Carbon Compounds of the Transition Metals. Part XXVII. ${ }^{1}$ Crystal and Molecular Structure of [Bis(biphenylylidene)butatriene]hexacarbonyldiiron, a Binuclear Metal Cumulene Complex

By David Bright * \dagger and O. S. Mills, Department of Chemistry, University of Manchester, Manchester M13 9PL
The crystal structure of the title complex has been determined from 1351 visually estimated X-ray intensities and refined by least-squares methods to $R 6.9 \%$. The unit-cell parameters are $a=16 \cdot 36, b=10 \cdot 83, c=16 \cdot 47 \AA$, $\beta=110 \cdot 13^{\circ}, Z=4$, space group $P 2_{1} / n$. The butatriene chain is bent into a zig-zag in which the bond angles at the central chain atoms are 128° and the iron atoms may be regarded as bonded to the chain via σ bonds to the central carbons and via π bonds to the terminal double bonds. The three $C-C$ (chain) distances are equal. Distances are: $\mathrm{Fe}-\mathrm{Fe}(2.596(4)$, mean $\mathrm{Fe}-\mathrm{CO} 1.77(1)$, mean $\mathrm{Fe}-\mathrm{C}($ chain $) 2.39$ and $2.04(\pi), 1.94(\sigma)$, mean $\mathrm{C}-\mathrm{C}$ (chain) $1.39 \AA$.

The synthesis of a series of butatriene(hexacarbonyl)diiron complexes ${ }^{2}$ and of a butatriene(tetracarbonyl)iron complex ${ }^{3}$ was recently reported. Some of the same di-iron complexes were isolated independently and initially formulated as being pentacarbonyl complexes, ${ }^{4}$ although later it was recognised, in accord with our own crystallographic determination, that there were six carbonyl groups per molecule. ${ }^{5}$ In an earlier paper we reported the structure of the mononuclear tetracarbonyl complex. ${ }^{6}$ We present here the structure of one of the

[^0][^1]di-iron complexes: [bis(biphenylidene)butatriene]hexa-carbonyldi-iron (1).

EXPERIMENTAL

Several crystalline complexes of variously substituted butatrienes were examined.
(1) Butatrienehexacarbonyldi-iron, $\mathrm{C}_{10} \mathrm{H}_{4} \mathrm{O}_{6} \mathrm{Fe}_{2}, \quad M=$ 331.8 , Orthorhombic, $\quad a=12.03(5), \quad b=8.12(3), \quad c=$ $12.25(5) \AA, U=1197 \AA^{3}, D_{\mathrm{m}}=1.79, D_{\mathrm{c}}=1.84, Z=4$, systematic absences $0 k l$ for $k+l$ odd, $h 0 l$ for h odd, space group Pna2 $\mathbf{1}_{1}$ or Pnam.
${ }^{3}$ K. K. Joshi, J. Chem. Soc. (A), 1966, 598.
4 A. Nakamura, P-J. Kim, and N. Hagihara, J. Organometallic Chem., 1965, 3, 7.
${ }^{5}$ A. Nakamura, P-J. Kim, and N. Hagihara, J. Organometallic Chem., 1966, 6, 420.
${ }_{6}$ D. Bright and O.S. Mills, J. Chem. Soc. (A), 1971, 1979.
(2) Tetramethylbutatrienehexacarbonyldi-iron, $\mathrm{C}_{14} \mathrm{H}_{12}-$ $\mathrm{O}_{6} \mathrm{Fe}_{2}, M=387 \cdot 9$, Monoclinic, $a=15 \cdot 17(6), b=14 \cdot 87(6)$, $c=15 \cdot 56(6) \AA, \quad \beta=114 \cdot 63(5), \quad U=3190 \AA^{3}, \quad D_{\mathrm{m}}=1 \cdot 62$, $D_{\mathrm{c}}=1 \cdot 62, Z=8$, space group $P 2_{1} / n$ by systematic absences.

(3) Tetraphenylbutatrienehexacarbonyldi-iron, $\mathrm{C}_{34} \mathrm{H}_{20} \mathrm{O}_{6}$ $\mathrm{Fe}_{2}, \quad M=636 \cdot 0$ Monoclinic, $a=17.27(6), b=10.18(5)$, $c=17.29(6) \AA, \beta=110.67(5)^{\circ}, U=2844 \AA^{3}, D_{\mathrm{m}}=1.48$, $D_{\mathrm{c}}=1 \cdot 49, Z=4$, space group P_{21} / n by systematic absences.
(4) $\operatorname{Bis}(b i p h e n y l y l i d e n e) b u t a t r i e n e h e x a c a r b o n y l d i-i r o n, ~$ $\mathrm{C}_{34} \mathrm{H}_{16} \mathrm{Fe}_{2} \mathrm{O}_{6}, \quad M=632 \cdot 0$, Monoclinic, $a=16 \cdot 36(6), \quad b=$ $10.83(5), \quad c=16 \cdot 47(6) \AA, \quad \beta=110 \cdot 13(5)^{\circ}, \quad U=2740 \AA^{3}$, $D_{\mathrm{m}}=1.51, Z=4, D_{\mathrm{c}}=1.49$. Space group $P 2_{1} / n$ by systematic absences. Mo- K_{α} radiation, $\lambda=0.7107 \AA$; $\mu\left(\right.$ Mo- $\left.K_{\alpha}\right)=11.36 \mathrm{~cm}^{-1}$.

The unsubstituted complex was unstable to X-rays, the tetramethyl complex has the disadvantage of having two molecules per asymmetric unit, and the crystals of the tetraphenyl complex were rather poorly formed. The bis(biphenylylidene) complex was chosen for the structure determination and the intensities of 1351 reflexions, of which 95 were too weak to be recorded, were measured visually from precession photographs taken with Mo- K_{α} radiation. No correction was made for absorption. A crystal of maximum dimension 0.3 mm was used.

Structure Solution and Refinement.-The structure was solved by conventional Patterson and Fourier techniques and refined by least-squares methods. The function minimised was $\Sigma w\left(\left|F_{0}\right|-\left|F_{\mathrm{c}}\right|\right)^{2}$ where $w^{-1}=1+a . F_{0}{ }^{2}$. The constant a was chosen to maintain values of the mean $w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2}$ approximately equal for ranges of F_{o} and $\sin \theta / \lambda$, and was 6×10^{-5}. The unobserved reflexions were given zero weight if $\left|F_{\mathrm{c}}\right|<F_{\text {min. }}$, the smallest value of $\left|F_{\mathrm{o}}\right|$ listed, otherwise $w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)$ was set equal to $0.5\left(F_{\text {min. }}-\left|F_{\mathrm{c}}\right|\right)$.

Atomic scattering factors were taken from ref. 7 and a correction of 0.42 electrons was added over the whole of the curve for iron to allow for the effects of anomalous dispersion. A difference-Fourier synthesis calculated at the stage R $9 \cdot 4 \%$ showed peaks of approximately $0.3 \mathrm{e}^{-3}$ in the regions where hydrogen atoms were to be expected. In the subsequent refinement cycles the hydrogen atoms were included at fixed positions $1 \cdot 08 \AA$ from the carbon atoms. The iron atoms were refined with anisotropic temperature factors and the remaining non-hydrogen atoms with isotropic temperature factors. The final value of R was 6.9% for the observed reflexions and $7 \cdot 8 \%$ for all 1351 reflexions. A list

[^2]of final observed and calculated structure factors is available from the authors.

RESUlTS AND DISCUSSIon

The structure comprises discrete molecules of $\left[\left(\mathrm{C}_{12} \mathrm{H}_{8}\right)_{2^{-}}\right.$ $\left.\mathrm{C}_{4}\right] \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ with no intermolecular contact $<3 \cdot 2 \AA$, save $\mathrm{H} \cdot \mathrm{H}$ contacts. Projections of the structure along two of the crystallographic axes are shown in Figures 1 and 2. Figures 3 and 4 show two views of the molecule. Atomic parameters are listed in Table 1 and selected interatomic distances and angles in Tables 2 and 3 ; details of the best least-squares planes through some atomic groupings are given in Table 4.

Within experimental error, the molecule possesses a non-crystallographic two-fold axis which passes through the mid-points of the $\mathrm{Fe} \cdots \mathrm{Fe}$ vector and the central $\mathrm{C}-\mathrm{C}$ bond of the butatriene chain. The iron atoms are thus in essentially identical environments.

The central atoms of the butatriene chain occupy slightly asymmetric bridging positions with respect to the $\mathrm{Fe} \cdots \mathrm{Fe}$ vector and the chain, although linear in the uncomplexed species, takes up a zig-zag configuration in the complex with bond angles of 128(2) and $129(2)^{\circ}$ at the central atoms. The mean $\mathrm{Fe}-\mathrm{C}$ bridging distances are $1.94(1)$ and $2.04(1) \AA$. The shorter of these is similar to the value $1.94 \AA$ found ${ }^{8}$ in the ferrapentadienyl ring and this, coupled with the observation that the iron

Figure 1 The structure of bis(biphenylylidene)butatriene-hexacarbonyldi-iron projected along the b axis
atoms are each almost coplanar with one of the biphenylylidene groups (see Table 4), strongly suggests that the terminal double bonds of the butatriene system have remained essentially intact on complex formation and that each of the central carbon atoms are largely σ bonded to one iron atom. A valence-bond description
may then be completed by assuming olefinic π bonds from the terminal $\mathrm{C}-\mathrm{C}$ double bonds to the nearer iron

Figure 2 The structure projected along the c axis
Table 1

Atomic parameters				
Atom	x	y	z	B / \AA^{2}
$\mathrm{Fe}(1)$	$0.0362(1)$	0.0576(2)	$0 \cdot 3350(2)$	*
$\mathrm{Fe}(2)$	$0 \cdot 0907(1)$	0.2626(3)	$0 \cdot 2904(2)$	*
C(1)	$0 \cdot 1317(11)$	-0.0156(19)	$0 \cdot 2275(11)$	3-3(4)
$\mathrm{O}(1)$	$0 \cdot 1948(8)$	-0.0651(15)	$0 \cdot 3417(8)$	4.4(3)
C(2)	$0 \cdot 0714(10)$	$0 \cdot 0608(20)$	$0 \cdot 4520$ (10)	$2 \cdot 5(3)$
$\mathrm{O}(2)$	$0.0954(8)$	$0 \cdot 0628(15)$	$0 \cdot 5268(9)$	4.6(3)
C(3)	$-0.0281(12)$	-0.0781(22)	$0 \cdot 3092(13)$	$4 \cdot 1(4)$
$\mathrm{O}(3)$	-0.0677(10)	-0.1667(18)	$0 \cdot 2919(11)$	6.8(4)
$\mathrm{C}(4)$	$0 \cdot 1903(11)$	$0 \cdot 2342(21)$	$0 \cdot 2709(11)$	3.5(4)
O(4)	$0 \cdot 2553(9)$	$0 \cdot 2149(14)$	$0 \cdot 2582(9)$	4.8(3)
$\mathrm{C}(5)$	$0 \cdot 1442(11)$	$0 \cdot 2900(19)$	$0 \cdot 4024(11)$	3.2(4)
$\mathrm{O}(5)$	$0 \cdot 1826$ (7)	$0 \cdot 3113(13)$	$0 \cdot 4746$ (8)	3.8(3)
$\mathrm{C}(6)$	$0 \cdot 0754(12)$	$0 \cdot 4188(22)$	$0 \cdot 2604(12)$	$4 \cdot 1(4)$
$\mathrm{O}(6)$	$0.0621(9)$	$0 \cdot 5219(17)$	$0 \cdot 2448(10)$	5.4(4)
C(7)	$-0.0835(8)$	$0 \cdot 1913(16)$	$0 \cdot 3257(9)$	$1 \cdot 3(3)$
C(8)	-0.0273(9)	$0 \cdot 2177(16)$	$0 \cdot 2821(10)$	$2 \cdot 0(3)$
C(9)	-0.0055(10)	$0 \cdot 1422(18)$	$0 \cdot 2248(11)$	2.7(4)
$\mathrm{C}(10)$	$0.0139(9)$	$0 \cdot 1744(16)$	$0 \cdot 1514(9)$	$1 \cdot 8(3)$
C(11)	$-0.0906(8)$	$0 \cdot 2427(17)$	$0 \cdot 4046$ (9)	1.7(3)
C(12)	$-0.0319(9)$	$0 \cdot 3152(17)$	$0 \cdot 4669(9)$	$2 \cdot 0(3)$
C(13)	-0.0548(10)	$0 \cdot 3539(17)$	$0 \cdot 5403(11)$	2.7(3)
C(14)	$-0.1337(10)$	$0 \cdot 3162(20)$	$0 \cdot 5442(11)$	3.1(3)
$\mathrm{C}(15)$	-0.1912(9)	$0 \cdot 2442(17)$	$0 \cdot 4844$ (9)	$2 \cdot 9(3)$
C(16)	-0.1689(9)	$0 \cdot 2086(17)$	$0 \cdot 4123(10)$	2.3(3)
C(17)	-0.2171(9)	$0 \cdot 1376(16)$	$0 \cdot 3377(10)$	$2 \cdot 2(3)$
C(18)	$-0.3011(10)$	$0 \cdot 0877(18)$	$0 \cdot 3093(10)$	2.6(3)
C(19)	$-0.3357(10)$	$0.0314(17)$	$0 \cdot 2298(10)$	$2 \cdot 3(3)$
C(20)	-0.2864(10)	$0 \cdot 0205(19)$	$0 \cdot 1729(11)$	3-1(4)
C(21)	$-0.2026(9)$	$0 \cdot 0715(17)$	$0 \cdot 1998(10)$	$2 \cdot 2(3)$
C(22)	$-0 \cdot 1701(9)$	$0 \cdot 1246(17)$	$0 \cdot 2801(10)$	$2 \cdot 0(3)$
C(23)	$-0.0369(9)$	$0 \cdot 2751(17)$	$0.0906(9)$	$1.9(3)$
C(24)	-0.1034(10)	$0 \cdot 3490$ (18)	$0 \cdot 0881(11)$	$2 \cdot 8(4)$
C(25)	$-0 \cdot 1417(12)$	$0 \cdot 4284(22)$	$0 \cdot 0175(12)$	$4 \cdot 0(4)$
C(26)	$-0.1115(12)$	$0 \cdot 4275(23)$	-0.0487(13)	$4 \cdot 5(4)$
C(27)	$-0.0462(11)$	$0 \cdot 3495(19)$	-0.0491(12)	$3 \cdot 1(4)$
C(28)	$-0.0081(9)$	$0 \cdot 2672(18)$	$0 \cdot 0181(10)$	$2 \cdot 4(3)$
C(29)	$0.0532(9)$	$0 \cdot 1744(18)$	$0 \cdot 0289(10)$	$2 \cdot 2(3)$
C(30)	$0.0996(11)$	$0 \cdot 1283(20)$	-0.0245(11)	3-3(4)
C(31)	$0 \cdot 1504(10)$	$0 \cdot 0295(18)$	$0 \cdot 0008(11)$	$2 \cdot 7(3)$
$\mathrm{C}(32)$	$0 \cdot 1569(9)$	$-0.0363(18)$	$0 \cdot 0756(10)$	$2 \cdot 4(3)$
$\mathrm{C}(33)$	$0 \cdot 1117(11)$	$0.0033(21)$	$0 \cdot 1287(12)$	3.7(4)
C(34)	0.0631 (6)	$0 \cdot 1113(14)$	$0 \cdot 1055(7)$	$1 \cdot 5(2)$

* Anisotropic thermal parameters $\left(\times 10^{4}\right)$ for the iron atoms:

	b_{11}	b_{22}	b_{33}	b_{12}	b_{13}	b_{23}
$\mathrm{Fe}(1)$	$29(1)$	$45(3)$	$23(1)$	$-1(2)$	$14(1)$	$7(2)$
$\mathrm{Fe}(2)$	$27(1)$	$49(3)$	$19(1)$	$-6(2)$	$13(1)$	$2(2)$

The form of the anisotropic thermal ellipsoid is given by:

$$
\exp -\left(b_{11} h^{2}+b_{22} k^{2}+b_{33} l^{2}+2 b_{12} h k+2 b_{13} h l+2 b_{23} k l\right)
$$

atom with a metal-metal bond. The bonding scheme shown in (1) leads to an inert gas configuration of 36
electrons on each iron atom and accounts for the diamagnetism of the complex. The compound can be regarded as a double π-allyl-metal bonded arrangement in which one of the valence-bond forms predominates and in which the central bond participates in both organometallic links.

Subsequently, other examples of asymmetric π-allyl bonding have been described and in these cases the

Figure 4 The molecule viewed perpendicular to the molecular two-fold axis showing the atom numbering system used in the analysis

Table 2
Selected interatomic distances (\AA)

$\mathrm{Fe}(1)-\mathrm{Fe}(2)$	$2 \cdot 596(4)$	$\mathrm{C}(14)-\mathrm{C}(15)$	$1 \cdot 34(2)$
$\mathrm{Fe}(1)-\mathrm{C}(8)$	$2 \cdot 05(2)$	$\mathrm{C}(15)-\mathrm{C}(16)$	$1 \cdot 42(2)$
$\mathrm{Fe}(2)-\mathrm{C}(9)$	$2 \cdot 03(2)$	$\mathrm{C}(16)-\mathrm{C}(17)$	$1 \cdot 42(2)$
$\mathrm{Fe}(1)-\mathrm{C}(7)$	$2 \cdot 40(2)$	$\mathrm{C}(17)-\mathrm{C}(18)$	$1 \cdot 39(2)$
$\mathrm{Fe}(2)-\mathrm{C}(10)$	$2 \cdot 38(2)$	$\mathrm{C}(17)-\mathrm{C}(22)$	$1 \cdot 43(2)$
$\mathrm{Fe}(1)-\mathrm{C}(9)$	$1 \cdot 93(2)$	$\mathrm{C}(18)-\mathrm{C}(19)$	$1 \cdot 37(2)$
$\mathrm{Fe}(2)-\mathrm{C}(8)$	$1 \cdot 95(2)$	$\mathrm{C}(19)-\mathrm{C}(20)$	$1 \cdot 44(2)$
$\mathrm{Fe}(1)-\mathrm{C}(1)$	$1 \cdot 74(2)$	$\mathrm{C}(20)-\mathrm{C}(21)$	$1 \cdot 40(2)$
$\mathrm{Fe}(1)-\mathrm{C}(2)$	$1 \cdot 80(2)$	$\mathrm{C}(21)-\mathrm{C}(22)$	$1 \cdot 36(2)$
$\mathrm{Fe}(1)-\mathrm{C}(3)$	$1 \cdot 77(2)$	$\mathrm{C}(22)-\mathrm{C}(7)$	$1 \cdot 53(2)$
$\mathrm{Fe}(2)-\mathrm{C}(4)$	$1 \cdot 80(2)$	$\mathrm{C}(11)-\mathrm{C}(7)$	$1 \cdot 46(2)$
$\mathrm{Fe}(2)-\mathrm{C}(5)$	$1 \cdot 76(2)$	$\mathrm{C}(10)-\mathrm{C}(23)$	$1 \cdot 51(2)$
$\mathrm{Fe}(2)-\mathrm{C}(6)$	$1 \cdot 75(2)$	$\mathrm{C}(10)-\mathrm{C}(34)$	$1 \cdot 46(2)$
$\mathrm{C}(1)-\mathrm{O}(1)$	$1 \cdot 14(2)$	$\mathrm{C}(23)-\mathrm{C}(24)$	$1 \cdot 34(2)$
$\mathrm{C}(2)-\mathrm{C}(2)$	$1 \cdot 15(2)$	$\mathrm{C}(23)-\mathrm{C}(28)$	$1 \cdot 44(2)$
$\mathrm{C}(3)-\mathrm{O}(3)$	$1 \cdot 14(2)$	$\mathrm{C}(24)-\mathrm{C}(25)$	$1 \cdot 40(2)$
$\mathrm{C}(4)-\mathrm{O}(4)$	$1 \cdot 17(2)$	$\mathrm{C}(25)-\mathrm{C}(26)$	$1 \cdot 35(2)$
$\mathrm{C}(5)-\mathrm{O}(5)$	$1 \cdot 15(2)$	$\mathrm{C}(26)-\mathrm{C}(27)$	$1 \cdot 36(2)$
$\mathrm{C}(6)-\mathrm{O}(6)$	$1 \cdot 15(2)$	$\mathrm{C}(27)-\mathrm{C}(28)$	$1 \cdot 38(2)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1 \cdot 39(2)$	$\mathrm{C}(28)-\mathrm{C}(29)$	$1 \cdot 39(2)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1 \cdot 39(2)$	$\mathrm{C}(29)-\mathrm{C}(30)$	$1 \cdot 44(2)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1 \cdot 40(2)$	$\mathrm{C}(29)-\mathrm{C}(34)$	$1 \cdot 39(2)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1 \cdot 37(2)$	$\mathrm{C}(30)-\mathrm{C}(31)$	$1 \cdot 33(2)$
$\mathrm{C}(11)-\mathrm{C}(16)$	$1 \cdot 38(2)$	$\mathrm{C}(31)-\mathrm{C}(32)$	$1 \cdot 39(2)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1 \cdot 45(2)$	$\mathrm{C}(32)-\mathrm{C}(33)$	$1 \cdot 40(2)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$1 \cdot 38(2)$	$\mathrm{C}(33)-\mathrm{C}(34)$	$1 \cdot 39(2)$

Table 3
Selected interatomic angles (deg.)

$\mathrm{C}(1)-\mathrm{Fe}(1)-\mathrm{C}(2)$	92.6(8)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	117(2)
$\mathrm{C}(1)-\mathrm{Fe}(1)-\mathrm{C}(3)$	94.5(9)	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(11)$	122(2)
$\mathrm{C}(1)-\mathrm{Fe}(1)-\mathrm{C}(7)$	169.6(8)	$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(11)$	108(2)
$\mathrm{C}(1)-\mathrm{Fe}(1)-\mathrm{C}(8)$	$135 \cdot 1(8)$	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	130(1)
$\mathrm{C}(1)-\mathrm{Fe}(1)-\mathrm{C}(9)$	104.4(8)	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	132(1)
$\mathrm{C}(2)-\mathrm{Fe}(1)-\mathrm{C}(3)$	102.0(9)	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(22)$	111(1)
$\mathrm{C}(2)-\mathrm{Fe}(1)-\mathrm{C}(7)$	$89.8(7)$	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(22)$	116(1)
$\mathrm{C}(2)-\mathrm{Fe}(1)-\mathrm{C}(8)$	$110 \cdot 9(8)$	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	121(1)
$\mathrm{C}(2)-\mathrm{Fe}(1)-\mathrm{C}(9)$	150.1(9)	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	122(1)
$\mathrm{C}(3)-\mathrm{Fe}(1)-\mathrm{C}(7)$	94.7(9)	$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	118(1)
$\mathrm{C}(3)-\mathrm{Fe}(1)-\mathrm{C}(8)$	115-8(7)	$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	118(1)
$\mathrm{C}(3)-\mathrm{Fe}(1)-\mathrm{C}(9)$	$101 \cdot 0(8)$	$\mathrm{C}(17)-\mathrm{C}(22)-\mathrm{C}(21)$	125(1)
$\mathrm{C}(7)-\mathrm{Fe}(1)-\mathrm{C}(8)$	35.2(5)	$\mathrm{C}(17)-\mathrm{C}(22)-\mathrm{C}(7)$	105(1)
$\mathrm{C}(7)-\mathrm{Fe}(1)-\mathrm{C}(9)$	69.4(6)	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(7)$	130(1)
$\mathrm{C}(8)-\mathrm{Fe}(1)-\mathrm{C}(9)$	$40 \cdot 8(6)$	$\mathrm{C}(11)-\mathrm{C}(7)-\mathrm{C}(22)$	105(1)
$\mathrm{C}(4)-\mathrm{Fe}(2)-\mathrm{C}(5)$	94-3(8)	$\mathrm{C}(11)-\mathrm{C}(7)-\mathrm{C}(8)$	132(1)
$\mathrm{C}(4)-\mathrm{Fe}(2)-\mathrm{C}(6)$	$99 \cdot 3(9)$	$\mathrm{C}(22)-\mathrm{C}(7)-\mathrm{C}(8)$	121(1)
$\mathrm{C}(4)-\mathrm{Fe}(2)-\mathrm{C}(8)$	152.2(8)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	128(2)
$\mathrm{C}(4)-\mathrm{Fe}(2)-\mathrm{C}(9)$	112.0(8)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	129(2)
$\mathrm{C}(4)-\mathrm{Fe}(2)-\mathrm{C}(10)$	87.6(7)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(34)$	132(2)
$\mathrm{C}(5)-\mathrm{Fe}(2)-\mathrm{C}(6)$	95.7(10)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(23)$	121(1)
$\mathrm{C}(5)-\mathrm{Fe}(2)-\mathrm{C}(8)$	102.8(7)	$\mathrm{C}(23)-\mathrm{C}(10)-\mathrm{C}(34)$	106(1)
$\mathrm{C}(5)-\mathrm{Fe}(2)-\mathrm{C}(9)$	131.6(8)	$\mathrm{C}(10)-\mathrm{C}(23)-\mathrm{C}(24)$	134(1)
$\mathrm{C}(5)-\mathrm{Fe}(2)-\mathrm{C}(10)$	165-4(8)	$\mathrm{C}(10)-\mathrm{C}(23)-\mathrm{C}(28)$	104(1)
$\mathrm{C}(6)-\mathrm{Fe}(2)-\mathrm{C}(8)$	$100 \cdot 6(8)$	$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(28)$	121(2)
$\mathrm{C}(6)-\mathrm{Fe}(2)-\mathrm{C}(9)$	117•7(8)	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	121(2)
$\mathrm{C}(6)-\mathrm{Fe}(2)-\mathrm{C}(10)$	$98 \cdot 3$ (8)	$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	119(2)
$\mathrm{C}(8)-\mathrm{Fe}(2)-\mathrm{C}(9)$	40.8(6)	$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)$	122(2)
$\mathrm{C}(8)-\mathrm{Fe}(2)-\mathrm{C}(10)$	70.5(6)	$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(28)$	122(2)
$\mathrm{C}(9)-\mathrm{Fe}(2)-\mathrm{C}(10)$	35.9(6)	$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(29)$	132(1)
$\mathrm{Fe}(1)-\mathrm{C}(1)-\mathrm{O}(1)$	178(2)	$\mathrm{C}(23)-\mathrm{C}(28)-\mathrm{C}(29)$	112(2)
$\mathrm{Fe}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	179(1)	$\mathrm{C}(23)-\mathrm{C}(28)-\mathrm{C}(27)$	116(2)
$\mathrm{Fe}(1)-\mathrm{C}(3)-\mathrm{O}(3)$	178(2)	$\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(30)$	134(2)
$\mathrm{Fe}(2)-\mathrm{C}(4)-\mathrm{O}(4)$	180(2)	$\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(34)$	108(1)
$\mathrm{Fe}(2)-\mathrm{C}(5)-\mathrm{O}(5)$	176(2)	$\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{C}(34)$	118(1)
$\mathrm{Fe}(2)-\mathrm{C}(6)-\mathrm{O}(6)$	175(2)	$\mathrm{C}(27)-\mathrm{C}(30)-\mathrm{C}(31)$	120(2)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(16)$	120(1)	$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(32)$	122(2)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(7)$	129(1)	$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)$	120(2)
$\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{C}(7)$	111(1)	$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(34)$	118(2)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	118(1)	$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(28)$	128(1)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	119(2)	$\mathrm{C}(28)-\mathrm{C}(34)-\mathrm{C}(29)$	110(1)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	124(2)	$\mathrm{C}(29)-\mathrm{C}(34)-\mathrm{C}(33)$	122(1)
$\mathrm{Fe}(1)-\mathrm{C}(8)-\mathrm{Fe}(2)$	$80 \cdot 6(5)$	$\mathrm{Fe}(1)-\mathrm{C}(9)-\mathrm{Fe}(2)$	81-2(5)

asymmetry has been ascribed to the differing electron donating properties of groups trans to the terminal allylic carbon atoms. In these compounds the expected lengthening of the ' single ' $\mathrm{C}-\mathrm{C}$ bonds is found. Thus in $\mathrm{Pd}\left(\mathrm{C}_{4} \mathrm{H}_{7}\right)\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}^{9}$ the 'double' bond and 'single' bond lengths are 1.40 and $1.47 \AA$ respectively. In $\left[\mathrm{Rh}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Cl}\right]_{2},{ }^{10}$ where the effect is found twice, the corresponding values are 1.40 and 1.41 , on the one hand, and 1.45 and $1.48 \AA$ on the other. Although the differences in the individual cases are scarcely significant when the estimated standard deviations are considered, a trend is nevertheless apparent. In the butatriene complex we find no comparable effect. Although one might expect the central bond to be longer than the terminal ones on the basis of the scheme shown in (1), the three $\mathrm{C}-\mathrm{C}$ bonds of the butatriene are equal in length, mean $1.39 \AA$. This seems to indicate that there remains considerable electron delocalisation in the complexed butatriene system even though there is a torsion angle of 34° about the central bond. Such delocalisation is not unexpected since the valence-bond description is clearly an oversimplification. The orbital symmetry of the central bond in butatriene is similar to that in acetylene and small rotations about it should not therefore have a great effect on the orbital overlap. Extended Hückel
calculations carried out for an isolated butatriene molecule indicate that in the complexed configuration the total overlap populations in the terminal and central bonds are 0.57 and $0.67 \mathrm{e}^{-}$respectively. These values

Table 4

Equations of best least-squares planes defined by atomic positions, where X, Y, Z are atomic co-ordinates, in \AA, with respect to orthogonal axes parallel with a, b, and $a \times b$. Deviations (\AA) of atoms from the planes are given in square brackets
Plane (1): C(11)-(22), C(7)

$$
-0.2524 X+0.8494 Y-0.4635 Z-0.3024=0
$$

$[\mathrm{C}(7)-0.066, \mathrm{C}(11)-0.017, \mathrm{C}(12) 0.050, \mathrm{C}(13) 0.080, \mathrm{C}(14)$ $0.036, \mathrm{C}(15)-0.045, \mathrm{C}(16)-0.051, \mathrm{C}(17)-0.077, \mathrm{C}(18)-0.026$, $\mathrm{C}(19) 0.054, \mathrm{C}(20) 0.077, \mathrm{C}(21) 0.046, \mathrm{C}(22)-0.061, \mathrm{Fe}(2) 0.073$]

Plane (2): C(10), C(23)-(34)

$$
0.6187 X+0.6403 Y+0.4552 Z-1.7453=0
$$

$\mathrm{C}(10) 0.139, \mathrm{C}(23) 0.109, \mathrm{C}(24)-0.061, \mathrm{C}(25)-0.147, \mathrm{C}(26)$ $-0.081, \mathrm{C}(27) 0.037, \mathrm{C}(28) 0.090, \mathrm{C}(29) 0.104, \mathrm{C}(30) 0.066, \mathrm{C}(31)$ $-0.016, \mathrm{C}(32)-0.142, \mathrm{C}(33)-0.137, \mathrm{C}(34) 0.038, \mathrm{Fe}(1) 0.204]$
Plane (3): C(11)-(16)

$$
-0.2809 X+0.8223 Y-0.4950 Z-0.1268=0
$$

$[\mathrm{C}(11)-0.002, \mathrm{C}(12)-0.003, \mathrm{C}(13) 0.002, \mathrm{C}(14) 0.005, \mathrm{C}(15)$ $-0.010, \mathrm{C}(16) 0.008]$
Plane (4): C(17)-(22)

$$
-0.2387 X+0.8786 Y-0.4135 Z-0.4503=0
$$

$[\mathrm{C}(17) 0.005, \mathrm{C}(18) 0.001, \mathrm{C}(19) 0.001, \mathrm{C}(20)-0.008, \mathrm{C}(21)$ $0.014, \mathrm{C}(22)-0.012]$

Plane (5): $\mathrm{C}(7), \mathrm{C}(11), \mathrm{C}(16), \mathrm{C}(17), \mathrm{C}(22)$

$$
-0.2609 X+0.8395 Y-0.4766 Z-0.1947=0
$$

$[\mathrm{C}(7)-0.018, C(11) 0.015, C(16)-0.006, C(17)-0.006$, $\mathrm{C}(22) 0.014]$

$$
\begin{aligned}
& \text { Plane }(6): C(23)-(28) \\
& 0.5546 X+0.7065 Y+0.4397 Z-2.0675=0 \\
& {[C(23) 0.034, C(24)-0.013, C(25)-0.011, C(26) 0.014, C(27)}
\end{aligned}
$$

$$
0.008, \mathrm{C}(28)-0.030]
$$

Plane (7): $\mathrm{C}(29)-(34)$

$$
0.6509 X+0.5661 Y+0.5058 Z-1.7632=0
$$

$[\mathrm{C}(29)-0.008, \mathrm{C}(30)-0.017, \mathrm{C}(31) 0.022, \mathrm{C}(32)-0.003$, $\mathrm{C}(33)-0.022, \mathrm{C}(34) 0.027]$

Plane (8): $\mathrm{C}(10), \mathrm{C}(23), \mathrm{C}(28), \mathrm{C}(29), \mathrm{C}(34)$ $0.6353 X+0.6286 Y+0.4486 Z-1.8052=0$
$[\mathrm{C}(10) \quad 0.032, \mathrm{C}(23)-0.014, \mathrm{C}(28)-0.010, \mathrm{C}(29) \quad 0.031$, $C(34)-0.040]$
are to be compared with 0.60 and $0.80 \mathrm{e}^{-}$for the corresponding bonds when butatriene is in the uncomplexed configuration. When the interactions of the iron atoms with the chain are taken into account, this should lead to reduced values for the estimated total overlap population in both kinds of bond, but the reduction should be greater for the central bond. Thus from a molecular orbital standpoint it is not unreasonable that the three bonds should have been found to be equal in length.

The angles subtended by the iron atoms at the bridging carbons are $80 \cdot 6(5)$ and $81 \cdot 2(5)^{\circ}$. These lie within the range $80-87^{\circ}$ noted as the limiting values for such angles. ${ }^{11}$

[^3]Iron-iron bonds have been found to vary considerably in length. Values from 2.37^{12} to $2 \cdot 63 \AA^{11}$ have been reported for neutral binuclear complexes. The distance in this butatriene complex lies close to the upper end of this range, viz. 2-596(4) \AA.

Although the torsion angle about the central bond is only 34°, this twist increases through the molecule until the angle between the biphenylylidene groups, as measured by the least-squares planes defined by the constituent atoms, becomes 80°. Additionally, neither of the biphenylylidene groups is planar. The atoms of each group deviate systematically from the best least-
squares plane by up to $0.08 \AA$ in one case and up to $0.15 \AA$ in the other. However, all the five- and sixmembered rings are planar to within $0.03 \AA$. The sixmembered rings are tilted with respect to the fivemembered rings through angles which range from 2 to 6°.

We thank Dr. K. K. Joshi for samples of the crystals, Dr. W. Th. M. A. van de Lugt for the extended Hückel calculations, and Drs. L. I. Hodgson and F. S. Stephens for their contributions to programmes used in this work.
[1/2362 Received, 9th December, 1971]
12 P. E. Baikie and O. S. Mills, Chem. Comm., 1966, 707.

[^0]: \dagger Present address: Koninklijke/Shell Laboratorium, Badhuisweg 3, Amsterdam N, The Netherlands.

[^1]: ${ }^{1}$ Part XXVI, R. J. Hoare and O. S. Mills, J.C.S. Dalton, 1972, 2141.
 ${ }_{2}$ K. K. Joshi, J. Chem. Soc. (A), 1966, 594.

[^2]: 7 'International Tables for X-Ray Crystallography,' vol. 3, Kynoch Press, Birmingham, 1962.

 8 A. A. Hock and O. S. Mills, Acta Cryst., 1961, 14, 139.

[^3]: 9 R. Mason and D. R. Russell, Chem. Comm., 1966, 26.
 ${ }^{10}$ M. McPartlin and R. Mason, Chem. Comm., 1967, 16.
 ${ }^{11}$ O. S. Mills and A. D. Redhouse, Chem. Comm., 1966, 444.

