The Vibrational Spectrum of Ruthenocene

By D. M. Adams* and W. S. Fernando, Department of Chemistry, University of Leicester, Leicester LE1 7RH

The complex Raman and i.r. spectra of ruthenocene at ambient and liquid-nitrogen temperatures have been interpreted with the aid of solution and Raman single-crystal data to yield a complete assignment, including inactive modes. The polarisation property of the π (C-H) modes in ferrocene has been determined for the first time. Contrary to the accepted order, the i.r.-active ring ' tilt ' mode of ruthenocene comes at lower frequency than the M-ring bond stretch.

As the prototype 'sandwich' organometallic molecule, ferrocene has been the object of many vibrational spectroscopic studies.¹⁻⁶ Even so, its spectrum is still not fully understood. In particular, the π (C-H) modes have not been assigned with an adequate degree of proof; the i.r. M-ring modes need further study; and the inactive modes have not been determined with completeness. Ferrocene crystallises in a monoclinic space group which has several unattractive features insofar as attempts at proof of assignment are concerned. However, ruthenocene, $Ru(\pi-C_5H_5)_2$, crystallises in the orthorhombic group Pnma $(D_{2h}^{16}), Z = 4,^7$ which is more satisfactory for single-crystal spectroscopy. We have re-investigated the vibrational spectrum of ruthenocene, the only previous study being that of Lippincott and Nelson¹ which pre-dated laser-Raman equipment. During our work Bodenheimer reported, in summary, a single-crystal Raman study.⁸

Selection Rules.-In solution the barrier to rotation of the rings is low. Bunker has shown that the molecular symmetry is then more correctly described in terms of the double group G_{100} , the representation including G-type quadridegenerate symmetry species.9 The i.r.-Raman coincidences required for the G_{1s} species will be removed if there is coupling between the two rings, with the result that either D_{5h} (rings eclipsed)

¹ E. R. Lippincott and R. D. Nelson, Spectrochim. Acta, 1958, 10, 307. ² W. K. Winter, B. Curnutte, and S. E. Whitcomb, Spectro-

chim. Acta, 1959, 15, 1085.

⁸ H. Stammreich, quoted by H. P. Fritz in Adv. Organo-metallic Chem., 1964, 1, 239.
 ⁴ T. V. Long and F. R. Huege, Chem. Comm., 1968, 1239.
 ⁵ D. Hartley and M. J. Ware, J. Chem. Soc. (A), 1969, 138.

or D_{5d} (rings staggered) selection rules then apply. The rules are summarised, and their inter-relations shown, in Table 1.

In the solid each molecule has approximately D_{5h} symmetry and is located on a C_s site [the plane retained is (zx)]. Unit-cell analysis ¹⁰ and the correlation scheme are shown in Table 2. We note in particular that all of the inactive molecular species become active in the crystal.

Assignment.—Solution spectra.— A_1' modes. Lippincott and Nelson did not obtain Raman polarisation data for their solutions. We find strong polarised bands at 3111, 1101, and 329 cm⁻¹, similar to values reported for ferrocene and the cobalticinium ion. The fourth totally symmetric mode, $v_2 = \pi(C-H)$, is exceedingly weak; the low intensity has been explained by Hartley and Ware.⁵ Ruthenocene is less readily soluble in common solvents than ferrocene; on the reasonable assumption that the $\pi(C\text{-}H)$ modes ν_2 and ν_{14} will follow the same order for both molecules, we showed (for the first time) that the 812 cm⁻¹ band of ferrocene is polarised in nitromethane solution and accordingly assign v_2 at 806 and v_{14} at 832 for ruthenocene.

 A_2'' modes. These will be close to those of a_1' type if coupling beteeen the rings is negligible since the two species correspond to out-of-plane and in-plane motions

⁶ J. Bodenheimer, E. Loewenthal, and W. Low, Chem. Phys. Letters, 1969, 3, 715. ⁷ G. L. Hardgrove and D. H. Templeton, Acta Cryst., 1959, 12,

28.

⁸ J. Bodenheimer, Chem. Phys. Letters, 1970, 6, 519.

P. R. Bunker, Mol. Phys., 1965, 9, 247.
 D. M. Adams and D. C. Newton, 'Tables for Factor Group and Point Group Analysis,' Beckman-RIIC Ltd., Croydon, 1970.

of the rings respectively. Three i.r. (solution) bands can be so assigned (Table 3); the fourth is not expected to be particularly close to its a_1' counterpart as it is a skeletal mode. It could be at either 381 or 446 cm⁻¹.

 E_1' and E_1'' modes. E_1' modes can now be assigned readily as they generate the only remaining i.r. (solution) bands. Unfortunately an ambiguity arises because one more than the theoretical number of bands is 895, and 602 cm⁻¹; the number of bands is correct and their frequencies are those expected on qualitative grounds. E_2' modes are generally weak for this molecule: the bands at 895 and 602 cm⁻¹ have not been observed previously.

 A_2', A_1'' , and E_2'' modes. These are all inactive. Since the a_1', a_2'' and e_1', e_1'' pairs are almost coincident (for ring modes) we can confidently attribute e_2'' values

Sel	lection ru	les for l	bis-(π-cy	clopenta	ıdienyl)n	netal con	nplexes		
Point group	Numbering ^a and representation								
D _{5d}	${}^{\nu_{1-4}}_{4A_{19}} + {}^{\mathbf{P}}_{\mathbf{P}}$	∨7 A₂ø +	${}^{\nu_{17-22}}_{6E_{1u}} + $	${}^{\nu_{23-28}}_{6E_{2g}} + {}^{ m B}$	$^{\nu_{5-6}}_{2A_{1u}} +$	$v_{8-11} \\ 4A_{2u} + Ir$	$5E_{1g} + B$	v _{29–34} 6E _{2u}	
D _{5h}	$4A_{1'} +$	$A_{2}' +$	$6E_{1'} +$	$6E_{2}' +$	$2A_1'' +$	$4A_{2}'' +$	$5E_{1}'' +$	6E2''	
			1	<u>}</u>			1	Î	
C									
(ref. 9)	4A ₁₀ +	$A_{2s} + $	${}^{5G_{10}}_{1E_{6d}} +$	6 G4, +	1A 3, ^b -	+ 4A _{4s}			
Activity	R		(R,Ir lIr	R		Ir			

• The numbering of Hartley and Ware (ref. 5) is retained. b No torsional mode in G_{100} .

found. This is important as the sort of e_1'' and e_2' Raman-active modes must be made on the basis of the expected proximity of e_1' and e_1'' modes. Suspicion

		TABLE	2						
Unit-cell analysis and correlation scheme for solid									
ruthenocene									
$N_{\mathbf{T}}$	Α	Т	\mathbf{R}	N_i	Activity				
34		2	1	31	xx, yy, zz				
29		1	2	26	xy				
34		2	1	31	zx				
29		1	2	26	yz				
29		1	2	26					
34	1	1	1	31	z				
29	1	0	2	26	у				
34	1	1	1	31	x				
Site				Crystal					
$C_s(\sigma_{zx}) -$	× 4	$\rightarrow D_{2b}$							
A'		$A_{g}^{}+$	$B_{2g} +$	$B_{1u} + B$	314				
A''		B_{1g} -	$+B_{39} +$	$A_u + B$	2u				
$A^{\prime\prime}$		(As a	lbove)						
A'									
A' + A	//	$A_g + B_1$	$B_{1g} + B_{2u} + B_{2u}$	$B_{2g} + B_{3w} + B_{3w}$	$A_{3g} + A_u +$				
$N_{\rm m}$ = Total number of modes: A = acoustic: T = trans									
= rota	tory;	$N_i = int$	ernal m	odes.	,				
	bill analy $N_{\rm T}$ 34 29 34 29 34 29 34 29 34 34 Site $C_s(\sigma_{zz}) - A''$ A'' A'' A' + A Cotal nu: = rota'	ell analysis ar N_{T} A 34 29 34 29 34 29 34 1 29 34 1 34 1 Site $C_{\bullet}(\sigma_{zz}) \xrightarrow{\times 4} A''$ A''' A'''' A''' A'''' A'''' A'''' A''''' A'''''' $A''''''''''''''''''''''''''$	TABLE ell analysis and correl ruthenoc N_T A T 34 2 29 1 34 2 29 1 34 2 29 1 34 1 1 2 29 1 34 1 1 1 Site $C_{\bullet}(\sigma_{zz}) \xrightarrow{\times 4} D_{2h}$ $A'' A'' A_{g} + B_{1g} + B_{1g}$ Cotal number of modes $=$ rotatory; $N_i =$ int	TABLE 2TABLE 2ell analysis and correlation s ruthenocene N_T ATR 34 212 29 12 29 12 34 11 29 12 34 11 29 12 34 11Site $N_a^r + B_{2g} + A^{\prime\prime} + A^{\prime\prime} + B_{1g} + B_{2g} + B_{1g} + B_{2g} + B_{1g} + B_{1g} + B_{1g} + B_{1u} + B_{2u}$ Cotal number of modes; $A =$ cotal number of modes; $A =$ cotal number of modes; $A =$	TABLE 2 TABLE 2 ell analysis and correlation scheme for ruthenocene NT A T R Ni 34 2 1 31 29 1 2 26 34 2 1 31 29 1 2 26 34 1 1 1 2 26 34 1 1 31 29 1 2 26 34 1 1 31 29 1 0 2 26 34 1 1 31 29 1 0 2 26 34 1 1 31 29 1 0 2 26 34 1 1 31 Site Crystal Ag + Bag + Bag + Bag + Bag + Au + Bag Ag'' Ag + Bag + Bag + Au + Bag A''' A'' Ag + Bag + Ba				

falls upon the 1050 cm⁻¹ i.r. (solution) band, also observed by Lippincott and Nelson, as it is both weak and broad whereas the other presumed- e_1' bands are all strong: they found that it was absent from the spectrum of the vapour. On this assumption, the e_1'' Raman modes must be assigned as in Table 3. The $a_2''-e_1'$ ambiguity remains over assignment of the skeletal modes v_{11} and v_{21} for which the values 381 and 446 cm⁻¹ are available.

 E_2 ' modes. These are assigned to the only remaining unlabelled Raman bands, *viz.*, **3100**, **1361**, **1193**, **1055**,

by analogy with those of e_2' : this is done below in connection with crystal data. The sole remaining undetermined modes are an a_1'' , a_2' pair which will be effectively coincident and with frequency/cm⁻¹ in the 1000—1300 region, since they are δ (C-H) modes. A second a_1'' mode is a torsional motion, only possible in the solid state, which will certainly lie below 200 cm⁻¹.

Solid-state spectra. At liquid-nitrogen temperature both i.r. and Raman spectra are of considerable complexity, showing many band splittings (see Figure).

I.r. spectrum (KBr disc) of ruthenocene at liquid-nitrogen temperature, showing weakly allowed 'inactive' modes

On the basis of two very reasonable assumptions (negligible interaction between rings; that the weak 1050 cm^{-1} i.r. band is not a fundamental) an assignment for almost all of the internal modes of ruthenocene in

 $\hat{}$

 ν (C-H) region. We found six ν (C-H) Raman bands but Bodenheimer, working at 80 K, was able to resolve

	I.1 .		Vibrational frequen	icies/cm ⁻¹ and as	ssigni	ment fo r ru tl Raman	henocene		
Solid at liquid- nitrogen temp. 138w 165wm		Solution	D_{5h} Molecular assignment a_1'', v_6	Solution	(Crystal at liquid- nitrogen temp. 130vw	Crystal at ambient temp. 111vw		Crystal assignment D_{2h} $B_{1g} + B_{3g}$
172wm	ł		a_1', v_4	329s,P	{	329s 337vs	327s 335vs	}	$A_g + B_{2g}$
381s 450vs		446m	e_1', v_{21} e_1'', v_{16} a_2'', v_{11} e_2', v_{28} (+ e_2'', v_{31} ?) a_1', v_2	400m,dP 602vw,dP ~806vw	{ {	394w 400m 402w 406m 602w 606w 818w	400m 403w 406m 601w 604w 817w	} }	$A_{g} + B_{1g} + B_{2g} + B_{3g}$ $A_{g} + B_{1g} + B_{2g} + B_{3g}$ $A_{g} + B_{2g}$
804m 812s 821m 823m 833vw 838w	}	807s 835w	a_{2}'', v_{9} e_{1}', v_{19} e_{1}'', v_{14}	~832vvw	{	833w 840w 845w	832w 843w	}	$A_{g} + B_{1g} + B_{2g} + B_{3g}$
868m 898w			e ₂ '', v ₃₃ e ₂ ', v ₂₇	895vw,dP	{	896vvw 909vvw 991vw	908vvw		B ₁₉
			ε'1'',ν ₁₃	995w,dP	{	996vw 1003vw 1012vw	993vw 1003vw 1011vw	}	$A_g + B_{1g} + B_{2g} + B_{3g}$
998s 1002sh 1047w	}	1002s	e ₁ ',v ₁₈			1050	1040		$A \perp B \perp B$
1052w 1060w 1066w	}	10 5 0w, dr	e ₂ ', v ₁₃ e ₂ ', v ₂₅ a ₁ ', v ₃	1055wm,dP 1101s,P	{ {	1062m 1065wm 1092w 1099ys	1049w 1061m 1063sh 1093w 1099vs	} }	$A_g + B_{1g} + B_{2g}$ $A_g + B_{1g} + B_{2g} + B_{3g}$ $A_g + B_{2g}$
1098sh 1100s	}	1102s aı	$a_{2}^{\prime\prime}, v_{10}$ e_{2}^{\prime}, v_{24} nd	1193w,dP	{	1101vw,sh 1182ww 1193vvw	1192vvw 1203vvw	}	$A_g + B_{1g} + B_{2g} + B_{3g}$
1248sh 1255m 1340vw 1345vw	}		e_{2}'', v_{30} $a_{1}'', v_{5}; a_{2}', v_{7}$ e_{2}'', v_{32}		{	1204vvw 1208vvw	1950)	
1400sh 1410m	}	1412m	e ₂ ',v ₂₆ e ₁ '',v ₁₅	1361m,dP	{	1364w	1362w	}	$A_g + B_{1g} + B_{2g} + B_{3g}$
		3100m	e_1', v_{20} a_2'', v_8	1412s,dP	{	1406wm 1411w 3076w	1406wm 1409w 3076w	} }	$A_g + B_{1g} + B_{2g} + B_{3g}$
			$\left. \begin{array}{c} e_{2}', v_{23} \\ e_{1}'', v_{12} \end{array} \right\}$	3100w,dP		3084w 3092vw 3097vw	3084w 3095w	}	$A_g + B_{1g} + B_{2g} + B_{3g}$
			<i>a</i> ₁ ', v ₁	3111s,P	ι	3104m 3112m	3104m 3111m		$\begin{array}{l}A_{g}+B_{1g}+B_{2g}+B_{3g}\\A_{g}+B_{2g}\end{array}$

TABLE 3
Withoutional fragmonoios/om-1 and assignment for ruthenocen

all).

nine. Even this is less than half the number required by unit-cell analysis. There are several alternative assignments but the evidence is insufficient to distinguish between them. We consider the most probable ex v_{15} and v_{20} ; v_{26} and v_{32} . $v_{15}.e_1''$ and $v_{20}.e_1'$ Occur in both i.r. and Raman solution spectra at 1412 cm⁻¹; both are present as doublets in low-temperature solidstate spectra, the Raman polarisations being those

planation to be that D_{5h} Raman-active modes only show

in the solid-state spectrum, and that they exhibit full

site and correlation splitting (requiring ten bands in

expected for an *e*-mode. The i.r. doublet is at slightly different frequency from the Raman doublet but the overall splitting is small.

 v_{26}, e_2' has no i.r. counterpart: it also shows as a doublet in the Raman crystal spectrum (1364, 1359 cm⁻¹) with the correct symmetry labels. A weak doublet is found at 1345, 1340 cm⁻¹ in the i.r. spectrum of the solid. This could be due to either (a) the i.r. part of the correlation and site split v_{26} or (b) v_{32} , inactive in solution but allowed in the solid. Since the centres of the i.r. and Raman doublets are *ca*. 20 cm⁻¹ apart we prefer to assign the i.r. doublet to v_{32} .

 ν_5 and ν_6 . The i.r. spectrum (solid) shows a weak doublet at 1255, 1248 cm⁻¹ not present in solution and well removed from any Raman-active frequencies. It is therefore most probably due to an inactive mode(s); its position suggets that it is δ (C-H) and it is accordingly attributed to both ν_7 , a_2' and ν_5 , a_1'' .

 v_{24} and v_{30} . v_{24} , e_2' has been assigned to a weak Raman solution line at 1193 cm⁻¹. It does not show through in the i.r. spectrum of the solid and is present in the Raman spectrum of the crystal as a very weak multiplet: we observe four lines whilst Bodenheimer found two more possible lines at 80 K. In view of the breadth of the multiplet we are inclined to attribute it to v_{24} and v_{30} rather than v_{24} alone.

 v_3 and v_{10} . v_3 (Raman) and v_{10} (i.r.) are degenerate in solution. The i.r. (solid) spectrum shows an intense band with a weak shoulder, consistent with the v_{10} assignment. The Raman spectrum shows three lines, 1101, 1099, and 1092; only two of these can come from v_3 (see correlation scheme) so we must conclude that another mode is showing through, viz., v_{10} . We reject Bodenheimer's suggestion that the 1092 cm⁻¹ line is due to v_5 and v_6 as we consider it better to assign them to the relatively more prominent i.r. group as above.

 v_{25} and v_{31} . Between 1000 and 1100 cm⁻¹ there are two doublets in both i.r. and Raman spectra of the solid, whereas the solutions show only one band each. (The 1050 cm⁻¹ i.r. band was considered above *not* to be a fundamental.) The i.r.-Raman doublets centred near 1063 cm⁻¹ are *ca*. 8 cm⁻¹ higher than the v_{25} solution value and the Raman doublet is quite strong: we therefore attribute it to v_{25} (the Raman crystal-symmetry labels are correct). The lower doublet is reasonably assigned to v_{31} , although the i.r. counterpart may be linked in origin with the 1050 cm⁻¹ solution band.

We note that rather large solution to solid upward shifts appear to be associated with π (C-H) modes; also, if our assignments of ν_{25} , ν_{31} are correct, this is the largest of the differences between components of G_4 .

 v_{13} and v_{18} . The Raman and i.r. multiplets between 940 and 1040 cm⁻¹ are most probably associated with v_{13} and v_{18} as no inactive modes are expected in this region. Since *two* of the Raman lines bear A_g labels we conclude that v_{18} has become weakly allowed in the Raman spectrum (as expected).

 v_{27} and v_{33} . v_{27} and v_{33} are really skeletal modes and need not be expected in as close proximity as other

 e_2' , e_2'' pairs. v_{27} was found at 895 cm⁻¹ in solution and corresponds to the 896—909 cm⁻¹ pair in the Raman spectrum of the crystal. It remains to assign the prominent 868 cm⁻¹ i.r. band which has no solution counterpart. We consider this to be v_{33} .

 v_2 and v_9 ; v_{14} and v_{19} . From 800 to 900 cm⁻¹ both spectra are highly complex. The $\pi(C-H)$ modes present in solution near 806 and 830 cm⁻¹ show up clearly in both i.r. and Raman spectra, yielding multiplets which, for the Raman case, have symmetry labels in accord with predictions based upon the solution assignment. The frequency separation of these multiplets is a little greater than observed at higher frequencies, but these are $\pi(C-H)$ motions and hence most likely to undergo stronger ring-ring and intermolecular interactions.

 v_{28} and v_{34} . Between 450 and 712 cm⁻¹ the i.r. spectrum of solid ruthenocene is clear but the Raman spectrum exhibits a doublet 606, 602 cm⁻¹ bearing the labels $(A_g + B_{1g} + B_{2g} + B_{3g})$, consistent with its assignment as e_2'', v_{28} from solution spectra. The inactive e_2'', v_{34} could in principle also show up here and may be coincident with v_{28} .

 v_4 , v_{11} , v_{16} , and v_{21} . The four skeletal modes $v_4(a_1')$, $v_{11}(a_2'')$, $v_{16}(e_1'')$, and $v_{21}(e_1')$ are in the region 300— 450 cm⁻¹. Assignment of v_4 and v_{16} is unequivocal and is supported by the single crystal Raman results in that v_4 yields a doublet $(A_g + B_{2g})$ and v_{16} a quartet. The 446 cm⁻¹ i.r. band does not show through in the Raman spectrum and none of the Raman multiplet components appear in the i.r. spectrum. It could be argued that the Raman band at 394 cm⁻¹ is part of the i.r. multiplet centred at 381 cm⁻¹ but we think this unlikely in view of the other non-coincidences. v11 should yield a doublet in the i.r. spectrum $(B_{1u} + B_{3u})$ whereas v_{21} should become a triplet $(B_{1u} + B_{2u} + B_{3u})$. Unfortunately the splitting is not resolved on either of these bands and we reluctantly conclude that there is no *a priori* evidence for the order of v_{11} and v_{21} in ruthenocene: the same holds for ferrocene and the cobalticinium ion. However, we find that, at liquidnitrogen temperature, the i.r. band of ferrocene centred at 497 cm⁻¹ is approximately twice the width of that at 479 cm⁻¹. This is consistent with assignment of the higher band as v_{21} and the lower one as v_{11} . It is also consistent with the shifts consequent upon deuteriation of ferrocene, the basis upon which Lippincott and Nelson originally assigned $\nu_{21} > \nu_{11}.$ For ruthenocene they made the assignment v_{21} 528 and v_{11} 446 cm⁻¹. As their i.r. observations were limited to 400 cm⁻¹ they did not find the 381 cm⁻¹ band; in contrast we cannot find the weak 528 cm⁻¹ band and conclude that it was in some way associated with their solution work. Our KBr disc of ruthenocene showed no absorption in this region (Figure 1).

On the simplifying assumption that these molecules may be treated as pseudo-triatomic molecules, equation (1) applies. Since v_4 , a_1' is unequivocally established

١

$$\nu_{11} = \nu_4 \left(1 + \frac{2M_{\rm ring}}{M_{\rm metal}} \right)^{\frac{1}{2}} \tag{1}$$

at 303 for ferrocene and 329 cm⁻¹ for ruthenocene, v_{11} is predicted at 553 (ferrocene), 497 cm⁻¹ (ruthenocene). The v_{11} value thus predicted for ferrocene is ca. 11% too high owing to inadequacies of the model; if the same assumption applies to ruthenocene the predicted figure is reduced to ca. 445 cm⁻¹, effectively coincident with the observed i.r. band at 446 cm^{-1} . This is basically the argument used by Lippincott and Nelson; we agree with it, but are then led to assign the remaining i.r. band (381 cm^{-1}) to v_{21} , the ' tilt ' mode (cf. their erroneous assignment of v_{21} as 528 cm⁻¹). Although the above triatomic model is oversimplified, we do not believe that it is so far in error as to predict v_{11} at 497 cm⁻¹ if the true value were 381 cm⁻¹. This is the first time that a 'tilt' mode has been assigned at a lower frequency than the associated M-ring stretch.

 v_6 and v_{22} . We have not yet considered the two very low-frequency modes v_{22} , δ (ring-M-ring) and v_6 (torsion). In both Raman and i.r. spectra there are many bands, due to lattice modes, below 100 cm⁻¹. But between 100 and 350 cm^{-1} we find only the following/cm⁻¹: Raman: 111w, ambient; shifting to 130 at liquid-nitrogen temperature; i.r.: 138w, 165wm, 172w—m. v_{22} is i.r.-active. v_6, a_1'' is inactive in solution (it has zero frequency in Bunker's approximation) but in the solid it has the representation B_{1y} + B_{3g} (Raman) + B_{2u} (i.r.). Accordingly we assign the 130–138 cm⁻¹ bands to ν_6 and the 165–172 cm⁻¹ pair to v_{22} . The Raman polarisations of the 111 cm⁻¹ band are $B_{1g} + B_{3g}$, as required. Its very large temperature shift is unique in this spectrum and seems consistent with our assignment of it as the torsional mode since this would be quite significantly affected by lattice contraction.

DISCUSSION

Our assignment is summarised in Table 4 in which frequencies have been taken from solid-state spectra. In the a_1' , a_2'' ; a_2' , a_1'' ; e_1'' , e_1' pairs frequencies of corresponding ring modes are very close. The small differences apply to the solid state only and are seen to vanish if solution values are considered, consistent with Bunker's selection rules. Slightly larger differences are found in the e_2', e_2'' sets, but these are not sufficient to throw suspicion on the method of assignment. The only major reservation is attached to assignment of v_{33} . One could argue, reasonably, that this is really a skeletal mode and there is therefore no reason why v_{27} and v_{33} should be particularly close. Nevertheless, knowledge of the symmetry species of the 868 cm⁻¹ band would be helpful. If v_{27} and v_{33} are well separated, v_{28} and v_{34} should be even more so. Whilst the assignment of v_{28} is well established, that for v_{34} is only a suggestion. The weak 528 cm⁻¹ band found by Lippincott and Nelson might be v_{34} , but we were unable to locate it in our spectra.

Bodenheimer's assignment⁸ differs slightly from ours; we had the benefit of low-temperature i.r. data which, taken together with the Raman spectra, led us to the conclusion of Table 4.

TABLE 4
Assignment for ruthenocene, D_{5h} , in the solid state
(frequencies/cm ⁻¹)

			(mequeneics) em	/		
a1'	ν1	3111	v(C-H)	3100	$a_2^{\prime\prime}$	٧ ₈
•	v,	818	$\pi(C-H)$	808	-	νg
	ν,	1099	v(C-C)	1099		V10
	ν,	333	v(Ru-ring)	450		V11
a.'	v.,	1251	$\delta(C-H)$	1251	a,''	νĒ
4	•		Torsion	134	•	v
2,"	٧19	3080	v(C-H)	3080	e'	V17
-	V12	1001	δ(CH)	1000	•	V18
	V14	839	$\pi (C - H)$	829		¥10
	V1 E	1410	v(C-C)	1406		Ven
	V10	400	Ring tilt	381		¥91
	. 10		$\delta(\text{Ring}-\text{Ru}-\text{Ring})$	168		V
2.1	Vez	3105	v(C-H)	3095	e.''	V
4	· 23 Var	1187	$\delta(C-H)$	1206	- 4	Van
	V	1063	$\pi(\mathbf{C}-\mathbf{H})$	1049		Vat
	* 25 Vaa	1361	v(C-C)	1342		Vea
	· 26	902	8(000)	868		- 3z Vaa
	- 27 Vec	604	$\pi(CCC)$	604		·33 V.
	- 28					- 34

EXPERIMENTAL

Ruthenocene was prepared by the method of Bublitz, McEwen, and Kleinberg.¹¹ Large single crystals were grown by slow evaporation of toluene solutions. Axial directions were determined by both optical and X-ray methods. Faces were ground normal to the a- and b-axes for Raman single-crystal work. A stock sample of ferrocene was recrystallised before use.

I.r. spectra were determined by using a Perkin-Elmer 225 spectrometer and a Beckman-RIIC FS-620 interferometer. Raman work was done with Coderg PH1 and PH0 instruments with 632.8 and 488.0 nm excitation.

We thank Dr. D. C. Newton for X-ray determination of the crystallographic axes, Vidyodaya University of Ceylon for a grant (to W. S. F.), and the S.R.C. for support.

[2/1248 Received, 2nd June, 1972]

¹¹ D. E. Bublitz, W. E. McEwen, and J. Kleinberg, Org. Synth., 1961, **41**, 96.