Reactions of Tetrasulphur Tetranitride with Halides. Part III.[†] Two New Methods of Preparing Trichlorocyclotrithiazene

By Gulab G. Alange, Arthur J. Banister,* and (Miss) Betty Bell, Chemistry Department, University Science Laboratories, Durham

Trichlorocyclotrithiazene, (NSCI)₃, is conveniently prepared by the action of sulphuryl chloride on tetrasulphur tetranitride, S₄N₄, or chlorocyclotrithiadiazenium chloride, S₃N₂Cl+Cl-.

TRICHLOROCYCLOTRITHIAZENE (the cyclic trimer of thiazyl chloride, NSCl), is commonly prepared by the action of chlorine on S_4N_4 ^{1,2} or $S_3N_2\hat{C}l_2$.³ Use of sulphuryl chloride instead of chlorine is more convenient and results in a purer product.

EXPERIMENTAL

The S₄N₄ or S₃N₂Cl₂ and excess of SO₂Cl₂ (e.g. 2-3 ml SO₂Cl₂ per g of sulphur compound) are stirred under nitrogen for 24 h at room temperature. Evaporation to dryness under reduced pressure and recrystallisation of the yellow product from dry CCl_4 (or SO_2Cl_2 and filter at -10°)

† Part II, A. J. Banister and J. S. Padley, J. Chem. Soc. (A), 1969, 658.

¹ M. Goehring, 'Ergebnisse und Probleme der Chemie der Schwefelstickstoffverbindungen,' Akademie-Verlag, Berlin, 1957,

p. 155. ² A. Meuwsen, *Berichte*, 1931, 64, 2311; H. Schröder and O. Glemser, Z. anorg. Chem., 1959, 298, 78.

³ W. L. Jolly and K. D. Maguire, Inorg. Synth., 1967, 9, 102.

gives pale yellow needles (m.p. 91°; lit.⁴ m.p. variable between 89 and 98°). Yields based on nitrogen content are 95-100%. I.r. (Nujol mull) absorptions occur at: 1017vs, 698ms, 621w, 514m, 493m, 385m, and 320m cm⁻¹. The peaks above 600 cm⁻¹ are probably SN ring modes, by analogy with (NSF)₃ which absorbs ⁵ at 1085, 720, and 650 cm⁻¹. The broad absorption at 480—520 cm⁻¹ is assigned to v_{SCI} since this band is missing from the i.r. spectrum of (NSF)₃.

DISCUSSION

Under the microscope the crystals of the product are seen to be identical to the α (NSCl)₃ examined by Wiegers⁶ and obtained by the action of chlorine on a suspension of S_4N_4 in CCl_4 .¹ However, the latter product contains

 ⁴ S. A. Lipp and W. L. Jolly, *Inorg. Chem.*, 1971, 10, 33.
⁵ O. Glemser, 'Preparative Inorganic Reactions,' ed. W. L. Jolly, Interscience, New York, vol. I, 1964, p. 236.

⁶ G. A. Wiegers and A. Vos, Acta Cryst., 1966, 20, 192.

crystals of more than one type ⁷ and, further, its i.r. spectrum is often much more complex than that of the $\alpha(\text{NSCl})_3$ obtained from S_4N_4 and SO_2Cl_2 , especially on unpurified material or the product of recrystallisation from hot solutions. The i.r. spectrum (4000—400 cm⁻¹) of the unpurified product from S_4N_4 and chlorine shows the peaks characteristic of $\alpha(\text{NSCl})_3$, the five main peaks ⁸ of (NSCl)₄, and numerous other absorptions. Their relative intensity is governed by the solvent used in the preparation, the concentration of S_4N_4 , the temperature, and the rate and time of passage of chlorine. We conclude that the product is probably a mixture of (NSCl)₃ and (NSCl)₄ isomers and possibly other products also. The precise composition is determined by the procedures for preparation and purification. During

recrystallisation of α (NSCl)₃ the solution should not be warmed above *ca.* 60° (the solution turns green) or allowed to stand, since this results in the appearance of extra i.r. peaks and a deepening of the colour of the product. Attempts at sublimation under reduced pressure resulted in depolymerisation to NSCl and some decomposition to S₃N₂Cl (*cf.* refs. 3 and 9).

We thank the S.C.S. College, Omerga (India) and the S.R.C. for Research Studentships to G. G. A. and B. B. respectively.

[1/2395 Received, 13th December, 1971]

⁷ A. C. Hazell, personal communication.

⁸ J. Nelson and H. G. Heal, Inorg. Nuclear Chem. Letters, 1970, **6**, 429.

⁹ R. L. Patton and W. L. Jolly, Inorg. Chem., 1970, 9, 1079.