$0 \cdot 4268(5)$
C(5)	$0 \cdot 1213(7)$	$0 \cdot 0160(4)$	$0 \cdot 3566(6)$
C(6)	0.2403(7)	$0.0672(4)$	$0 \cdot 4618$ (5)
C(7)	$0 \cdot 1992(6)$	0.1438(3)	0.4984(4)

20489 (6 pp., 1 microfiche). \dagger The final positional parameters, with their estimated standard deviations are given

[^0]4 W. C. Hamilton, J. S. Rollett, and R. A. Sparks, Acta Cryst., 1965, 18, 129.

5 'International Tables for X-Ray Crystallography,' vol. III, Kynoch Press, Birmingham, 1962.

6 N. W. Alcock's ABSCOR programme, based on the method of J. De Meulenaer, and H. Tompa, Acta Cryst., 1965, 19, 1014.
in Table 1, anisotropic temperature factors in Table 2, and some bond distances and angles in Table 3.

Table 2
Anisotropic temperature factors $\left(\AA^{2}\right)^{*}$

Atom	B_{11}	B_{22}	B_{33}	B_{23}	B_{13}	B_{12}
Hg	$3 \cdot 69$	$2 \cdot 81$	$2 \cdot 38$	-0.80	0.74	$-1 \cdot 10$
Co	1.53	$2 \cdot 27$	1.66	-0.06	$0 \cdot 17$	0.06
$\mathrm{Cl}(1)$	3.04	2.09	5.97	0.02	-1.51	-0.24
$\mathrm{Cl}(2)$	$4 \cdot 82$	$4 \cdot 00$	3.38	0.86	0.88	1.29
$\mathrm{O}(1)$	2.2	$3 \cdot 6$	6.3	-0.1	-0.2	-2.0
$\mathrm{O}(2)$	$7 \cdot 3$	$2 \cdot 5$	$5 \cdot 8$	3.0	-3.9	-1.7
C(1)	$1 \cdot 9$	$5 \cdot 7$	3.9	-3.6	-1.6	$2 \cdot 1$
$\mathrm{C}(2) \dagger$	$2 \cdot 9$					
$\mathrm{C}(3)$	$2 \cdot 5$	14.8	2.7	0.5	0.7	-4.2
C(4)	$4 \cdot 9$	7.5	6.2	$4 \cdot 6$	$3 \cdot 8$	$4 \cdot 0$
C(5)	$5 \cdot 1$	7.0	$5 \cdot 3$	$0 \cdot 9$	$3 \cdot 0$	$4 \cdot 2$
C(6)	$7 \cdot 5$	$7 \cdot 3$	$5 \cdot 8$	$6 \cdot 1$	$3 \cdot 9$	$2 \cdot 8$
C(7)	$5 \cdot 2$	$2 \cdot 8$	0.7	-1.0	$0 \cdot 6$	-0.6

${ }^{*}$ In the form $\exp \{-\}\left(B_{11} h^{2} a^{* 2}+B_{22} k^{2} b^{* 2}+B_{39} l^{2} c^{* 2}+\right.$ $\left.\left.2 B_{23} \mathrm{klb} b^{*} c^{*}+2 B_{13} h l a^{*} c^{*}+2 B_{12} h h a^{*} b^{*}\right)\right\}$.
$\dagger \mathrm{C}(2)$ was given an isotropic temperature factor. Estimated errors, based on shifts from the last two cycles of refinement are 0.08 for $\mathrm{Hg}, 0.20$ for $\mathrm{Co}, 0.35$ for Cl , and $0.8 \AA^{2}$ for C and O atoms.

Table 3
Bond lengths (\AA) and angles (${ }^{\circ}$) with estimated standard deviations in parentheses (relevant intermolecular bond lengths and angles are included)
(a) Distances

$\mathrm{Hg}-\mathrm{Co}$	2.578(4)	$\mathrm{Co}-\mathrm{C}(5) \quad 2$	2-15(6)
$\mathrm{Hg}-\mathrm{Cl}(1)$	$2 \cdot 479(9)$	$\mathrm{Co}-\mathrm{C}(6) \quad 2$	2.01(4)
$\mathrm{Hg}-\mathrm{Cl}(2)$	$2 \cdot 451$ (10)	$\mathrm{Co}-\mathrm{C}(7) \quad 2$	2.08(4)
$\mathrm{Co}-\mathrm{C}(1)$	$1 \cdot 615(39)$	$\mathrm{C}(3)-\mathrm{C}(4) \quad 1$	1-34(8)
$\mathrm{Co}-\mathrm{C}(2)$	$1 \cdot 705(28)$	$\mathrm{C}(3)-\mathrm{C}(5) \quad 1$	1-53(8)
$\mathrm{C}(1)-\mathrm{O}(1)$	1-24(5)	$\mathrm{C}(4)-\mathrm{C}(7) \quad 1$	1-31(7)
$\mathrm{C}(2)-\mathrm{O}(2)$	1-22(4)	$\mathrm{C}(5)-\mathrm{C}(6) \quad 1$	1-52(9)
$\mathrm{Co}-\mathrm{C}(3)$	2.06(4)	$\mathrm{C}(6)-\mathrm{C}(7) \quad 1$	1-16(6)
$\mathrm{Co}-\mathrm{C}(4)$	2.02(4)	$\mathrm{Hg}-\mathrm{Cl}\left(1^{\prime}\right) \quad 3$	3•129(9)
		$\mathrm{Hg}-\mathrm{Cl}\left(2^{\prime}\right) \quad 3$	3-195(10)
(b) Angles			
$\mathrm{Co}-\mathrm{Hg}-\mathrm{Cl}(1)$	121.2(1)	$\mathrm{C}(1)-\mathrm{Co}-\mathrm{C}(7)$	105(1)
$\mathrm{Co}-\mathrm{Hg}-\mathrm{Cl}(2)$	124.8(2)	$\mathrm{C}(1)-\mathrm{Co}-\mathrm{C}(6)$	98(1)
$\mathrm{Cl}(1)-\mathrm{Hg}-\mathrm{Cl}(2)$	114.0(2)	$\mathrm{C}(1)-\mathrm{Co}-\mathrm{C}(5)$	123(1)
$\mathrm{Co}-\mathrm{C}(1)-\mathrm{O}(1)$	173(6)	$\mathrm{C}(1)-\mathrm{Co}-\mathrm{C}(4)$	138(1)
$\mathrm{Co}-\mathrm{C}(2)-\mathrm{O}(2)$	168(9)	$\mathrm{C}(1)-\mathrm{Co}-\mathrm{C}(3)$	164(3)
$\mathrm{C}(2)-\mathrm{Co}-\mathrm{C}(1)$	92(1)	$\mathrm{C}(2)-\mathrm{Co}-\mathrm{C}(7)$	130(1)
$\mathrm{C}(2)-\mathrm{Co}-\mathrm{Hg}$	86.4(4)	$\mathrm{C}(2)-\mathrm{Co}-\mathrm{C}(6)$	162(4)
$\mathrm{C}(1)-\mathrm{Co}-\mathrm{Hg}$	$82 \cdot 1$ (5)	$\mathrm{C}(2)-\mathrm{Co}-\mathrm{C}(5)$	138(2)
$\mathrm{C}(5)-\mathrm{C}(3)-\mathrm{C}(4)$	105(2)	$\mathrm{C}(2)-\mathrm{Co}-\mathrm{C}(4)$	103(1)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(7)$	114(4)	$\mathrm{C}(2)-\mathrm{Co}-\mathrm{C}(3)$	103(1)
$\mathrm{C}(4)-\mathrm{C}(7)-\mathrm{C}(6)$	109(3)	$\mathrm{Co}-\mathrm{Hg}-\mathrm{Cl}\left(1^{\prime}\right)$	90.0(1)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	116(3)	$\mathrm{Cl}\left(1^{\prime}\right)-\mathrm{Hg}-\mathrm{Cl}(1)$	83•1(2)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(3)$	94(3)	$\mathrm{Cl}\left(1^{\prime}\right)-\mathrm{Hg}-\mathrm{Cl}\left(2^{\prime}\right)$) $172 \cdot 0(5)$
$\mathrm{Hg}-\mathrm{Co}-\mathrm{C}(7)$	143(1)	$\mathrm{Cl}\left(2^{\prime}\right)-\mathrm{Hg}-\mathrm{Cl}(2)$	85.4(1)
$\mathrm{Hg}-\mathrm{Co}-\mathrm{C}(6)$	112(1)	$\mathrm{Co}-\mathrm{Hg}-\mathrm{Cl}\left(2^{\prime}\right)$	94.8(2)
$\mathrm{Hg}-\mathrm{Co}-\mathrm{C}(5)$	78.9(2)	$\mathrm{Cl}\left(\mathbf{1}^{\prime}\right)-\mathrm{Hg}-\mathrm{Cl}(2)$	97•1(2)
$\mathrm{Hg}-\mathrm{Co}-\mathrm{C}(4)$	133(2)	$\mathrm{Cl}\left(2^{\prime}\right)-\mathrm{Hg}-\mathrm{Cl}(1)$	88.9(2)
$\mathrm{Hg}-\mathrm{Co}-\mathrm{C}(3)$	95.0(5)		
$\mathrm{Cl}\left(1^{\prime}\right)$ is at $-x,-y,-z$, and $\mathrm{Cl}\left(2^{\prime}\right)$ is at $1-x,-y,-z$.			

DISCUSSION

The complex $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2} \mathrm{Co}, \mathrm{HgCl}_{2}$ is best considered as a 1:1 Lewis acid-base adduct (Figure 1) containing a $\mathrm{Co}^{-} \mathrm{Hg}$ bond, in which mercury(II) chloride behaves as a Lewis acid and dicarbonyl-(π-cyclopentadienyl)cobalt as a Lewis base. The $\mathrm{Hg}-\mathrm{Co}$ bond length in the present complex, $2 \cdot 578(4) \AA$, lies close to
${ }^{7}$ L. Pauling, 'The Nature of the Chemical Bond,' 3rd edn., Cornell University Press, Ithaca, New York, 1960.
${ }^{8}$ M. J. Bennett and R. Mason, Nature, 1965, 205, 760.
the sum of Pauling's single-bond metallic radii ${ }^{7}$ (2.55 \AA) and the sum of the covalent radii obtained by the method of Bennett and Mason, ${ }^{8}$ [2.58 \AA taking $1 \cdot 29 \AA$ for Co , this being the mean $\mathrm{Co}-\mathrm{C}\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ distance in the present structure, and $1.29 \AA$ for mercury from methylmercury(II) chloride ${ }^{9}$]. The length of this donoracceptor metal-metal bond is similar to that found in

Figure 1 The structure projected in the plane of the $\mathrm{C}_{5} \mathrm{H}_{5}$ ring
other cobalt-mercury complexes where covalent metalmetal bonding is involved (Table 4).

Table 4

Complex	$\mathrm{Hg}-\mathrm{Co}(\AA)$
$\mathrm{Hg}\left[\mathrm{Co}(\mathrm{CO})_{4}\right]_{2}$	$2 \cdot 498(7)^{a}$
	$\mathbf{2 \cdot 5 0 0 (7)}$
$\mathrm{Hg}\left[\mathrm{Co}(\mathrm{CO})_{3}(\mathrm{PEt})_{3}\right]_{2}$	$2 \cdot 499(5)^{b}$
$\left[\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{HgCo}_{2}(\mathrm{CO})_{4}$	$2 \cdot 566^{c}$
$\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2} \mathrm{COHgCl}_{2}$	$2 \cdot 578(4)$

${ }^{a}$ G. M. Sheldrick and R. N. F. Simpson, J. Chem. Soc. (A), 1968, 1005. b R. F. Bryan and A. R. Manning, Chem. Comm., 1968, 1316. © R. F. Bryan and H. P. Weber, Acta Cryst., 1966, A21, 138.

Structures of complexes containing donor-acceptor metal-metal bonds mainly involve d^{8} metal systems. ${ }^{10}$ The bond formed in the present complex presumably involves donation of formally non-bonding electrons of the cobalt into empty σ orbitals of the mercury. The resulting redistribution of electron density is mirrored by an increase in $\nu(\mathrm{CO})$ (from 2017, 1949 to 2074, $2042 \mathrm{~cm}^{-1}$) and a decrease in $v(\mathrm{HgCl})$ [from 374, 331,311 to $240(\mathrm{br}) \mathrm{cm}^{-1}$] upon adduct formation. ${ }^{2}$

Mercury(II) chloride forms a large number of adducts with donor molecules ${ }^{11}$ and it appears that increasing donor strength is accompanied by a lengthening of the $\mathrm{Hg}-\mathrm{Cl}$ bond, reduction of the $\mathrm{Cl}-\mathrm{Hg}-\mathrm{Cl}$ bond angle from 180°, and a lowering of the effective co-ordination

[^1]number of mercury. ${ }^{12}$ The large distortion of mercury(II) chloride in the present complex indicates that dicarbonyl-(π-cyclopentadienyl)cobalt is behaving as a strong base. The $\mathrm{Hg}-\mathrm{Cl}$ dstances are considerably increased from the value found in mercury(II) chloride $(2 \cdot 26 \AA)^{13}$ and there is a corresponding reduction of the $\mathrm{Cl}-\mathrm{Hg}-\mathrm{Cl}$ bond angle to 114°. The donor strength of dicarbonyl-(π-cyclopentadienyl)cobalt is also reflected in the low co-ordination number of mercury. The trigonal arrangement of atoms around mercury $\left(\mathrm{CoHgCl}_{2}\right)$ is almost planar (Table 5). The presence of two

Table 5

Equations of least-squares planes referred to the orthogonal axis directions a, b, c^{*} with distances (\AA) of relevant atoms from the planes given in square brackets
Plane (a): CoHgCl_{2} set of atoms

$$
0.79979 X-0.46266 Y+0.38247 Z-1.54956=0
$$

[Co 0.02, $\mathrm{Hg}-0.005, \mathrm{Cl}(1) 0.002, \mathrm{Cl}(2) 0.002]$
Plane (b): $\mathrm{C}_{5} \mathrm{H}_{5}$ ring

$$
\begin{gathered}
-0.56807 X-0.36548 Y+0.73737 Z-1.85751=0 \\
{[\mathrm{C}(3)-0.014, \mathrm{C}(4) 0.000, \mathrm{C}(5) 0.023, \mathrm{C}(6)-0.030, \mathrm{C}(7) 0.021]}
\end{gathered}
$$

further chlorine atoms $[\mathrm{Cl}(1)$ and $\mathrm{Cl}(2)]$ from neighbouring molecules, both within the sum of the van der Waals radii of Hg and $\mathrm{Cl}(3 \cdot 3 \AA)$, increases the effective co-ordination number to five. The resulting co-ordination polyhedron is that of an elongated trigonal bipyramid with the neighbouring chlorines occupying axial positions, $3 \cdot 129$ and $3 \cdot 195 \AA$ from the mercury. Of the many known structures of mercury(II) chloride adducts with typical element bases, that of collidine, ${ }^{14} \quad \mathrm{C}_{5} \mathrm{H}_{2} \mathrm{Me}_{3} \mathrm{NHgCl}_{2}$, compares most closely with the present complex. The HgCl_{2} geometry in the collidine complex shows the greatest departure from that found in mercuric chloride; collidine is also one of the strongest bases. Mercury has a similar co-ordination geometry in the salt $\mathrm{Me}_{3} \mathrm{SHgI}_{3} .{ }^{15}$ If the π-cyclopentadienyl ligand is assumed to occupy three co-ordination sites, cobalt has pseudo-octahedral geometry.
The cyclopentadienyl ring is effectively planar (Table 5), all five $\mathrm{Co}-\mathrm{C}\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ distances are equal within their limits of error (mean 2.06, $\sigma 0.05 \AA$ which is similar to their individual σ values) and the cobalt atom lies $1.70 \AA$ from the best least-squares plane through the cyclopentadienyl ring. This distance is similar to that found in other π-cyclopentadienylcobalt complexes, e.g. $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left(\mathrm{MeC}_{2} \mathrm{Me}\right)_{2}(\mathrm{CO}) \quad(1.67$ $\AA){ }^{16}\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left(\mathrm{PPh}_{2}\right)(1 \cdot 66 \AA){ }^{17}$ The mean $\mathrm{Co}-\mathrm{C}(\mathrm{CO})$ and $\mathrm{C}-\mathrm{O}$ distances (1.66 and $1.23 \AA$) lie within the range of values found for other cobalt complexes: (CO$)_{6} \mathrm{Co}_{2}-$ $\left(\mathrm{PhC}_{2} \mathrm{Ph}\right) \quad(1.75 \text { and } 1.23 \AA)^{18} \mathrm{Co}_{3}(\mathrm{CO})_{5}(\mathrm{SEt})_{4}(1.63$ and $1 \cdot 19 \AA)$, and $\mathrm{Co}_{2}(\mathrm{CO})_{5}(\mathrm{SEt}) \mathrm{S}_{2}(\mathrm{I} .71$ and $1 \cdot 18 \AA){ }^{19}$

[^2]Unfortunately, the high standard deviations in the present determination preclude detailed discussion of the distances and angles within the $\mathrm{Co}\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2}$ moiety.

Figure 2 shows the packing of the molecules in the

Figure 2 The (001) projection of the unit cell
unit cell as viewed along the c axis direction. Apart from the intermolecular $\mathrm{Hg}-\mathrm{Cl}$ contacts discussed earlier, other intermolecular distances indicate normal van der Waals interactions.

We thank the S.R.C. for a maintenance grant (to I. W. N), for equipment, and for use of the Atlas computer at Chilton, Berkshire, where assistance was given by Dr. J. Baldwin and Mrs. J. Thomas in using ABSCOR. Other calculations were carried out on the University of Leicester Elliott 803B using Dr. G. A. Mair's SFLS programme and Dr. A. C. T. North's Fourier programme.
[1/1447 Received, 13th August, 1971]
${ }^{17}$ J. M. Coleman and L. F. Dahl, J. Amer. Chem. Soc., 1967, 89, 542.
${ }_{18}$ W. G. Sly, J. Amer. Chem. Soc., 1959, 81, 18.
${ }^{19}$ C. H. Wei and L. F. Dahl, J. Amer. Chem. Soc., 1968, 90 , 3969.

[^0]: ${ }^{3}$ I. W. Nowell and D. R. Russell, Chem. Comm., 1967, 817.

[^1]: ${ }^{9}$ W. J. Gordy and J. Sheridan, J. Chem. Phys., 1954, 22, 92.
 ${ }^{10}$ D. F. Shriver, Accounts Chem. Res., 1970, 3, 231.
 ${ }^{11}$ I. Lindquist, 'Inorganic Adduct Molecules of Oxo Compounds,' Springer Verlag, Berlin, 1963.

[^2]: ${ }_{13}^{12}$ I. W. Nowell, Ph.D. Thesis, University of Leicester, 1969.
 ${ }^{13}$ D. Grdenic, Arkiv Kemi, 1950, 22, 14.
 ${ }^{14}$ S. Kulpe, Z. anorg. Chem., 1967, 349, 314.
 15 R. H. Fenn, Acta Cryst., 1966, 20, 20.
 ${ }^{15}$ L. F. Dahl and D. L. Smith, J. Amer. Chem. Soc., 1961, 83,

