Crystal Structure of Nonacarbonyl- μ-dimethylarsino- μ-[2-(diphenyl-phosphino)tetrafluorocyclobut-1-enyl]-tri-iron

By F. W. B. Einstein ${ }^{-}$and R. D. G. Jones, Department of Chemistry, Simon Fraser University, Burnaby 2, British Columbia, Canada

Abstract

The crystal structure of the title compound has been solved using X-ray counter data. Crystals are orthorhombic, space group $P 2_{1} 2_{1} 21$, with $Z=8$ in a cell of dimensions: $a=12 \cdot 172(3), b=48 \cdot 935(8)$, and $c=10 \cdot 233(2) A$: there are two molecules in the asymmetric unit which have been shown to be chemically equivalent. The structure was solved by tangent refinement procedures and refined by full-matrix least-squares methods to $R 0.052$ for 2175 observed reflections. The molecule is based on three $\mathrm{Fe}(\mathrm{CO})_{3}$ groups and an $\mathrm{Me}_{2} \mathrm{As}$ group which are linked to form a four-membered ring. The mean $\mathrm{Fe}-\mathrm{As}$ is $2 \cdot 387 \mathrm{~A}$. The ligand, $\left(\mathrm{Ph}_{2} \mathrm{P}\right) \cdot \mathrm{C}: \mathrm{C} \cdot \mathrm{CF}_{2} \cdot \mathrm{CF}$, forms a bond with each iron atom through the phosphorus atom, Fe-P $2.48 \AA$, the cyclobutenyl double bond, Fe-(midpoint) $\mathrm{C}=\mathrm{C}$ $1.96 \AA$, and a carbon atom of the cyclobutene ring. Fe-C $1.94 \AA$, and thus bridges the two iron-iron bonds. Every iron atom has approximate octahedral co-ordination. The two iron-iron distances in each molecule are inequivalent, 2.676 and $2.866 \AA$. and this appears to be a result of constraints caused by the ligand bridges. One of the methyl groups bonded to arsenic has close non-bonded intramolecular contacts with a phenyl ring.

Organometallic complexes of transition-metal carbonyls and ligands of type $\mathrm{CE}^{1} \cdot \mathrm{CE}^{2} \cdot\left[\mathrm{CF}_{2}\right]_{n} \cdot \mathrm{CF}_{2}$ ($\mathrm{E}^{1}=$ $\mathrm{E}^{2}=\mathrm{Me}_{2} \mathrm{As}, n=1, \mathrm{f}_{4}$ fars; $\mathrm{E}^{1}=\mathrm{E}^{2}=\mathrm{Ph}_{2} \mathrm{P}, n=1$ f_{4} fos, $n=2 \mathrm{f}_{6}$ fos, $n=3 \quad \mathrm{f}_{8} \mathrm{fos} ; \quad \mathrm{E}^{1}=\mathrm{Ph}_{2} \mathrm{P}, \quad \mathrm{E}^{2}=$ $\mathrm{Me}_{2} \mathrm{As}, n=1, \mathrm{f}_{4} \mathrm{asp}$) have been extensively studied. ${ }^{1}$ In the ligand, each Group V atom and the ethylene-type linkage are potential donor sites and complexes, in which one, two, and all three donor sites are utilized, have been synthesized. However, although the complexes are air-stable at room temperature, both as solids and in solution, it has been found that cleavage reactions involving the ligand can occur on mild heating under reflux. Thus when $\left(\mathrm{f}_{\mathbf{4}} \mathrm{fars}\right) \mathrm{Fe}_{\mathbf{3}}(\mathrm{CO})_{10}$ is heated under reflux in cyclohexane, an $\mathrm{Me}_{2} \mathrm{As}$ is split off and inserts between two iron atoms in the iron triangle; ${ }^{1 c, 2} \mathrm{Me}_{2} \mathrm{As}$ is cleaved from the fluorocyclobutenyl in ($\mathrm{f}_{4} \mathrm{fars}$) Mn_{2} $(\mathrm{CO})_{8}$ and then inserts into the $\mathrm{Mn}-\mathrm{Mn}$ bond; ${ }^{3}$ when $\left(\mathrm{f}_{4} \mathrm{fars}\right) \mathrm{CO}_{2}(\mathrm{CO})_{6}$, is heated under reflux in hexane, $\mathrm{Me}_{2} \mathrm{As}$ is cleaved and inserts into the $\mathrm{Co}-\mathrm{Co}$ bond, and two fluorocyclobutenyl moieties dimerize. ${ }^{3}$

When $\mathrm{Fe}_{3}(\mathrm{CO})_{12}$ is heated under reflux with f_{4} asp in cyclohexane, a compound of empirical formula $\mathrm{Fe}_{3}(\mathrm{CO})_{9^{-}}$ ($\mathrm{f}_{4} \mathrm{asp}$) is formed. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum of this compound shows two upfield singlets, one at -0.10 and the other at $-\mathbf{l} .0$ p.p.m. ${ }^{4}$ The latter is consistent with an AsMe group; however, the former suggests the possible presence of an FeMe grouping. Our single-crystal X-ray analysis has shown that $\mathrm{Me}_{2} \mathrm{As}$ has been cleaved from f_{4} asp and has been inserted into one of the $\mathrm{Fe}-\mathrm{Fe}$ bonds in the iron triangle to give a structure which is very similar to that described in ref. 2. Moreover, the structure provides an explanation for the two different methyl-group resonances.

EXPERIMENTAL

Crystals from carbon disulphide were dark red plates of various thicknesses with the longest direction along c.

[^0]Weissenberg photographs of nets $h k 0-4$ and precession photographs of zones $0 k l$ and $h 0 l$, taken with $\mathrm{Cu}-K_{\alpha}$ radiation, indicated the crystals were orthorhombic.

Crystal Data.- $\mathrm{C}_{27} \mathrm{H}_{16} \mathrm{AsF}_{4} \mathrm{Fe}_{3} \mathrm{O}_{9} \mathrm{P}, \quad M=833 \cdot 6$, Orthorhombic, $a=12 \cdot 172(3), \quad b=48.935(8), \quad c=10 \cdot 233(2) \AA$, $U=6094.8 \AA^{3}, D_{\mathrm{m}}=1.75(3)$ (Bermann density balance), $Z=8, D_{\mathrm{c}}=1.82, F(000)=3296 . \quad \lambda\left(\mathrm{Mo}-K_{\alpha 1}\right)=0.70926$, $\lambda\left(\right.$ Mo- $\left.K_{\alpha}\right)=0.7107 \AA, \mu\left(\right.$ Mo- $\left.K_{\alpha}\right)=27.1 \mathrm{~cm}^{-1}$. Space group $P 2_{1} 2_{1} 2_{1}$ from systematic absences: $h 00$ when h is odd, $0 k 0$ when k is odd, $00 k$ when l is odd.

Two crystals were used, one (ca. $0.2 \times 0.3 \times 0.45 \mathrm{~mm}$) was for cell dimension measurements, and the other, $(0.3 \times 0.3 \times 0.42 \mathrm{~mm})$ for data collection. In both cases, the crystal was mounted with c^{*} approximately along ϕ and, in the case of data collection, c^{*} and ϕ were $c a$. 4° from coincidence in order to minimize intrinsic multiple reflection. Cell dimensions were obtained from the leastsquares analysis of 2θ values for 16 reflections ($2 \theta>28^{\circ}$) which had been automatically centred on a computercontrolled, Picker four-circle diffractometer, \dagger with Mo- $K_{\alpha 1}$ radiation, and take-off angle $\mathbf{1} \cdot \mathbf{1}^{\circ}$. Errors in the cell dimensions are those determined by the least-squares process.

Intensity data for one octant were collected by the $\theta-2 \theta$ scan technique by use of $\mathrm{Mo}-K_{\alpha}$ radiation (niobium filtered) and a scintillation counter equipped with pulseheight analysis. Because of the length of the b axis, overlap of reflections can be a problem. To eliminate overlap, the take-off angle was kept at 1.7° and the detector was placed 28 cm from the crystal and the detector aperture was 2 mm high and 3 mm wide. Each reflection was scanned for 0.9° in 2θ (extended for spectral dispersion) at a rate of $2^{\circ} \mathrm{min}^{-1}$. At each end of the scan range, a stationary background count was made for 10 s . Every 50 reflections, two standard reflections were monitored and the maximum deviation of
${ }^{1}$ (a) W. R. Cullen, D. A. Harbourne, B. V. Liengme and J. R. Sams, Inorg. Chem., 1969, 8, 95 ; (b) ibid., p. 1464; (c) ibid., 1970, 9, 702; (d) W. R. Cullen and D. A. Harbourne, ibid., p. 1839; (e) W. R. Cullen, P. S. Dhaliwal, and C. J. Stewart. ibid., 1967, 6, 2256; (f) J. P. Crow and W. R. Cullen, ibid., 1971, 10, 1529; (g) ibid., p. 2165; (h) W. R. Cullen and J. A. J. Thompson, Canad. J. Chem., 1970, 48, 1730; (i) W. R. Cullen, D. F. Dong, and J. A. J. Thompson, ibid., 1969, 47, 4671.
${ }^{2}$ F. W. B. Einstein, Anne-Marie Pilotti, and R. Restivo, Inorg. Chem., 1971, 10, 1947.
${ }_{3}$ F. W. B. Einstein, R. D. G. Jones, A. C. MacGregor, and W. R. Cullen, unpublished results.
${ }^{4}$ W. R. Cullen, personal communication.
any standard from the mean was 4%. In this manner, intensities for 3285 reflections with $2 \theta \leq 40^{\circ}$ were measured. The reflection $0,2,0$ could not be determined because the beam-stop intercepts the detector.

Intensities were corrected for background (normalized to scan time), variation of the standard reflections, and the Lorentz-polarization factor. No absorption correction was applied ($\mu R 0 \cdot 41$). If the nett count for a reflection was $<2 \cdot 5 \sigma, \sigma$ (background + total count $)^{\frac{1}{3}}$, the reflection was considered unobserved. The number of observed reflections was 2175.

Structure Determination.-The tangent refinement procedure ${ }^{5}$ was used to initiate the structure solution with data having $2 \theta \leq 30^{\circ}$. E Values were determined and $0,4,1(3 \cdot 27,0), 3,14,6(2 \cdot 56, \pi), 2,33,0(2 \cdot 46,0)$, and $1,4,0$ ($3 \cdot 32, \pi / 2$) were used to fix the origin and enantiomorph. Two series of tangent refinement with an additional reflection $0,8,3$ in the starting set with alternate phase of 0 and π led to $R_{\mathrm{K}}{ }^{*}$ values of 0.24 and 0.31 .

An E map $\left[R_{\mathrm{K}} 0.24\right.$, phase $3,14,6=0.33 \pi(0.49 \pi$ after final refinement)] showed positions for two arsenic atoms, six iron atoms, and two phosphorus atoms and indicated two molecular entities in the asymmetric unit. Two elec-tron-density difference syntheses allowed location of all non-hydrogen atoms and showed the two molecules were equivalent. Using all data, refinement of the atomic parameters by full-matrix least-squares, latterly with anisotropic temperature factors for the arsenic atoms and a fixed contribution from phenyl hydrogen atoms placed at calculated positions, gave $R 0.058$. Each reflection was given unit weight and the function minimized was $\Sigma w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2}$. Because of the limitations of the leastsquares program, in each refinement cycle the parameters for all heavy and the light atoms for one molecule were varied while the contributions from the other light atoms were included as a fixed contribution. There was evidence for anisotropic motion of the iron atoms and, with this change and a weighting scheme described in ref. $6 R$ was 0.052 and R^{\prime} was 0.063 . \dagger

At this stage it was observed that there was relatively poor structure-factor agreement, for the $0 k l$ data $\left(\left|F_{0}\right|>\right.$ $\left|F_{\mathrm{c}}\right|$) which we thought may be due to positional errors of the heavy atoms. The heavy-atoms parameters were refined with data for $30^{\circ}<2 \theta \leq 40^{\circ}$ and were fixed at these values while all data was used to refine the light-atom parameters. Even though there were some small shifts of the heavy atoms, the agreement did not improve.
$C\left(1^{\prime}\right)$ and $O\left(1^{\prime}\right)$ have larger temperature factors than the other carbonyl groups. Difference maps showed no unusual features in this region. However to check if this indeed was a methyl group, refinement was carried out with a methyl instead of a carbonyl group but significantly worse agreement resulted. The final weighting scheme parameters were $A=6 \cdot 1, B=40 \cdot 0$, and $C=120 \cdot 0$ and the error-of-fit was $1 \cdot 0$. Except for the low angle, large intensity regions affected by $0 k l$ data, $\mathrm{w} \Delta^{2}$ showed no trends with F_{0} or $\sin \theta \lambda^{-1}$. A final electron-density difference map had several peaks and troughs of magnitude ca. 0.5 e \AA^{-3}

[^1]associated with the heavy atoms and some carbonyl oxygen atoms.

Atomic scattering factors for the non-hydrogen atoms were obtained from ref. 7, those for hydrogen from ref. 8, and anomolous scattering corrections Δf^{\prime} and $\Delta f^{\prime \prime}$ for the arsenic and iron atoms from ref. 9.

Table 1 lists the final atomic parameters; the parameters for arsenic, iron, and phosphorus atoms were those obtained in the refinement with data $30^{\circ}<2 \theta \leq 40^{\circ}$. Interatomic distances and angles are in Table 2, the errors given being derived from co-ordinate errors only. The equations to selected planar groupings of atoms are in Table 3. The Figure shows a diagram of one molecule of the compound. Measured and calculated structure factors are listed in Supplementary Publication No. SUP 20473 (5 pp., 1 microfiche). \ddagger

DISCUSSION

The structure is another of the group in which the fluorocyclobutenyl ligand has had one of its potential donors cleaved, in this case $\mathrm{Me}_{2} \mathrm{As}$. Although it represents the first confirmed case in which f_{4} asp has undergone dissociation and shows that $\mathrm{Me}_{2} \mathrm{As}$ is cleaved rather than $\mathrm{Ph}_{2} \mathrm{P}$, the structure is similar to that of $\left\{\mathrm{Me}_{\mathbf{2}} \mathrm{As}\right)-$
$\left.\mathrm{C} \cdot \mathrm{C} \cdot \mathrm{CF}_{2} \cdot \mathrm{CF}_{2} \cdot\left(\mathrm{Me}_{2} \mathrm{As}\right) \mathrm{Fe}_{3}(\mathrm{CO})_{9}\right\}$ (I). ${ }^{2}$
There are two molecules in the asymmetric unit which, from inspection of the interatomic distances and angles, are chemically equivalent. Because of this, only one molecule will be described. Interatomic distances and angles in the text are the mean values over both molecules unless otherwise specifically stated. The molecules are numbered (1) and (2) and differentiated by primes in the Tables.

The observed geometry is based on three $\mathrm{Fe}(\mathrm{CO})_{3}$ groups and an $\mathrm{Me}_{2} \mathrm{As}$ which are linked to form a fourmembered ring in which the arsenic atom lies out of the plane of the iron atoms $[0.22$ and $0.30 \AA$ for each mole-

[^2]Table 1
Positional (fractional co-ordinates) and thermal parameters (\AA^{2}) with estimated standard deviations in parentheses; unprimed atoms belongs to molecule (1) and primed atoms to molecule (2)

Atom	x	y	z	$B_{\text {lso }}$
As(1)	0.6393(2)	0.2156(1)	$0 \cdot 3849$ (3)	*
$\mathrm{Fe}(1)$	$0 \cdot 6359(3)$	$0 \cdot 2406(1)$	$0 \cdot 1857(4)$	*
$\mathrm{Fe}(2)$	$0 \cdot 6942$ (3)	$0 \cdot 1909(1)$	$0 \cdot 1010$ (4)	*
$\mathrm{Fe}(3)$	$0 \cdot 6672(3)$	$0 \cdot 1676(1)$	$0 \cdot 3557(4)$	*
$\mathrm{P}(1)$	$1.0027(6)$	$0 \cdot 3362(1)$	0.7435 (8)	2.74(1)
$\mathrm{F}(1)$	$1 \cdot 029(1)$	$0 \cdot 2764$ (3)	$0 \cdot 136(2)$	5•2(3)
$\mathrm{F}(2)$	0.894(1)	$0 \cdot 2701$ (3)	$0 \cdot 005(2)$	$5 \cdot 5(4)$
$\mathrm{F}(3)$	0.851 (1)	$0 \cdot 3229$ (3)	$0 \cdot 015(1)$	$4 \cdot 8(3)$
$F(4)$	1.005(1)	$0 \cdot 3308(3)$	$0 \cdot 113(2)$	$5 \cdot 5(3)$
C(I)	0.741 (2)	$0 \cdot 2611(5)$	$0 \cdot 274(2)$	$3 \cdot 5(6)$
$\mathrm{O}(\mathbf{1})$	$0 \cdot 812(2)$	$0 \cdot 2747$ (4)	0-284(2)	5•6(4)
$\mathrm{C}(2)$	$0 \cdot 528(3)$	$0 \cdot 2598(7)$	$0 \cdot 233(3)$	6.6(8)
$\mathrm{O}(2)$	$0 \cdot 453(2)$	$0 \cdot 2739(5)$	$0 \cdot 271$ (3)	8.6(7)
$\mathrm{C}(3)$	$0 \cdot 651(2)$	$0 \cdot 2575(4)$	$0 \cdot 034(2)$	$3 \cdot 0(5)$
$\mathrm{O}(3)$	0.656(2)	0.2722(4)	$-0.053(2)$	$5 \cdot 9(4)$
$\mathrm{C}(4)$	$0 \cdot 724(3)$	$0 \cdot 1963$ (7)	$-0.060(3)$	$6 \cdot 7(8)$
$\mathrm{O}(4)$	0.748(2)	$0 \cdot 1984(5)$	-0.169(2)	$7 \cdot 6(6)$
$\mathrm{C}(5)$	$0 \cdot 750(2)$	$0 \cdot 1590$ (6)	$0 \cdot 085(3)$	$4 \cdot 7(6)$
$\mathrm{O}(5)$	0.796(2)	$0 \cdot 1376(4)$	$0 \cdot 073(2)$	$6 \cdot 8(5)$
C(6)	0.813(2)	0.2077(4)	$0 \cdot 147(2)$	$2 \cdot 7(5)$
$\mathrm{O}(6)$	0.903(2)	0.2164(4)	$0 \cdot 163(2)$	$5 \cdot 8(4)$
$\mathrm{C}(7)$	0.636(3)	$0 \cdot 1646(6)$	$0 \cdot 519(3)$	$5 \cdot 0(6)$
$\mathrm{O}(7)$	$0 \cdot 621$ (2)	$0 \cdot 1623(4)$	$0 \cdot 631$ (2)	$7 \cdot 4(5)$
$\mathrm{C}(8)$	0.808(2)	$0 \cdot 1731(5)$	0.371 (3)	$4 \cdot 1(6)$
$\mathrm{O}(8)$	$0.903(2)$	$0 \cdot 1749(4)$	$0 \cdot 394(2)$	7.6(5)
C(9)	$0 \cdot 689(2)$	$0 \cdot 1325$ (5)	$0 \cdot 332(3)$	$4 \cdot 0(6)$
$\mathrm{O}(9)$	0.697(2)	$0 \cdot 1085(4)$	$0 \cdot 326(2)$	$6.9(5)$
$\mathrm{C}(10)$	0.757(2)	$0 \cdot 2294$ (6)	$0 \cdot 500$ (3)	5.2(7)
$\mathrm{C}(11)$	$0 \cdot 521$ (2)	$0 \cdot 2253(6)$	0.505(3)	5•3(7)
$\mathrm{C}(12)$	$0.521(2)$	$0 \cdot 1847(4)$	$0 \cdot 115(2)$	$2 \cdot 6(5)$
$\mathrm{C}(13)$	$0 \cdot 552(2)$	$0 \cdot 2119(4)$	0.102(2)	$2 \cdot 5(4)$
$\mathrm{C}(14)$	$0 \cdot 484(2)$	$0 \cdot 2135(5)$	-0.022(2)	$3 \cdot 5(5)$
$\mathrm{C}(15)$	$0.458(2)$	$0 \cdot 1847(4)$	-0.016(2)	$3 \cdot 1(5)$
C(16)	$0 \cdot 881$ (2)	$0 \cdot 3260(4)$	0.658(2)	$2 \cdot 8(5)$
C(17)	$0 \cdot 803(2)$	$0 \cdot 3101(5)$	0.712(2)	$3 \cdot 8(5)$
C(18)	$0 \cdot 703(3)$	$0 \cdot 3030(6)$	$0 \cdot 649$ (3)	$5 \cdot 8(8)$
C(19)	0.686(2)	$0 \cdot 3134(5)$	0.523 (3)	$4 \cdot 8(7)$
$\mathrm{C}(20)$	$0 \cdot 766(2)$	$0 \cdot 3285(5)$	$0 \cdot 462(3)$	$3 \cdot 9$ (6)
$\mathrm{C}(21)$	$0 \cdot 865(2)$	$0 \cdot 3353$ (4)	$0 \cdot 530(2)$	$3 \cdot 4(5)$
$\mathrm{C}(22)$	0.467(2)	$0 \cdot 1297(5)$	$0 \cdot 194(2)$	$3 \cdot 2(5)$
$\mathrm{C}(23)$	$0 \cdot 519$ (2)	$0 \cdot 1191$ (5)	$0 \cdot 089(3)$	$4 \cdot 8(6)$
$\mathrm{C}(24)$	$0 \cdot 501(2)$	$0 \cdot 0912(5)$	$0 \cdot 050(3)$	4.5(6)
C (25)	$0 \cdot 436(2)$	0.0753(5)	$0 \cdot 116(3)$	$5 \cdot 5(6)$
C(26)	$0 \cdot 382(2)$	$0.0863(6)$	$0 \cdot 225$ (3)	$5 \cdot 3(7)$
C(27)	$0 \cdot 397(2)$	$0 \cdot 1133(5)$	$0 \cdot 265(2)$	3-2(5)
As(\mathbf{l}^{\prime})	0.9343(3)	$0 \cdot 0510(1)$	$0 \cdot 9047$ (3)	*
$\mathrm{Fe}\left(\mathrm{l}^{\prime}\right)$	0.8299(4)	$0 \cdot 0574(1)$	$0 \cdot 7093(5)$	*
$\mathrm{Fe}\left(2^{\prime}\right)$	$1.0193(3)$	$0 \cdot 0376(1)$	0.6168(4)	*
$\mathrm{Fe}\left(3^{\prime}\right)$	1-1233(3)	$0 \cdot 0404(1)$	$0 \cdot 8679(4)$	*
$\mathrm{P}\left(\mathbf{1}^{\prime}\right)$	$1 \cdot 1499(6)$	$0 \cdot 0814(1)$	$0 \cdot 7754(7)$	2-37(1)
$\mathrm{F}\left(\mathbf{1}^{\prime}\right)$	0.906(1)	$0 \cdot 0829(3)$	0.386(2)	5.3(3)
$\mathrm{F}\left(2^{\prime}\right)$	0.899(1)	$0 \cdot 1172(3)$	$0.517(2)$	$5 \cdot 8(4)$
$\mathrm{F}\left(3^{\prime}\right)$	1.114(1)	$0 \cdot 1214(3)$	0.508(2)	$5 \cdot 4(4)$
$\mathrm{F}\left(4^{\prime}\right)$	1-128(1)	$0 \cdot 0830(3)$	0.407(2)	$5 \cdot 7(3)$
$\mathrm{C}\left(1^{\prime}\right)$	$0 \cdot 733$ (3)	$0 \cdot 0359$ (8)	$0 \cdot 779$ (4)	9-2(10)
$\mathrm{O}\left(1^{\prime}\right)$	$0 \cdot 665(2)$	$0 \cdot 0231(5)$	$0 \cdot 828(3)$	10.6(8)
$\mathrm{C}\left(2^{\prime}\right)$	$0 \cdot 778$ (2)	$0 \cdot 0879(6)$	$0 \cdot 760$ (3)	$4 \cdot 7(6)$
$\mathrm{O}\left(2^{\prime}\right)$	$0 \cdot 743$ (2)	$0 \cdot 1096$ (4)	$0 \cdot 791$ (2)	$7 \cdot 0(5)$
$\mathrm{C}\left(3^{\prime}\right)$	$0 \cdot 754(2)$	$0 \cdot 0551(5)$	$0 \cdot 558(3)$	$4 \cdot 6(6)$
$\mathrm{O}\left(3^{\prime}\right)$	$0 \cdot 704(2)$	0.0518(4)	$0 \cdot 466$ (2)	6.4(5)
$\mathrm{C}\left(4^{\prime}\right)$	$1.001(2)$	$0.0332(5)$	$0 \cdot 448$ (3)	$4 \cdot 6(6)$
$\mathrm{O}\left(4^{\prime}\right)$	$0 \cdot 984(2)$	$0 \cdot 0260(4)$	$0 \cdot 341$ (2)	$6 \cdot 1(5)$
$\mathrm{C}\left(5^{\prime}\right)$	1-141(2)	$0 \cdot 0194(4)$	$0 \cdot 605(2)$	$3 \cdot 6(5)$
$\mathrm{O}\left(5^{\prime}\right)$	$1 \cdot 220$ (2)	$0 \cdot 0064(4)$	$0.584(2)$	$6 \cdot 5(5)$
$\mathrm{C}\left(6^{\prime}\right)$	$0.934(2)$	$0 \cdot 0109(5)$	$0 \cdot 655$ (2)	3-8(5)
$\mathrm{O}\left(6^{\prime}\right)$	0.886(2)	$-0.0099(4)$	$0 \cdot 669(2)$	5-3(4)
$\mathrm{C}\left(7^{\prime}\right)$	$1 \cdot 148(2)$	$0.0477(5)$	$1 \cdot 032(2)$	$4 \cdot 2(5)$
$\mathrm{O}\left(7^{\prime}\right)$	1-157(2)	0.0496 (3)	$1 \cdot 147(2)$	$5 \cdot 5(4)$
$\mathrm{C}\left(8^{\prime}\right)$	1.096(2)	0.0061 (5)	$0 \cdot 882(3)$	3.9(5)
$\mathrm{O}\left(8^{\prime}\right)$	$1.078(2)$	$-0.0175(4)$	$0 \cdot 887(2)$	5.6(4)
$\mathrm{C}\left(9^{\prime}\right)$	1-262(2)	$0.0327(4)$	0.840(2)	2-2(4)
$\mathrm{O}\left(9^{\prime}\right)$	1.354(2)	$0.0265(3)$	0.830(2)	5-6(4)
$\mathrm{C}\left(10^{\prime}\right)$	$0 \cdot 876(2)$	0.0210(5)	$1 \cdot 010(3)$	4.8(6)

Table 1 (Continued)

Atom	x	y	z	$B_{\text {lso }}$
C(11)	0.910(2)	0.0806(5)	1-038(3)	4.9(6)
C(12')	1-065(2)	$0 \cdot 0802(4)$	0.636(2)	$3 \cdot 1(5)$
C(13')	$0 \cdot 952$ (2)	$0 \cdot 0748(4)$	$0 \cdot 620$ (2)	3-3(5)
C(14')	0.950(2)	$0 \cdot 0928(5)$	$0 \cdot 499$ (3)	$4 \cdot 4(6)$
$\mathrm{C}\left(15^{\prime}\right)$	1.075(2)	$0 \cdot 0954(5)$	0.506(3)	$4 \cdot 1(6)$
$\mathrm{C}\left(16{ }^{\prime}\right)$	$1 \cdot 119(2)$	$0 \cdot 1110$ (5)	0.863(2)	4.3(5)
C(17)	1.048(2)	$0 \cdot 1321$ (5)	$0 \cdot 816$ (3)	4.9(6)
$\mathrm{C}\left(18^{\prime}\right)$	1.027(3)	$0 \cdot 1559$ (6)	0.894(3)	6.6(7)
$\mathrm{C}\left(19^{\prime}\right)$	1.069(3)	$0 \cdot 1576$ (6)	1.017(3)	6.7(8)
$\mathrm{C}\left(20^{\prime}\right)$	1-137(2)	$0 \cdot 1371$ (5)	$1 \cdot 066(3)$	5.2(7)
$\mathrm{C}\left(21^{\prime}\right)$	1-157(2)	$0 \cdot 1143(5)$	$0.994(3)$	$4 \cdot 3(6)$
$\mathrm{C}\left(22^{\prime}\right)$	1-287(2)	$0 \cdot 0884(4)$	$0 \cdot 712(2)$	$2 \cdot 6(5)$
C(23')	$1 \cdot 331$ (2)	$0 \cdot 0733(5)$	$0 \cdot 609(3)$	$4 \cdot 4(6)$
$\mathrm{C}\left(24^{\prime}\right)$	1.435(2)	$0 \cdot 0770$ (5)	$0 \cdot 567(2)$	3.5(5)
$\mathrm{C}\left(25^{\prime}\right)$	$1.501(2)$	$0.0967(5)$	$0 \cdot 620$ (2)	$3 \cdot 3$ (5)
$\mathrm{C}\left(26^{\prime}\right)$	1-461(2)	$0 \cdot 1127(5)$	$0 \cdot 719$ (3)	$4 \cdot 5(6)$
$\mathrm{C}\left(27^{\prime}\right)$	$1.351(2)$	$0 \cdot 1079(5)$	$0 \cdot 764(2)$	3.7(5)
H(17)	0.819	$0 \cdot 303$	0.799	7.5
$\mathrm{H}(18)$	$0 \cdot 646$	$0 \cdot 291$	0.690	$7 \cdot 5$
$\mathrm{H}(19)$	0.617	$0 \cdot 309$	0.477	$7 \cdot 5$
$\mathrm{H}(20)$	0.752	0.335	$0 \cdot 376$	$7 \cdot 5$
H(21)	0.927	$0 \cdot 346$	0.487	7.5
$\mathrm{H}(23)$	1.069	$0 \cdot 369$	0.963	$7 \cdot 5$
$\mathrm{H}(24)$	1.039	0.416	1.025	$7 \cdot 5$
$\mathrm{H}(25)$	0.927	0.443	0.909	7.5
$\mathrm{H}(26)$	0.834	0.426	0.724	$7 \cdot 5$
$\mathrm{H}(27)$	0.858	0.379	0.661	7.5
$\mathrm{H}\left(17^{\prime}\right)$	1.016	$0 \cdot 130$	0.728	$7 \cdot 5$
$\mathrm{H}\left(18^{\prime}\right)$	0.981	$0 \cdot 170$	$0 \cdot 859$	$7 \cdot 5$
$\mathrm{H}\left(19^{\prime}\right)$	1.050	$0 \cdot 173$	1.070	$7 \cdot 5$
$\mathrm{H}\left(20^{\prime}\right)$	1.169	$0 \cdot 139$	1.155	$7 \cdot 5$
$\mathrm{H}\left(21^{\prime}\right)$	1.203	$0 \cdot 100$	1.029	$7 \cdot 5$
$\mathrm{H}\left(23^{\prime}\right)$	1.287	0.059	$0 \cdot 569$	$7 \cdot 5$
$\mathrm{H}\left(24^{\prime}\right)$	1.465	$0 \cdot 066$	$0 \cdot 496$	$7 \cdot 5$
$\mathrm{H}\left(25^{\prime}\right)$	1-574	$0 \cdot 100$	$0 \cdot 588$	$7 \cdot 5$
$\mathrm{H}\left(26^{\prime}\right)$	1.505	$0 \cdot 127$	$0 \cdot 760$	$7 \cdot 5$
$\mathrm{H}\left(27^{\prime}\right)$	$1 \cdot 321$	$0 \cdot 119$	$0 \cdot 834$	$7 \cdot 5$

* Anisotropic temperature parameters in the form:
$\exp -\left[2 \pi\left(U_{11} a^{* 2} h^{2}+U_{82} b^{*} k^{2}+U_{33} c^{* 2} l^{2}+2 U_{12} a^{*} b * h k+\right.\right.$ $\left.\left.2 U_{13} a^{*} c^{*} h l+2 U_{23} b^{*} c^{*} k l\right)\right]$ where the parameters are as follows:

Atom	$10^{3} U_{11}$	$10^{3} U_{28}$	$10^{3} U_{33}$	$10^{3} U_{12}$	$10^{3} U_{13}$	$10^{3} U_{23}$
$\mathrm{As}(1)$	$40(2)$	$44(1)$	$23(1)$	$-7(2)$	$-1(1)$	$1(1)$
$\mathrm{Fe}(1)$	$35(2)$	$36(2)$	$33(2)$	$2(2)$	$-1(1)$	$3(2)$
$\mathrm{Fe}(2)$	$36(2)$	$45(2)$	$25(2)$	$0(2)$	$5(2)$	$-1(2)$
$\mathrm{Fe}(3)$	$35(2)$	$43(2)$	$31(2)$	$-1(2)$	$-4(2)$	$0(2)$
$\mathrm{As}\left(1^{\prime}\right)$	$37(2)$	$45(1)$	$39(2)$	$-0(2)$	$6(1)$	$-3(1)$
$\mathrm{Fe}\left(1^{\prime}\right)$	$34(2)$	$52(2)$	$46(2)$	$-4(2)$	$-5(2)$	$-1(2)$
$\mathrm{Fe}\left(2^{\prime}\right)$	$42(2)$	$39(2)$	$25(2)$	$-1(2)$	$-4(2)$	$-5(2)$
$\mathrm{Fe}\left(3^{\prime}\right)$	$43(2)$	$36(2)$	$25(2)$	$1(2)$	$-3(2)$	$0(2)$

cule); $c f .0 .3 \AA$ in (I)]. In the fluorocyclobutenyl fragment, $\mathrm{C}(13)$, the point of cleavage of $\mathrm{Me}_{2} \mathrm{As}$, is σ bonded to $\mathrm{Fe}(\mathrm{l}), \mathrm{P}(\mathrm{l})$ is bonded to $\mathrm{Fe}(3)$, while the bond to $\mathrm{Fe}(2)$ can best be described as a π bond from the fluorocyclobutenyl double bond. Every iron atom is also bonded to three terminal carbonyl groups. If $\mathrm{As}(\mathrm{l})$ donates two electrons to the $\mathrm{As}(\mathrm{l})-\mathrm{Fe}(\mathrm{l})$ bond and shares one electron with $\mathrm{Fe}(3)$, all iron atoms can be considered to attain a closed-shell configuration.

Each iron atom has an approximate octahedral coordination, the largest angular deviations involving $\mathrm{Fe}(1)$ and $\mathrm{Fe}(2)$. Two different iron-iron bond lengths are observed, $\mathrm{Fe}(\mathbf{1})-\mathrm{Fe}(2) 2.676$ and $\mathrm{Fe}(2)-\mathrm{Fe}(3) 2.866 \AA$; $c f .2 .667$ and $2.917 \AA$ in (I). In $\left(\mathrm{f}_{4} f a r s\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$, where one iron atom is co-ordinated to the double bond of a fluorocyclobutenyl ring and the other is chelated by the arsenic atoms, $\mathrm{Fe}-\mathrm{Fe}$ is $2.89 \AA .{ }^{10}$ The longer bond, in

[^3]every case, occurs when the iron atoms are bridged by the Group V atom and the double bond of the cyclobutenyl ring. For the present compound and for (I), the shorter distance is bridged by the double bond and the carbon forming the $\mathrm{Fe}-\mathrm{C} \sigma$ bond. Iron-iron bonds exhibit large variations but most lie within the range

Table 2
Molecular geometry with estimated standard deviations in parentheses
(a) Interatomic distances (\AA) *

	Molecule (1)	Molecule (2)
$\mathrm{As}(1)-\mathrm{Fe}(1)$	$2 \cdot 379$	$2 \cdot 389$
$\mathrm{As}(1)-\mathrm{Fe}(3)$	$2 \cdot 390$	$2 \cdot 388$
$\mathrm{Fe}(1)-\mathrm{Fe}(2)$	$2 \cdot 679$	$2 \cdot 673$
$\mathrm{Fe}(2)-\mathrm{Fe}(3)$	$2 \cdot 863$	$2 \cdot 868$
$\mathrm{Fe}(3)-\mathrm{P}(1)$	$2 \cdot 252$	$2 \cdot 243$
$\mathrm{As}(1)-\mathrm{C}(10)$	1.98	1.96
$\mathrm{As}(1)-\mathrm{C}(11)$	1.96	2.01
$\mathrm{Fe}(1)-\mathrm{C}(1)$	$1 \cdot 74$	$1 \cdot 74$
$\mathrm{Fe}(1)-\mathrm{C}(2)$	$1 \cdot 69$	$1 \cdot 70$
$\mathrm{Fe}(1)-\mathrm{C}(3)$	$1 \cdot 77$	1.81
$\mathrm{Fe}(2)-\mathrm{C}(4)$	$1 \cdot 70$	$1 \cdot 76$
$\mathrm{Fe}(2)-\mathrm{C}(5)$	1.71	1.74
$\mathrm{Fe}(2)-\mathrm{C}(6)$	$1 \cdot 73$	$1 \cdot 72$
$\mathrm{Fe}(3)-\mathrm{C}(7)$	1.72	$1 \cdot 74$
$\mathrm{Fe}(3)-\mathrm{C}(8)$	1.74	1.72
$\mathrm{Fe}(3)-\mathrm{C}(9)$	1.76	$1 \cdot 76$
$\mathrm{Fe}(1)-\mathrm{C}(13)$	1.94	1.94
$\mathrm{Fe}(2)$-mid	1.96	1.96
$\mathrm{C}(1)-\mathrm{O}(1)$	$1 \cdot 16$	$1 \cdot 15$
$\mathrm{C}(2)-\mathrm{O}(2)$	$1 \cdot 20$	$1 \cdot 19$
$\mathrm{C}(3)-\mathrm{O}(3)$	$1 \cdot 15$	$1 \cdot 14$
$\mathrm{C}(3)-\mathrm{O}(3)$	$1 \cdot 15$	$1 \cdot 14$
$\mathrm{C}(4)-\mathrm{O}(4)$	$1 \cdot 16$	$1 \cdot 17$
$\mathrm{C}(5)-\mathrm{O}(5)$	$1 \cdot 19$	$1 \cdot 17$
$\mathrm{C}(6)-\mathrm{O}(6)$	$1 \cdot 19$	1-18
$\mathrm{C}(7)-\mathrm{O}(7)$	$1 \cdot 16$	1-18
$\mathrm{C}(8)-\mathrm{O}(8)$	$1 \cdot 19$	$1 \cdot 17$
$\mathrm{C}(9)-\mathrm{O}(9)$	1-18	1•16
$\mathrm{P}(1)-\mathrm{C}(12)$	1.79	$1 \cdot 77$
$\mathrm{P}(1)-\mathrm{C}(16)$	1.79	$1 \cdot 74$
$\mathrm{P}(1)-\mathrm{C}(22)$	$1 \cdot 84$	1.82
$\mathrm{C}(12)-\mathrm{C}(13)$	$1 \cdot 39$	1.41
$\mathrm{C}(12)-\mathrm{C}(15)$	1.52	1.52
$\mathrm{C}(13)-\mathrm{C}(14)$	$1 \cdot 44$	1.53
$\mathrm{C}(14)-\mathrm{C}(15)$	$1 \cdot 54$	$1 \cdot 53$
$\mathrm{C}(14)-\mathrm{F}(1)$	1.39	$1 \cdot 36$
$\mathrm{C}(14)-\mathrm{F}(2)$	$1 \cdot 37$	$1 \cdot 36$
$\mathrm{C}(15)-\mathrm{F}(3)$	$1 \cdot 36$	$1 \cdot 36$
$\mathrm{C}(15)-\mathrm{F}(4)$	$1 \cdot 37$	1.35
$\mathrm{C}(16)-\mathrm{C}(17)$	$1 \cdot 35$	1.43
$\mathrm{C}(16)-\mathrm{C}(21)$	$1 \cdot 39$	1.43
$\mathrm{C}(17)-\mathrm{C}(18)$	1.42	1.44
$\mathrm{C}(18)-\mathrm{C}(19)$	$1 \cdot 40$	$1 \cdot 35$
$\mathrm{C}(19)-\mathrm{C}(20)$	$1 \cdot 37$	$1 \cdot 39$
$\mathrm{C}(20)-\mathrm{C}(21)$	1.43	$1 \cdot 36$
$\mathrm{C}(22)-\mathrm{C}(23)$	1.35	1.39
$\mathrm{C}(22)-\mathrm{C}(27)$	$1 \cdot 38$	$1 \cdot 35$
$\mathrm{C}(23)-\mathrm{C}(24)$	1-44	$1 \cdot 34$
$\mathrm{C}(24)-\mathrm{C}(25)$	$1 \cdot 30$	$1 \cdot 37$
$\mathrm{C}(25)-\mathrm{C}(26)$	$1 \cdot 40$	$1 \cdot 37$
$\mathrm{C}(26)-\mathrm{C}(27)$	$1 \cdot 40$	$1 \cdot 43$
C(11) $\cdot \cdots \mathrm{C}(16)$	$3 \cdot 46$	$3 \cdot 45$
$\mathrm{C}(11) \cdots \mathrm{C}(17)$	$3 \cdot 87$	$3 \cdot 79$
$\mathrm{C}(11) \cdots \mathrm{C}(20)$	4.08	$3 \cdot 46$
C(11) $\cdot \cdots \mathrm{C}(21)$	3.54	$3 \cdot 46$

Table 2 (Continued)
(b) Interatomic angles (${ }^{\circ}$)
$\mathrm{Fe}(1)-\mathrm{As}(1)-\mathrm{Fe}(3)$
$\mathrm{Fe}(1)-\mathrm{As}(1)-\mathrm{C}(10)$
$\mathrm{Fe}(1)-\mathrm{As}(1)-\mathrm{C}(11)$
$\mathrm{Fe}(3)-\mathrm{As}(1)-\mathrm{C}(10)$
$\mathrm{Fe}(3)-\mathrm{As}(1)-\mathrm{C}(1)$
$\mathrm{C}(10)-\mathrm{As}(1)-\mathrm{C}(11)$
$\mathrm{As}(1)-\mathrm{Fe}(1)-\mathrm{Fe}(2)$
$\mathrm{As}(1)-\mathrm{Fe}(1)-\mathrm{C}(1)$
$\mathrm{As}(1)-\mathrm{Fe}(1)-\mathrm{C}(2)$
$\mathrm{As}(1)-\mathrm{Fe}(1)-\mathrm{C}(3)$
$\mathrm{As}(1)-\mathrm{Fe}(1)-\mathrm{C}(13)$
$\mathrm{Fe}(2)-\mathrm{Fe}(1)-\mathrm{C}(1)$
$\mathrm{Fe}(2)-\mathrm{Fe}(1)-\mathrm{C}(2)$
$\mathrm{Fe}(2)-\mathrm{Fe}(1)-\mathrm{C}(3)$
$\mathrm{Fe}(2)-\mathrm{Fe}(1)-\mathrm{C}(13)$
$\mathrm{C}(1)-\mathrm{Fe}(1)-\mathrm{C}(2)$
$\mathrm{C}(1)-\mathrm{Fe}(1)-\mathrm{C}(3)$
$\mathrm{C}(2)-\mathrm{Fe}(1)-\mathrm{C}(3)$
$\mathrm{C}(13)-\mathrm{Fe}(1)-\mathrm{C}(1)$
$\mathrm{C}(13)-\mathrm{Fe}(1)-\mathrm{C}(2)$
$\mathrm{C}(13)-\mathrm{Fe}(1)-\mathrm{C}(3)$
$\mathrm{Fe}(1)-\mathrm{Fe}(2)-\mathrm{Fe}(3)$
$\mathrm{Fe}(1)-\mathrm{Fe}(2)-\mathrm{C}(4)$
$\mathrm{Fe}(1)-\mathrm{Fe}(2)-\mathrm{C}(5)$
$\mathrm{Fe}(1)-\mathrm{Fe}(2)-\mathrm{C}(6)$
$\mathrm{Fe}(1)-\mathrm{Fe}(2)-\mathrm{mid}$.
$\mathrm{Fe}(3)-\mathrm{Fe}(2)-\mathrm{C}(4)$
$\mathrm{Fe}(3)-\mathrm{Fe}(2)-\mathrm{C}(5)$
$\mathrm{Fe}(3)-\mathrm{Fe}(2)-\mathrm{C}(6)$
$\mathrm{Fe}(3)-\mathrm{Fe}(2)-\mathrm{mid}$.
$\mathrm{Ce}(4)-\mathrm{Fe}(2)-\mathrm{C}(5)$
$\mathrm{C}(4)-\mathrm{Fe}(2)-\mathrm{C}(6)$
$\mathrm{C}(5)-\mathrm{F}(2)-\mathrm{C}(6)$
mid. $-\mathrm{Fe}(2)-\mathrm{C}(4)$
mid. $-\mathrm{Fe}(2)-\mathrm{C}(5)$
mid. $-\mathrm{Fe}(2)-\mathrm{C}(6)$

$\mathrm{As}(1)-\mathrm{Fe}(3)-\mathrm{P}(1)$	90.7	$90 \cdot 6$
$\mathrm{As}(1)-\mathrm{Fe}(3)-\mathrm{Fe}(2)$	$74 \cdot 9$	$74 \cdot 1$
$\mathrm{As}(1)-\mathrm{Fe}(3)-\mathrm{C}(7)$	86	88
$\mathrm{As}(1)-\mathrm{Fe}(3)-\mathrm{C}(8)$	89	90
$\mathrm{As}(1)-\mathrm{Fe}(3)-\mathrm{C}(9)$	179	180
$\mathrm{P}(1)-\mathrm{Fe}(3)-\mathrm{Fe}(2)$	74.0	$74 \cdot 2$
$\mathrm{P}(1)-\mathrm{Fe}(3)-\mathrm{C}(7)$	104	101
$\mathrm{P}(1)-\mathrm{Fe}(3)-\mathrm{C}(8)$	158	160
$\mathrm{P}(1)-\mathrm{Fe}(3)-\mathrm{C}(9)$	90	89
$\mathrm{Fe}(2)-\mathrm{Fe}(3)-\mathrm{C}(7)$	161	162
$\mathrm{Fe}(2)-\mathrm{Fe}(3)-\mathrm{C}(8)$	85	87
$\mathrm{Fe}(2)-\mathrm{Fe}(3)-\mathrm{C}(9)$	104	106
$\mathrm{C}(7)-\mathrm{Fe}(3)-\mathrm{C}(8)$	98	99
$\mathrm{C}(7)-\mathrm{Fe}(3)-\mathrm{C}(9)$	95	92
$\mathrm{C}(8)-\mathrm{Fe}(3)-\mathrm{C}(9)$	91	90
$\mathrm{Fe}(1)-\mathrm{C}(1)-\mathrm{O}(1)$	178	176
$\mathrm{Fe}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	178	177
$\mathrm{Fe}(1)-\mathrm{C}(3)-\mathrm{O}(3)$	169	175
$\mathrm{Fe}(2)-\mathrm{C}(4)-\mathrm{O}(4)$	176	169
$\mathrm{Fe}(2)-\mathrm{C}(5)-\mathrm{O}(5)$	176	173
$\mathrm{Fe}(2)-\mathrm{C}(6)-\mathrm{O}(6)$	169	170
$\mathrm{Fe}(3)-\mathrm{C}(7)-\mathrm{O}(7)$	176	172
$\mathrm{Fe}(3)-\mathrm{C}(8)-\mathrm{O}(8)$	172	177
$\mathrm{Fe}(3)-\mathrm{C}(9)-\mathrm{O}(9)$	174	175
$\mathrm{Fe}(3)-\mathrm{P}(1)-\mathrm{C}(12)$	102	103
$\mathrm{Fe}(3)-\mathrm{P}(1)-\mathrm{C}(16)$	119	120
$\mathrm{Fe}(3)-\mathrm{P}(1)-\mathrm{C}(22)$	116	117
$\mathrm{C}(12)-\mathrm{P}(1)-\mathrm{C}(16)$	110	108
$\mathrm{C}(12)-\mathrm{P}(1)-\mathrm{C}(22)$	106	105
$\mathrm{C}(16)-\mathrm{P}(1)-\mathrm{C}(22)$	103	103
$\mathrm{P}(1)-\mathrm{C}(12)-\mathrm{C}(13)$	131	132
$\mathrm{P}(1)-\mathrm{C}(12)-\mathrm{C}(15)$	130	130
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{Fe}(1)$	143	141
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	89	90
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{Fe}(1)$	128	129
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	92	90
$\mathrm{C}(12)-\mathrm{C}(15)-\mathrm{C}(14)$	86	85

Table 2 (Continued)

$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{F}(1)$	121	119
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{F}(2)$	111	114
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{F}(1)$	118	118
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{F}(2)$	113	112
$\mathrm{~F}(1)-\mathrm{C}(14)-\mathrm{F}(2)$	102	104
$\mathrm{C}(12)-\mathrm{C}(15)-\mathrm{F}(3)$	118	119
$\mathrm{C}(12)-\mathrm{C}(15)-\mathrm{F}(4)$	119	115
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{F}(3)$	115	114
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{F}(4)$	105	106
$\mathrm{~F}(3)-\mathrm{C}(15)-\mathrm{F}(4)$		
$\mathrm{P}(1)-\mathrm{C}(16)-\mathrm{C}(17)$	123	124
$\mathrm{P}(1)-\mathrm{C}(16)-\mathrm{C}(21)$	119	116
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(21)$	124	120
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	121	120
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	120	120
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	121	123
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	120	122
$\mathrm{C}(16)-\mathrm{C}(21)-\mathrm{C}(20)$	119	121
$\mathrm{P}(1)-\mathrm{C}(22)-\mathrm{C}(23)$	117	
$\mathrm{P}(1)-\mathrm{C}(22)-\mathrm{C}(27)$	121	122
$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(27)$	118	
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	122	119
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(15)$	119	129
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)$	
$\mathrm{C}(22)-\mathrm{C}(27)-\mathrm{C}(26)$		

* Estimated standard deviations in interatomic distances are: As-Fe 0.005, $\mathrm{Fe}-\mathrm{Fe} 0.006, \mathrm{Fe}-\mathrm{P} 0.008$, As-C 0.03 , $\mathrm{Fe}-\mathrm{C} 0.03$ to $0.04, \mathrm{C}-\mathrm{F} 0.03, \mathrm{C}-\mathrm{O} 0.03$, to $0.04, \mathrm{C}-\mathrm{C} 0.03$ to $0.04 \AA$. Estimated standard deviations in interatomic angles are: $\mathrm{Fe}-\mathrm{As}-\mathrm{Fe}, \mathrm{As}-\mathrm{Fe}-\mathrm{Fe}, \mathrm{Fe}-\mathrm{Fe}-\mathrm{Fe}, \mathrm{As}-\mathrm{Fe}-\mathrm{P}, \mathrm{Fe}-\mathrm{Fe}-\mathrm{P}$ $0 \cdot 2, \mathrm{C}-\mathrm{As}-\mathrm{C}, \mathrm{Fe}-\mathrm{As}-\mathrm{C}, \mathrm{Fe}-\mathrm{Fe}-\mathrm{C}, \mathrm{C}-\mathrm{Fe}-\mathrm{C}, \mathrm{Fe}-\mathrm{P}-\mathrm{C} 1 \mathrm{C}-\mathrm{C}-\mathrm{F}$ $\mathrm{F}-\mathrm{C}-\mathrm{F}, \mathrm{C}-\mathrm{C}-\mathrm{C} 2, \mathrm{Fe}-\mathrm{C}-\mathrm{O}, 2$ to 3.
$2 \cdot 5-2 \cdot 7 \AA$; e.g. $\mathrm{Fe}_{3}(\mathrm{CO})_{12} 2 \cdot 560-2 \cdot 678,{ }^{11}$ and $\mathrm{Fe}(\mathrm{CO})_{3}-$ $\left(\mathrm{PhC}_{2} \mathrm{PhC}_{2} \mathrm{Ph}\right)_{2} \mathrm{Fe}(\mathrm{CO}) \quad 2 \cdot 494(5) \AA . .^{12}$ The compounds
mined by the stereochemical requirements of the ligand. Further evidence in support of this conclusion is that in the f_{4} fars compounds (I) and ($\mathrm{f}_{4} \mathrm{fars}$) $\mathrm{Fe}_{2}(\mathrm{CO})_{6}$, the long iron-iron distances of 2.917 and $2.89 \AA$ are longer than in the present compound and are consistent with ironarsenic and carbon-arsenic bond lengths being longer than similar bonds with phosphorus.

The phosphorus atom is not in the plane of the fluorocyclobutenyl ring to which it is bonded, a feature common to all the f_{4} fars structures in which the fluorocyclobutenyl double-bond is linked to the metal atom (f_{4} fars is used loosely here to describe structures in which no $\mathrm{Me}_{2} \mathrm{As}$ group has been cleaved and others where it has been). ${ }^{2,3,10}$ In all other cases involving co-ordination of f_{4} fars-type ligands, the fluorocyclobutenyl ring and the Group V donor atom(s) are coplanar. ${ }^{3,6,15}$ Since $\mathrm{C}(12)-\mathrm{C}(13)$ is $1 \cdot 40 \AA$, the $\mathrm{Fe}(2)$-mid-point of vector distance ($1 \cdot 96 \AA$) is approximately normal to the fluorocyclobutenyl ring and the deviation of the $\mathrm{P}(1)-\mathrm{C}(12)$ vector, $1.78 \AA$, from this ring is small ($c a .15^{\circ}$), we prefer to describe $\mathrm{Fe}(2)$ as being π-bonded to $\mathrm{C}(12)-\mathrm{C}(13)$ and not as having two iron-carbon σ bonds.

Inspection of the non-bonded intramolecular contacts in Table 2 shows that $\mathrm{C}(11)$ has reasonably short contacts with the phenyl group C(16) through C(21) (3•45$4.08 \AA$). In particular, the methyl group lies above the plane of the phenyl ring and it is known that such an orientation leads to downfield shifts in the n.m.r. signal from that observed for a free methyl group. ${ }^{16}$ We believe that the two methyl resonances observed for this

Table 3
Equations of selected planes in the form $A X+B Y+C Z+D=0$ where X, Y, and Z are co-ordinates in \AA along axes parallel to a, b, and c

	A	B	C	D	χ^{2}
Plane (I): $\mathrm{Fe}(1)-(3)$	-0.956	-0.204	-0.201	$10 \cdot 203$	
Plane (II) : C(16)-(21)	0.432	-0.824	-0.367	10.986	$2 \cdot 12$
Plane (III): C(22)-(27)	-0.762	0.282	-0.583	3.698	$0 \cdot 09$
Plane (IV) : C(12)-(15)	$0 \cdot 825$	-0.248	-0.508	-2.419	6.64
Plane (V): $\mathrm{Fe}\left(1^{\prime}\right)-\left(3^{\prime}\right)$	0.308	0.930	-0.201	$-4 \cdot 267$	
Plane (VI) : C(16')-(21)	$0 \cdot 808$	0.459	-0.370	$-10 \cdot 204$	2.93
Plane (VII): C(22')-(27)	-0.342	0.663	-0.666	$7 \cdot 337$	0.84
Plane (VIII): C(12')-(15')	$0 \cdot 165$	-0.838	-0.521	4.50	16.07*

$\mathrm{As}(\mathrm{l})$ and $\mathrm{As}\left(\mathrm{l}^{\prime}\right)$ lie 0.22 and $0.30 \AA$ from planes (I) and (V) respectively. $\mathrm{P}(\mathrm{l})$ and $P\left(1^{\prime}\right)$ lie 0.81 and $0.66 \AA$ from planes (IV) and (VIII).

* This group is not planar within commonly accepted standards. The equation represents the 'best fit' to the grouping. The deviations of individual atoms are $\mathrm{C}\left(12^{\prime}\right)-0.04, \mathrm{C}\left(13^{\prime}\right) 0.04, \mathrm{C}\left(14^{\prime}\right)-0.05$, and $\mathrm{C}\left(15^{\prime}\right) 0.05 \AA$.
$\left(\mathrm{C}_{10} \mathrm{H}_{8}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{5}{ }^{13}$ and $\left(\mathrm{C}_{12} \mathrm{H}_{8}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{5}{ }^{14}$ have long iron-iron distances $[2 \cdot 782(1)$ and $2 \cdot 769(3) \AA$], which was attributed to the fact that no group such as CO or MeS bridged the iron atoms and to the constraints caused by the bridging organic ligand, which is fairly rigid. We suggest that this structure is also largely deter-

[^4]compound are a result of these contacts for one of the methyl groups.

The iron-arsenic and -phosphorus distances are
15 (a) P. J. Roberts and J. Trotter, J. Chem. Soc. (A), 1970, 3246; (b) ibid., 1971, 1479; (c) W. Harrison and J. Trotter, ibid., 1971, 1607; (d) P. J. Roberts, B. R. Penfold, and J. Trotter. Inorg. Chem., 1970, 9, 2137; (e) F. W. B. Einstein and R. D. G. Jones, following paper; (f) F. W. B. Einstein and R. D. G. Jones, Inorg. Chem., in the press; (g) F. W. B. Einstein and C. R. S. M. Hampton, Canad. J. Chem., 1971, 49, 1901; (h) J. P. Crow, W. R. Cullen, F. L. Hou, L. Y. Y. Chan, and F. W. B. Einstein, Chem. Comm., 1971, 1229.
${ }^{16}$ E. D. Becker, 'High-Resolution N.m.r.' Academic Press, New York, 1969, p. 77.
within the range of previously reported values. ${ }^{2,9,15 d, e}$ There are no unusual features associated with the interatomic distances and angles in the fluorocyclobutenyl ring and the diphenylphosphine group or any unusual intermolecular contacts, the closest contact, $\mathrm{O}(1) \cdots$ $\mathrm{O}(4)^{*}$, being $3 \cdot 03 \AA$.

We thank Dr. W. R. Cullen for providing the crystals and helpful discussions, and the National Research Council of Canada for financial support.
[2/442 Received, 28th February, 1972]

* $\mathrm{O}(4)$ is at $\frac{1}{2}+x, \frac{1}{2}-y,-z$.

[^0]: \dagger Computer programs for diffractometer control and preliminary calculations were written by P. G. Lenhert, Vanderbilt University. All other programs for calculation are described in F. W. B. Einstein and R. D. G. Jones, J. Chem. Soc. (A), 1971, 3359.

[^1]: $* R_{\mathrm{K}}=\left[\left.\Sigma| | E_{\mathrm{h}}\right|_{o}-\left|E_{\mathrm{h}}\right|_{\mathrm{c}} \mid\right] / \Sigma\left|E_{\mathrm{h}}\right|_{o}$
 $\dagger R^{\prime}=\left\{\Sigma w\left(\| F_{0}\left|-\left|F_{\mathrm{c}}\right|\right|\right)^{2}\left(\Sigma w F_{o}{ }^{2}\right\}{ }^{\xi}\right.$.
 \ddagger For details of Supplementary Publications see Notice to Authors No. 7 in J. Chem. Soc. (A), Issue No. 20 (items less than 10 pp . will be supplied as full size copies).
 ${ }^{5}$ (a) J. Karle and I. L. Karle, Acta Cryst., 1966, 21, 849; (b) J. Karle, ibid., 1968, B, 24, 182.

[^2]: ${ }^{6}$ F. W. B. Einstein and R. D. G. Jones, J. Chem. Soc. (A), 1971, 3359.
 ${ }_{7}$ 'D. T. Cromer and D. T. Waber, Acta Cryst., 1965, 18, 104.
 ${ }^{8}$ R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem. Phys., 1965, 42, 3175.

 - ' International Tables for X-Ray Crystallography,' vol. III, 1962, Kynoch Press, Birmingham, p. 213.

[^3]: ${ }^{10}$ F. W. B. Einstein and J. Trotter, J. Chem. Soc. (A), 1967,

[^4]: ${ }^{11}$ C. H. Wei and L. F. Dahl, J. Amer. Chem. Soc., 1969, 91, 1351
 ${ }_{12}$ E. F. Epstein and L. F. Dahl, J. Amer. Chem. Soc., 1970, 92, 493.
 ${ }_{13}$ M. R. Churchill, Inorg. Chem., 1967, 6, 190.
 ${ }_{14}$ M. R. Churchill and J. Wormald, Inorg. Chem., 1970, 9, 2239.

