# Crystal and Molecular Structure of Tris-(2,2'-bipyridyl)copper(II) Perchlorate 

By Oren P. Anderson, $\boldsymbol{t}$ Institute of Chemistry, University of Bergen, Bergen, Norway


#### Abstract

The crystal and molecular structure of the title compound has been determined from three-dimensional single crystal $X$-ray diffraction data, collected by counter techniques. Crystals are triclinic, space group $P \overline{1}$, with $Z=2$ in a unit cell of dimensions: $a=12.673(17), b=18.440(21), c=7.937$ (7) $\AA$, $\alpha=90 \cdot 37(14)^{\circ}, \beta=$ $120.56(13)^{\circ}$, and $\gamma=98.80(11)^{\circ}$. The structure was refined by full-matrix least-squares methods on alternate sets of atoms to $R 0.091$ for 3972 observed reflections. The monomeric complex ions exhibit a distorted octahedral configuration, with unequal distortions of the axial $\mathrm{Cu}-\mathrm{N}$ bonds. Mean distances: $\mathrm{Cu}-\mathrm{N}(\mathrm{eq})$ is 2.031 (6), $\mathrm{Cu}-\mathrm{N}(\mathrm{ax}) 2 \cdot 226(7)$, and 2•450(7) $\AA$.


Some recent $X$-ray structural investigations of copper(ir) complexes have shown that it is possible for the copper(iI) ion to occupy a site which requires higher symmetry than is allowed by the Jahn-Teller theorem. For example, the complex ion $\left[\mathrm{Cu}(\mathrm{en})_{3}\right]^{2+}$ (en $=$ ethylenediamine) is situated at sites requiring $32\left(D_{3}\right)$ symmetry in the sulphate salt. ${ }^{1}$ The same result for the site-symmetry at the copper(II) ion has been found for tris(octamethylpyrophosphoramide)copper(II) perchlorate. ${ }^{2}$ In the first case, analysis of the anisotropic thermal parameters of the ligand atoms was said to support either a dynamic distortion of the co-ordination octahedron or random trapping of statically distorted complex ions, while in the second case, no such effect was found. Several studies on potassium lead hexanitrocuprate(II) have also found six identical $\mathrm{Cu}-\mathrm{N}$ bonds in the $\mathrm{CuN}_{6}$ co-ordination polyhedron. ${ }^{3}$ A similar result is found for the complex $\mathrm{Mn}(\mathrm{acac})_{3}(\mathrm{acac}=$ acetylacetonate $)$, where all six $\mathrm{Mn}-\mathrm{O}$ bonds are of equal length (though bond angle distortions are present). ${ }^{4}$ It has even been suggested that this type of apparent Jahn-Teller violation is general for tris(bidentate) chelate systems of copper(Ir). ${ }^{5}$ However, a recent structural report on the tris(hexafluoroacetylacetonato)cuprate(ii) anion has shown the presence of a static distortion in the metal-ligand bond distances. ${ }^{6}$ In view of this situation, further structural information on complexes of this type was thought to be desirable.

The most thoroughly investigated complexes of the type $\left[\mathrm{Cu}(\mathrm{AA})_{3}\right]^{2+}$ (where $\mathrm{AA}=\mathrm{a}$ bidentate ligand) are the complex ions $\left[\mathrm{Cu}(\text { bipy })_{3}\right]^{2+}$ and $\left[\mathrm{Cu}(\text { phen })_{3}\right]^{2+}$ (bipy $=$ $2,2^{\prime}$-bipyridyl and phen $=1,10$-phenanthroline). Single-crystal polarized electronic spectra of the bromide and sulphate salts have indicated that the complex ion $\left[\mathrm{Cu}(\mathrm{bipy})_{3}\right]^{2+}$ possesses trigonal symmetry, and that the strong Jahn-Teller distortion forces may be overcome by the rigidity of the ligand. ${ }^{7}$ An e.s.r. study of [Cu-
$\dagger$ Present address: Department of Chemistry, University of Michigan, Ann Arbor, Michigan, U.S.A.
$\ddagger$ Cf. $U 1720 \AA^{3}$ for two formula units of the slightly bulkier tris-(1, 10 -phenanthroline)copper(II) perchlorate. ${ }^{10}$
${ }^{1}$ M. Cola, G. Giuseppetti, and F. Mazzi, Atti Acad. Sci. Torino, Classe Sci. fis. mat. nat., 1962, 96, 381; D. L. Cullen and E. C. Lingafelter, Inorg. Chem., 1970, 9, 1858.
${ }^{2}$ M. D. Joesten, M. S. Hussain, and P. G. Lenhert, Inorg. Chem., 1970, 9, 151.
${ }^{3}$ L. Cavalca, M. Nardelli, and D. Grazzoli, Gazzetta, 1956, 86, 1041 ; M. Van Driel and H. J. Verweel, Z. Krist., 1936, 95, 308; N. W. Isaacs and C. H. L. Kennard, J. Chem. Soc. (A), 1969, 386 ; D. L. Cullen and E. C. Lingafelter, Inorg. Chem., 1971, 10, 1264.
(phen) $\left.)_{3}\right]^{2+}$ in a single crystal of $\left[\mathrm{Zn}(\text { phen })_{3}\right]\left(\mathrm{NO}_{3}\right)_{2}, 2 \mathrm{H}_{2} \mathrm{O}$ showed significant anisotropy of the $g$ tensor at liquid nitrogen temperatures, and nearly isotropic behaviour at 350 K , interpretable in terms of a dynamic JahnTeller effect. ${ }^{8}$ Further e.s.r. and ${ }^{17} \mathrm{O}$ n.m.r. studies on aqueous and alcoholic solutions of the copper(II) ion and 2,2'-bipyridyl gave evidence for the existence of a dynamic Jahn-Teller effect for the complex ion [Cu$\left.(\text { bipy })_{3}\right]^{2+}{ }^{9}$

Thus, these studies agree that the tris-( $2,2^{\prime}$-bipyridyl)and tris-(1,10-phenanthroline)-copper(II) complexes should appear essentially non-distorted at room temperature, with strong dynamic Jahn-Teller effects operative. The results of an $X$-ray structural investigation of these compounds should be similar to the results quoted earlier for other complex ions of the type $\left[\mathrm{Cu}(\mathrm{AA})_{3}\right]^{2+}$. Furthermore, it was hoped that the structural evidence from the $X$-ray experiments would indicate the presence of the dynamic Jahn-Teller distortion inferred from the e.s.r. results as a heightened thermal motion of the nitrogen atoms, especially along the $\mathrm{Cu}-\mathrm{N}$ bond. Consequently, the study of the structure of $\left[\mathrm{Cu}(\mathrm{bipy})_{3}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ was undertaken.

## EXPERIMENTAL

Crystal Data.- $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{CuN}_{8} \mathrm{O}_{8}, \quad M=731 \cdot 0$, Triclinic, $a=12.673(17), \quad b=18.440(21), \quad c=7.937(7) \AA, \quad \alpha=$ $90 \cdot 37(14)^{\circ}, \beta=120.56(13)^{\circ}, \gamma=98.80(11)^{\circ}, U=1572.9 \AA^{3}, \ddagger$ $Z=2, D_{\mathrm{c}}=1 \cdot 55, F(000)=750$. Space group $P \overline{1}$ (No. 2). Mo- $K_{\alpha 1}$ radiation, $\lambda=0.70926 \AA ; \mu\left(\mathrm{Mo}-K_{\alpha}\right)=9.41 \mathrm{~cm}^{-1}$.

Crystals were grown from aqueous solutions of copper(ir) perchlorate with a $3 \cdot 5$-fold excess of $2,2^{\prime}$-bipyridyl, as long, dark blue columns, which were easily cleaved across the long dimension to give crystals of suitable length.

Preliminary oscillation and Weissenberg photographs about three independent axes indicated the space group and axes were chosen in accord with the conventions in ref. 11. The crystal chosen for data collection was mounted along

[^0]the $c$ axis, and placed on a Siemens automatic four-circle diffractometer, with the $c$ axis nearly coincident with the $\phi$ axis of the instrument. Values of $2 \theta$ for 21 high-order reflections ( $2 \theta>28^{\circ}$ ) were measured, and the unit-cell constants calculated from them by a least-squares procedure.

Data were collected by the $\theta-2 \theta$ technique with a fivevalue scan. The scan range was $0 \cdot 30^{\circ}$ for the bottom half of the scan, and $\left(0.30+0.15 \tan \theta_{\text {max }}\right)^{\circ}$ for the upper half of the scan, where $\theta_{\text {max }}$ is the peak maximum position calculated by least-squares techniques from the measured positions of eight high-order reflections. The minimum scan rate was $2.5 \mathrm{deg} . \mathrm{min}^{-1}$, and automatically coupled attenuators made coincidence losses negligible. The scintillation counter aperture was 3.0 mm in diameter. The intensities of two reference reflections did not vary during the data collection.

The data set comprised all reflections in a unique half of the sphere of reflection, with values of $\theta$ from $1-25^{\circ}$. 5566 Reflections were obtained of which 3972 ( $71 \cdot 4 \%$ ) had $I>2 \sigma(I)$ and were considered observed. The standard deviation in the intensity is defined as the square root of the total number of counts during the five-value measurement. For those reflections which were unobserved by this definition, the measured intensity was replaced by twice the standard deviation, with a label to indicate that these reflections were unobserved.

Lorentz and polarization corrections were applied. The dimensions of the crystal used for data collection, given as the distance ( mm ) from the face concerned to the point taken as the crystal centre, were: $0 \cdot 155[(001)$ and (001)], $0.059[(100)$ and (100)], 0.072 [(120), (120), (120), and (120)], and $0.074[(010)$ and ( 010$)]$. An absorption correction, based on the Gaussian grid technique, ${ }^{12}$ was applied to the data. With a $4 \times 4 \times 6$ grid, values of the reciprocal transmission coefficient ranged from $1 \cdot 10$ to $1 \cdot 14$.

Calculations. Several of the computer programs used in this study were made available to the Chemical Institute, University of Bergen, by the Weizmann Institute of Science, Rehovoth, Israel, and modified for use on the University of Bergen's IBM 36050 H computer. Programs from this library used in the present work included CELL (leastsquares calculation of cell parameters), BDLS (structurefactor calculation and full-matrix refinement), DIAN and INTA (calculation of intra- and inter-molecular atomic distances and angles), and ORTHO (vibration tensors for anisotropically vibrating atoms). Local programs written at the University of Bergen by K. Åse, were DAT 1 (Lorentz polarization correction and data reduction for diffractometer data), ABCD (absorption correction), and ASEN (calculation of Fourier maps). Figures were drawn using the Oak Ridge thermal ellipsoid plotting program ORTEP at the University of Leicester.

Solution and Refinement.-The position of the copper(II) ion was assigned from the highest non-origin peak in the initial Patterson map. The positions of all atoms were obtained from a series of Fourier syntheses phased by the atoms in known positions. Scattering factors for copper(II) were taken from ref. 13, and for chloride ion, atomic nitrogen, carbon, and oxygen, from ref. 14; for copper corrections for anomalous dispersion, $\Delta f^{\prime}$ and $\Delta f^{\prime \prime}$, were taken from ref. 15. The positions of the four oxygen atoms $\mathrm{O}(5)-(8)$ surrounding $\mathrm{Cl}(2)$ gave satisfactory bond lengths and angles, whereas the $\mathrm{Cl}(1)$ perchlorate ion

[^1]appeared seriously distorted, and $\mathrm{O}(2)$-(4) would not refine satisfactorily. Despite this, $R$ was $0 \cdot 14$. As $O(1)$ was refining, the most likely form of disorder was felt to be rotation about the $\mathrm{Cl}(1)-\mathrm{O}(1)$ bond axis. A Fourier map constructed by use of all atoms except the unsatisfactory oxygen atoms $\mathrm{O}(2)$-(4) indicated a solution might be obtained by putting in two sets of atoms, each with only one-half occupancy. After this had been done, all atoms were refining satisfactorily. The equality of the final isotropic thermal parameters obtained for $\mathrm{O}(2)$-(4) and $\mathrm{O}\left(\mathbf{2}^{\prime}\right)-\left(4^{\prime}\right)$ (see Table 1) indicates that these occupancy factors are very close to being correct.

Table 1
Atomic co-ordinates (fractional) and thermal parameters with standard deviations in parentheses

| Atom | $x$ | $y$ | $z$ | $U^{*}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Cu}{ }^{\text {II }}$ | $0 \cdot 23592(8)$ | $0 \cdot 23971$ (5) | $0 \cdot 22795(14)$ |  |
| N(1) | $0 \cdot 3553(5)$ | $0 \cdot 3116(3)$ | 0.4703(8) |  |
| N(2) | $0 \cdot 1052$ (5) | $0 \cdot 1916(3)$ | -0.0453(8) |  |
| N(3) | $0 \cdot 3733$ (5) | 0.2036(3) | $0 \cdot 2090$ (9) |  |
| N(4) | $0 \cdot 1110$ (5) | $0 \cdot 2788(3)$ | 0.2764(9) |  |
| N(5) | $0 \cdot 1990$ (6) | $0 \cdot 3379(3)$ | 0.0085 (9) |  |
| N(6) | $0 \cdot 2654(5)$ | $0 \cdot 1435(3)$ | $0 \cdot 4045$ (9) |  |
| C(1) | 0.4819 (8) | $0 \cdot 3195(5)$ | $0 \cdot 5705(12)$ | 0.058(2) |
| C(2) | 0.5563 (9) | $0 \cdot 3666$ (5) | $0 \cdot 7460(14)$ | 0.071 (3) |
| $\mathrm{C}(3)$ | $0 \cdot 4965$ (9) | 0.4048(5) | $0 \cdot 8122(14)$ | $0 \cdot 079$ (3) |
| C(4) | $0 \cdot 3668$ (9) | $0.3978(5)$ | $0 \cdot 7092(13)$ | $0 \cdot 069$ (3) |
| $\mathrm{C}(5)$ | $0 \cdot 2995$ (7) | $0 \cdot 3491$ (4) | 0.5361 (11) | $0 \cdot 048(2)$ |
| C(6) | $0 \cdot 1631$ (7) | $0 \cdot 3367$ (4) | $0.4157(11)$ | $0 \cdot 049$ (2) |
| C(7) | 0.0902 (9) | $0 \cdot 3827(5)$ | 0.4403(13) | $0 \cdot 069(3)$ |
| C(8) | $-0.0395(9)$ | $0 \cdot 3628$ (5) | $0.3177(14)$ | 0.075 (3) |
| $\mathrm{C}(9)$ | -0.0938(8) | $0 \cdot 3018$ (5) | $0 \cdot 1826(13)$ | $0 \cdot 068(3)$ |
| $\mathrm{C}(10)$ | $-0.0150(8)$ | $0 \cdot 2597(5)$ | $0 \cdot 1635(12)$ | $0 \cdot 057(2)$ |
| C(11) | 0.0789 (7) | $0 \cdot 1170$ (5) | $-0.0824(12)$ | $0 \cdot 053(2)$ |
| C(12) | -0.0126(8) | 0.0832 (5) | -0.2744(13) | $0 \cdot 066$ (3) |
| C(13) | $-0.0746(8)$ | $0 \cdot 1277(5)$ | $-0.4209(13)$ | 0.071 (3) |
| $\mathrm{C}(14)$ | $-0.0480(8)$ | $0 \cdot 2039$ (5) | $-0.3808(13)$ | $0.065(2)$ |
| C(15) | 0.0443 (7) | $0 \cdot 2335(4)$ | $-0.1881(12)$ | $0 \cdot 050$ (2) |
| $\mathrm{C}(16)$ | $0.0812(7)$ | $0 \cdot 3152(4)$ | -0.1332(12) | $0 \cdot 049$ (2) |
| C(17) | $-0.0054(8)$ | $0 \cdot 3613(5)$ | -0.2221(12) | $0.061(2)$ |
| $\mathrm{C}(18)$ | $0.0350(9)$ | $0 \cdot 4375$ (5) | $-0.1585(14)$ | 0.074(3) |
| $\mathrm{C}(19)$ | $0 \cdot 1607(8)$ | $0 \cdot 4626$ (5) | -0.0113(13) | $0.067(3)$ |
| $\mathrm{C}(20)$ | $0 \cdot 2391$ (8) | $0 \cdot 4104(5)$ | $0.0691(12)$ | $0 \cdot 060$ (2) |
| $\mathrm{C}(21)$ | $0.4108(8)$ | $0 \cdot 2319$ (5) | 0.0889(13) | $0 \cdot 064(2)$ |
| $\mathrm{C}(22)$ | (0.5114(9) | $0 \cdot 2069(5)$ | 0.0842(14) | $0 \cdot 078(3)$ |
| C(23) | $0.5663(9)$ | $0 \cdot 1550(5)$ | $0 \cdot 2118(15)$ | $0 \cdot 080$ (3) |
| $\mathrm{C}(24)$ | 0.5292(9) | $0 \cdot 1263(5)$ | $0 \cdot 3337(14)$ | $0 \cdot 077(3)$ |
| $\mathrm{C}(25)$ | 0.4266 (8) | $0 \cdot 1524(5)$ | $0 \cdot 3271$ (12) | $0 \cdot 053(2)$ |
| $\mathrm{C}(26)$ | $0 \cdot 3755$ (7) | $0 \cdot 1239(4)$ | $0 \cdot 4500$ (12) | $0.051(2)$ |
| $\mathrm{C}(27)$ | $0 \cdot 4328$ (8) | 0.0788 (5) | $0.6035(13)$ | 0.067 (3) |
| $\mathrm{C}(28)$ | $0 \cdot 3759(9)$ | $0.0538(5)$ | $0 \cdot 7046(14)$ | $0 \cdot 074(3)$ |
| $\mathrm{C}(29)$ | $0 \cdot 2607(9)$ | $0.0727(5)$ | $0 \cdot 6565(14)$ | $0 \cdot 074(3)$ |
| $\mathrm{C}(30)$ | $0 \cdot 2099$ (8) | $0 \cdot 1188(5)$ | 0.5045(13) | 0.063 (2) |
| $\mathrm{Cl}(1)$ | $0 \cdot 2256(2)$ | 0.9285 (1) | $0 \cdot 0278$ (3) |  |
| $\mathrm{Cl}(2)$ | $0 \cdot 3214(2)$ | 0.5883 (1) | 0.6161 (4) |  |
| $\mathrm{O}_{(1)} \mathbf{}$ | $0 \cdot 0972(7)$ | $0.9278(4)$ | $-0.1148(11)$ | $0 \cdot 111(3)$ |
| $\mathrm{O}(2) \dagger$ | $0 \cdot 3113(14)$ | 0.9596(9) | -0.0376(23) | $0 \cdot 109$ (5) |
| $\mathrm{O}(3) \dagger$ | $0 \cdot 2553(14)$ | $0 \cdot 8560(9)$ | $0 \cdot 0826(23)$ | $0 \cdot 101(5)$ |
| $\mathrm{O}(4) \dagger$ | $0 \cdot 2572(15)$ | 0.9727(9) | $0 \cdot 2014(24)$ | $0 \cdot 114$ (5) |
| $\mathrm{O}\left(2^{\prime}\right) \dagger$ | $0 \cdot 2991$ (16) | 1.0013(10) | $0 \cdot 0891(26)$ | $0 \cdot 124(6)$ |
| $\mathrm{O}\left(3^{\prime}\right) \dagger$ | $0 \cdot 2623(15)$ | $0 \cdot 8888(10)$ | $-0.0741(25)$ | $0 \cdot 119$ (5) |
| $\mathrm{O}\left(4^{\prime}\right) \dagger$ | 0.2304(13) | 0.8890 (9) | $0 \cdot 1855(23)$ | $0 \cdot 100(5)$ |
| $\mathrm{O}(5)$ | $0 \cdot 2617(6)$ | $0.5534(4)$ | 0.7176(10) | $0.094(2)$ |
| $\bigcirc(6)$ | $0 \cdot 2700$ (8) | $0 \cdot 5448(5)$ | 0.4337(13) | $0 \cdot 122(3)$ |
| $\mathrm{O}(7)$ | $0 \cdot 2995$ (7) | 0.6615 (5) | $0 \cdot 5820(12)$ | $0 \cdot 116(3)$ |
| $\mathrm{O}(8)$ | $0 \cdot 4513(6)$ | 0.5888(4) | $0 \cdot 7299(10)$ | $0 \cdot 086(2)$ |

* Isotropic thermal parameters $\left(\AA^{2}\right)$ in the form $\exp \left[-8 \pi^{2} U-\right.$ $\left.\left(\sin ^{2} \theta / \lambda^{2}\right)\right] . \quad \dagger$ These atoms were allocated an 0.5 occupancy factor.

[^2]cycle the overall scale factor, together with the positions and thermal parameters of the copper(II) ion, six nitrogen atoms, thirty carbon atoms, and two chlorine atoms, were refined. Thermal parameters for copper(II), nitrogen, and chlorine were anisotropic, with all others isotropic. The next cycle substituted the eleven oxygen atoms for the thirty carbon atoms in the refinement. After only two repetitions of this process, $R$ had reached its final value of 0.091 (observed reflections only, 0.093 for all reflections). The program BDLS minimizes the function $R^{\prime}=\Sigma\left(\left|F_{0}\right|-\right.$ $\left.K W\left|F_{\mathrm{c}}\right|\right)^{2}$, where $K$ is the scale factor and $W$ is the weight. The weight, $W$, in this refinement was set equal to $1 / \sigma^{2}\left(F_{0}\right)$, where $\sigma\left(F_{0}\right)$, the standard deviation in the observed structure factor, is evaluated from considerations of counting statistics. On the last pair of cycles, all positional shifts for $\mathrm{Cu}^{\mathrm{II}}, \mathrm{Cl}$, and N were less than $0 \cdot 1 \sigma$ for the parameters involved, as were those for most of the carbon and oxygen atoms. A few carbon and oxygen atoms had shifts of up to $0 \cdot 3 \sigma$ of their positional parameters. Examination of the observed and calculated structure factors of the strongest reflections indicated that extinction was not serious for this crystal, and the refinement was terminated at this point without any attempt to locate hydrogen atoms. A final difference Fourier map showed no peak higher than $0.8 \mathrm{e}^{-3}$, and no depression lower than $-0.7 \mathrm{e}^{-3}$. Observed and calculated structure factors are listed in Supplementary Publication No. 20469 ( 4 pp., 1 microfiche).* Atomic positions and isotropic thermal parameters are listed in Table 1, and anisotropic thermal parameters in Table 2.

Table 2
Anisotropic thermal parameters $\left(\AA^{2}\right)$ * with estimated standard deviations in parentheses

|  | $10^{4} U_{11}$ | $10^{4} U_{22}$ | $10^{4} U_{33}$ | $10^{4} U_{12}$ | $10^{4} U_{23}$ | $10^{4} U_{13}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Cu}^{\text {II }}$ | 332(5) | 473(6) | 412(6) | 92(4) | -39(4) | 128(4) |
| N(1) | 489(39) | $415(39)$ | 452(40) | $112(31)$ | 53(31) | 219(33) |
| N(2) | 400(37) | 443 (39) | 456(39) | 105(30) | $35(31)$ | 193(32) |
| N(3) | 430(39) | 557(43) | 435(40) | 59(33) | $-138(33)$ | 136(32) |
| N(4) | 418(38) | 459(40) | 497(40) | 66(31) | 83(32) | 214(32) |
| N(5) | 432(39) | 571 (45) | 504(42) | 48(34) | 31 (34) | 159(33) |
| N(6) | 403(38) | 565(44) | 575(44) | 163 (33) | 34(35) | 196(34) |
| $\mathrm{Cl}(1)$ | 541(14) | 598(15) | 546(14) | 125(12) | 70(12) | 260(12) |
| $\mathrm{Cl}(2)$ | 445(14) | 723(17) | 667(16) | 81 (12) | 55(13) | 134(12) |

## RESULTS AND DISCUSSION

Bond lengths and angles for all bonds involving the copper(II) ion are in Table 3; those within the ligands and the perchlorate ions are in Table 4 (standard deviations in these Tables are calculated from those of Table 1 without regard to co-ordinate covariance or to standard deviations in the unit-cell dimensions). Figure 1 shows the co-ordination geometry about the copper(II) ion, with the six co-ordinating nitrogen atoms and the carbon atoms which link together the two nitrogen atoms of each bipyridyl ligand. Figure 2 shows the labelling of the individual ligand ring systems.

The co-ordination geometry about the copper(II) ion is not that expected from the earlier spectroscopic studies. Table 3 shows that there are four $\mathrm{Cu}-\mathrm{N}$ bonds

* For details see Notice to Authors No. 7 in J. Chem. Soc. (A), 1970, Issue No. 20. (Items less than 10 pp. supplied in full size copies.)

Table 3
Bond lengths ( $\AA$ ) and angles $\left({ }^{\circ}\right)$ involving $\mathrm{Cu}^{\mathrm{II}}$ with standard deviations in parentheses
(a) Bond lengths

| $\mathrm{Cu}-\mathrm{N}(1)$ | $2 \cdot 035(5)$ | $\mathrm{Cu}-\mathrm{N}(4)$ | $2 \cdot 034(8)$ |
| :--- | ---: | :--- | :--- |
| $\mathrm{Cu}-\mathrm{N}(2)$ | $2 \cdot 026(5)$ | $\mathrm{Cu}-\mathrm{N}(5)$ | $2 \cdot 450(7)$ |
| $\mathrm{Cu}-\mathrm{N}(3)$ | $2 \cdot 030(8)$ | $\mathrm{Cu}-\mathrm{N}(6)$ | $2 \cdot 226(7)$ |
|  |  |  |  |
| $(b)$ Bond angles |  |  |  |
| $\mathrm{N}(1)-\mathrm{Cu}-\mathrm{N}(4)$ | $80 \cdot 4(3)$ | $\mathrm{N}(5)-\mathrm{Cu}-\mathrm{N}(6)$ | $174 \cdot 8(2)$ |
| $\mathrm{N}(2)-\mathrm{Cu}-\mathrm{N}(5)$ | $73 \cdot 9(2)$ | $\mathrm{Cu}-\mathrm{N}(1)-\mathrm{C}(1)$ | $125 \cdot 3(6)$ |
| $\mathrm{N}(3)-\mathrm{Cu}-\mathrm{N}(6)$ | $78 \cdot 2(3)$ | $\mathrm{Cu}-\mathrm{N}(1)-\mathrm{C}(5)$ | $1144 \cdot 2(4)$ |
| $\mathrm{N}(1)-\mathrm{Cu}-\mathrm{N}(3)$ | $94 \cdot 4(3)$ | $\mathrm{C}(10)-\mathrm{N}(4)-\mathrm{Cu}$ | $125 \cdot 8(6)$ |
| $\mathrm{N}(1)-\mathrm{Cu}-\mathrm{N}(5)$ | $92 \cdot 2(2)$ | $\mathrm{C}(6)-\mathrm{N}(4)-\mathrm{Cu}$ | $113 \cdot 3(6)$ |
| $\mathrm{N}(1)-\mathrm{Cu}-\mathrm{N}(6)$ | $92 \cdot 4(2)$ | $\mathrm{Cu}-\mathrm{N}(2)-\mathrm{C}(11)$ | $120 \cdot 1(5)$ |
| $\mathrm{N}(1)-\mathrm{Cu}-\mathrm{N}(2)$ | $165 \cdot 6(2)$ | $\mathrm{Cu}-\mathrm{N}(2)-\mathrm{C}(15)$ | $119.8(5)$ |
| $\mathrm{N}(2)-\mathrm{Cu}-\mathrm{N}(3)$ | $91 \cdot 6(3)$ | $\mathrm{C}(20)-\mathrm{N}(5)-\mathrm{Cu}$ | $1244 \cdot 6(5)$ |
| $\mathrm{N}(2)-\mathrm{Cu}-\mathrm{N}(4)$ | $94 \cdot 0(3)$ | $\mathrm{C}(16)-\mathrm{N}(5)-\mathrm{Cu}$ | $102 \cdot 4(5)$ |
| $\mathrm{N}(2)-\mathrm{Cu}-\mathrm{N}(6)$ | $101 \cdot 6(2)$ | $\mathrm{Cu}-\mathrm{N}(3)-\mathrm{C}(21)$ | $121 \cdot 1(6)$ |
| $\mathrm{N}(3)-\mathrm{Cu}-\mathrm{N}(4)$ | $174 \cdot 2(2)$ | $\mathrm{Cu}-\mathrm{N}(3)-\mathrm{C}(25)$ | $116 \cdot 4(7)$ |
| $\mathrm{N}(3)-\mathrm{Cu}-\mathrm{N}(5)$ | $99 \cdot 1(3)$ | $\mathrm{C}(30)-\mathrm{N}(6)-\mathrm{Cu}$ | $128 \cdot 4(6)$ |
| $\mathrm{N}(4)-\mathrm{Cu}-\mathrm{N}(5)$ | $83 \cdot 6(3)$ | $\mathrm{C}(26)-\mathrm{N}(6)-\mathrm{Cu}$ | $109 \cdot 6(6)$ |
| $\mathrm{N}(4)-\mathrm{Cu}-\mathrm{N}(6)$ | $99 \cdot 5(3)$ |  |  |

Table 4
Bond lengths $(\AA)$ and angles ( ${ }^{\circ}$ ) in the ligand rings and perchlorate ions with estimated standard deviations in parentheses
(a) Bond lengths (i) $\mathrm{N}(1), \mathrm{N}(4)$ system

| $\mathrm{N}(1)-\mathrm{C}(1)$ | 1.362(11) | $\mathrm{C}(6)-\mathrm{N}(4)$ | $1.351(10)$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{C}(1)-\mathrm{C}(2)$ | 1-407(12) | $\mathrm{C}(6)-\mathrm{C}(7)$ | $1 \cdot 425(16)$ |
| $\mathrm{C}(2)-\mathrm{C}(3)$ | 1-383(19) | $\mathrm{C}(7)-\mathrm{C}(8)$ | 1.403(12) |
| $\mathrm{C}(3)-\mathrm{C}(4)$ | 1-398(14) | $\mathrm{C}(8)-\mathrm{C}(9)$ | 1-373(13) |
| $\mathrm{C}(4)-\mathrm{C}(5)$ | 1-407(11) | $\mathrm{C}(9)-\mathrm{C}(10)$ | $1 \cdot 419(16)$ |
| $\mathrm{C}(5)-\mathrm{N}(1)$ | 1-332(13) | $\mathrm{C}(10)-\mathrm{N}(4)$ | $1 \cdot 358(10)$ |
| $\mathrm{C}(5)-\mathrm{C}(6)$ | 1-466(11) |  |  |
| (ii) $\mathrm{N}(2), \mathrm{N}(5)$ system |  |  |  |
| $\mathrm{N}(2)-\mathrm{C}(11)$ | 1-358(10) | $\mathrm{C}(16)-\mathrm{N}(5)$ | 1-328(8) |
| $\mathrm{C}(11)-\mathrm{C}(12)$ | 1-424(10) | $\mathrm{C}(16)-\mathrm{C}(17)$ | $13889(12)$ |
| $\mathrm{C}(12)-\mathrm{C}(13)$ | 1-387(13) | $\mathrm{C}(17)-\mathrm{C}(18)$ | $1.415(12)$ |
| $\mathrm{C}(13)-\mathrm{C}(14)$ | $1 \cdot 389(13)$ | $\mathrm{C}(18)-\mathrm{C}(19)$ | 1-411(11) |
| $\mathrm{C}(14)-\mathrm{C}(15)$ | 1-407(10) | $\mathrm{C}(19)-\mathrm{C}(20)$ | 1.404(13) |
| $\mathrm{C}(15)-\mathrm{N}(2)$ | $1 \cdot 334(10)$ | $\mathrm{C}(20)-\mathrm{N}(5)$ | 1-347(11) |
| $\mathrm{C}(15) \cdots \mathrm{C}(16)$ | $1 \cdot 499(11)$ |  |  |

(iii) $\mathrm{N}(3), \mathrm{N}(6)$ system

| $\mathrm{N}(3)-\mathrm{C}(21)$ | $1.341(14)$ | $\mathrm{C}(25)-\mathrm{C}(26)$ | $1.481(16)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{C}(21)-\mathrm{C}(22)$ | $1.438(18)$ | $\mathrm{C}(26)-\mathrm{N}(6)$ | $1.361(12)$ |
| $\mathrm{C}(22)-\mathrm{C}(23)$ | $1.388(14)$ | $\mathrm{C}(26)-\mathrm{C}(27)$ | $1.414(12)$ |
| $\mathrm{C}(23)-\mathrm{C}(24)$ | $1.352(18)$ | $\mathrm{C}(27)-\mathrm{C}(28)$ | $1.367(18)$ |
| $\mathrm{C}(24)-\mathrm{C}(25)$ | $1.431(16)$ | $\mathrm{C}(28)-\mathrm{C}(29)$ | $1.409(16)$ |
| $\mathrm{C}(25)-\mathrm{N}(3)$ | $1.337(10)$ | $\mathrm{C}(29)-\mathrm{C}(30)$ | $1.409(13)$ |
|  |  | $\mathrm{C}(30)-\mathrm{N}(6)$ | $1.344(15)$ |

(iv) Perchlorate containing $\mathrm{Cl}(1)$

| $\mathrm{Cl}(1)-\mathrm{O}(1)$ | 1-432(8) | $\mathrm{Cl}(1)-\mathrm{O}\left(2^{\prime}\right)$ | 1-434(17) |
| :---: | :---: | :---: | :---: |
| $\mathrm{Cl}(1)-\mathrm{O}(2)$ | 1.471 (21) | $\mathrm{Cl}(1)-\mathrm{O}\left(3^{\prime}\right)$ | $1.373(23)$ |
| $\mathrm{Cl}(1)-\mathrm{O}(3)$ | $1.452(16)$ | $\mathrm{Cl}(1)-\mathrm{O}\left(4^{\prime}\right)$ | 1-431(18) |
| $\mathrm{Cl}(1)-\mathrm{O}(4)$ | $1.431(19)$ |  |  |
| (v) Perchlorate containing $\mathrm{Cl}(2)$ |  |  |  |
| $\mathrm{Cl}(2)-\mathrm{O}(5)$ | 1-454(9) | $\mathrm{Cl}(2)-\mathrm{O}(7)$ | $1 \cdot 420(9)$ |
| $\mathrm{Cl}(2)-\mathrm{O}(6)$ | 1.424(9) | $\mathrm{Cl}(2)-\mathrm{O}(8)$ | 1-417(7) |

(b) Bond angles (i) $\mathrm{N}(1), \mathrm{N}(4)$ system

| $\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(5)$ | $120 \cdot 3(6)$ | $\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$ | $122 \cdot 9(7)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$ | $121 \cdot 1(10)$ | $\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(4)$ | $115 \cdot 0(8)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | $117 \cdot 7(8)$ | $\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{N}(4)$ | $117 \cdot 6(7)$ |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$ | $121 \cdot 7(8)$ | $\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$ | $116 \cdot 5(8)$ |
| $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$ | $116 \cdot 9(11)$ | $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$ | $121 \cdot 9(11)$ |
| $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}(1)$ | $122 \cdot 3(8)$ | $\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$ | $118 \cdot 3(8)$ |
| $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$ | $122 \cdot 1(10)$ | $\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{N}(4)$ | $121 \cdot 1(7)$ |
| $\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(6)$ | $115 \cdot 6(7)$ | $\mathrm{C}(10)-\mathrm{N}(4)-\mathrm{C}(6)$ | $120 \cdot 0(8)$ |

Table 4 (Continued)
(ii) $\mathrm{N}(2), \mathrm{N}(\boldsymbol{5})$ system

| $\mathrm{C}(11)-\mathrm{N}(2)-\mathrm{C}(15)$ | $120.2(6)$ |
| :--- | :--- |
| $\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{C}(12)$ | $120.2(7)$ |
| $\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$ | $118.8(8)$ |
| $\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$ | $120.6(7)$ |
| $\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$ | $117.5(8)$ |
| $\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{N}(2)$ | $122 \cdot 8(7)$ |
| $\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$ | $121 \cdot 0(7)$ |
| $\mathrm{N}(2)-\mathrm{C}(15)-\mathrm{C}(16)$ | $116 \cdot 1(6)$ |


| $\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$ | $120 \cdot 8(6)$ |
| :--- | :--- |
| $\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{N}(5)$ | $114 \cdot 8(7)$ |
| $\mathrm{N}(5)-\mathrm{C}(16)-\mathrm{C}(17)$ | $124 \cdot 4(7)$ |
| $\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$ | $117 \cdot 7(7)$ |
| $\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$ | $118 \cdot 4(9)$ |
| $\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$ | $118 \cdot 5(8)$ |
| $\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{N}(5)$ | $122 \cdot 4(6)$ |
| $\mathrm{C}(20)-\mathrm{N}(5)-\mathrm{C}(16)$ | $118 \cdot 6(7)$ |

(iii) $\mathrm{N}(3), \mathrm{N}(6)$ system

| $\mathrm{C}(21)-\mathrm{N}(3)-\mathrm{C}(25)$ | $122 \cdot 4(7)$ | $\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)$ | $124 \cdot 3(9)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{N}(3)-\mathrm{C}(21)-\mathrm{C}(22)$ | $119 \cdot 7(8)$ | $\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{N}(6)$ | $115 \cdot 1(7)$ |
| $\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$ | $116 \cdot 4(12)$ | $\mathrm{N}(6)-\mathrm{C}(26)-\mathrm{C}(27)$ | $120 \cdot 6(10)$ |
| $\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$ | $124 \cdot 2(12)$ | $\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(28)$ | $119 \cdot 6(10)$ |
| $\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$ | $116 \cdot 4(9)$ | $\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(29)$ | $120 \cdot 3(9)$ |
| $\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{N}(3)$ | $120 \cdot 9(10)$ | $\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(30)$ | $117 \cdot 1(11)$ |
| $\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$ | $121 \cdot 5(8)$ | $\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{N}(6)$ | $122 \cdot 8(10)$ |
| $\mathrm{N}(3)-\mathrm{C}(25)-\mathrm{C}(26)$ | $117 \cdot 6(9)$ | $\mathrm{C}(30)-\mathrm{N}(6)-\mathrm{C}(26)$ | $119 \cdot 6(7)$ |

(iv) $\mathrm{Cl}(1)$ Perchlorate

| $\mathrm{O}(1)-\mathrm{Cl}(1)-\mathrm{O}(2)$ | $113 \cdot 6(7)$ | $\mathrm{O}(3)-\mathrm{Cl}(1)-\mathrm{O}(4)$ | $108 \cdot 1(10)$ |
| :--- | :---: | :--- | ---: |
| $\mathrm{O}(1)-\mathrm{Cl}(1)-\mathrm{O}(3)$ | $114 \cdot 2(6)$ | $\mathrm{O}(3)-\mathrm{Cl}(1)-\mathrm{O}\left(2^{\prime}\right)$ | $132 \cdot 9(9)$ |
| $\mathrm{O}(1)-\mathrm{Cl}(1)-\mathrm{O}(4)$ | $108 \cdot 2(8)$ | $\mathrm{O}(3)-\mathrm{Cl}(1)-\mathrm{O}\left(3^{\prime}\right)$ | $60 \cdot 4(12)$ |
| $\mathrm{O}(1)-\mathrm{Cl}(1)-\mathrm{O}\left(2^{\prime}\right)$ | $112 \cdot 9(8)$ | $\mathrm{O}(3)-\mathrm{Cl}(1)-\mathrm{O}\left(4^{\prime}\right)$ | $49 \cdot 4(11)$ |
| $\mathrm{O}(1)-\mathrm{Cl}(1)-\mathrm{O}\left(3^{\prime}\right)$ | $102 \cdot 3(7)$ | $\mathrm{O}(4)-\mathrm{Cl}(1)-\mathrm{O}\left(2^{\prime}\right)$ | $55 \cdot 1(12)$ |
| $\mathrm{O}(1)-\mathrm{Cl}(1)-\mathrm{O}\left(4^{\prime}\right)$ | $107 \cdot 6(7)$ | $\mathrm{O}(4)-\mathrm{Cl}(1)-\mathrm{O}\left(3^{\prime}\right)$ | $149 \cdot 3(9)$ |
| $\mathrm{O}(2)-\mathrm{Cl}(1)-\mathrm{O}(3)$ | $104 \cdot 7(11)$ | $\mathrm{O}(4)-\mathrm{Cl}(1)-\mathrm{O}\left(4^{\prime}\right)$ | $64 \cdot 0(10)$ |
| $\mathrm{O}(2)-\mathrm{Cl}(1)-\mathrm{O}(4)$ | $107 \cdot 7(10)$ | $\mathrm{O}\left(2^{\prime}\right)-\mathrm{Cl}(1)-\mathrm{O}\left(3^{\prime}\right)$ | $109 \cdot 5(13)$ |
| $\mathrm{O}(2)-\mathrm{Cl}(1)-\mathrm{O}\left(2^{\prime}\right)$ | $55 \cdot 2(12)$ | $\mathrm{O}\left(2^{\prime}\right)-\mathrm{Cl}(1)-\mathrm{O}\left(4^{\prime}\right)$ | $114 \cdot 1(10)$ |
| $\mathrm{O}(2)-\mathrm{Cl}(1)-\mathrm{O}\left(3^{\prime}\right)$ | $55 \cdot 1(11)$ | $\mathrm{O}\left(3^{\prime}\right)-\mathrm{Cl}(1)-\mathrm{O}\left(4^{\prime}\right)$ | $109 \cdot 7(11)$ |
| $\mathrm{O}(2)-\mathrm{Cl}(1)-\mathrm{O}\left(4^{\prime}\right)$ | $138 \cdot 2(9)$ |  |  |
| $(\mathrm{v}) \mathrm{Cl}(2) \mathrm{Perchlorate}$ |  |  |  |
| $\mathrm{O}(5)-\mathrm{Cl}(2)-\mathrm{O}(6)$ | $107 \cdot 0(5)$ | $\mathrm{O}(6)-\mathrm{Cl}(2)-\mathrm{O}(7)$ | $110 \cdot 0(5)$ |
| $\mathrm{O}(5)-\mathrm{Cl}(2)-\mathrm{O}(7)$ | $111 \cdot 2(6)$ | $\mathrm{O}(6)-\mathrm{Cl}(2)-\mathrm{O}(8)$ | $109 \cdot 4(6)$ |
| $\mathrm{O}(5)-\mathrm{Cl}(2)-\mathrm{O}(8)$ | $109 \cdot 4(4)$ | $\mathrm{O}(7)-\mathrm{Cl}(2)-\mathrm{O}(8)$ | $109 \cdot 8(4)$ |

of equal length, mean $2.031 \AA$. The remaining two $\mathrm{Cu}-\mathrm{N}$ bonds are of unequal length: $\mathrm{Cu}^{\mathrm{II}-\mathrm{N}(5) 2.450 \text { and }}$


Figure 1 The co-ordination geometry about $\mathrm{Cu}^{\mathrm{II}}$; only the two nitrogen atoms and connecting carbon atoms of each ligand are shown
$\mathrm{Cu}^{\mathrm{II}-\mathrm{N}(6)} 2 \cdot 226 \AA$. This inequality in the long bond lengths is also unexpected, as many complexes of copper(II) which exhibit a static Jahn-Teller distortion of this type have two long bonds of equal length.

The whole of the co-ordination geometry for Cu (bipy) $_{\mathbf{3}}{ }^{\mathbf{2 +}}$ represents a considerable departure from the
$D_{3}$ symmetry found for complex ions such as $\mathrm{Cu}(\mathrm{en})_{3}{ }^{\mathbf{2 +}}$. Apart from the bond-length distortions, large deviations in the expected bond angles $\mathrm{N}-\mathrm{Cu}^{11}-\mathrm{N}^{\prime}$ are also found.

(a)

(b)


Figure 2 The labelling of the bipyridyl ligands

As the only other tris(bidentate) complex of copper(II) involving three identical ligands which co-ordinate only through nitrogen, the non-distorted complex ion $\mathrm{Cu}(\mathrm{en})_{3}{ }^{2+}$ may serve as a basis for comparison with the results of this study. As mentioned earlier, this ion has been found to possess $D_{3}$ symmetry, ${ }^{1}$ which, although a trigonal distortion of $O_{h}$, is not sufficient to remove the Jahn-Teller degeneracy. ${ }^{7} \quad$ In $\mathrm{Cu}(\mathrm{en})_{3}{ }^{2+}$, the six equal $\mathrm{Cu}-\mathrm{N}$ bond lengths were $2 \cdot 150(2) \AA$. The mean of the six $\mathrm{Cu}-\mathrm{N}$ distances in $\mathrm{Cu}(\text { bipy })_{3}{ }^{2+}$ is $2 \cdot 133(7) \AA$. In the tris(ethylenediamine) complex ion, the $\mathrm{N}-\mathrm{Cu}-\mathrm{N}^{\prime}$ angle for two nitrogens of the same ligand molecule is $80.9^{\circ}$. In the bipyridyl complex, the angle $\mathrm{N}(1)-\mathrm{Cu}-$ $N(4)$ involving the ligand molecule with two nitrogen atoms at equal distances from the copper(II) ion is $80 \cdot 4(3)^{\circ}$. The angle $\mathrm{N}(3)-\mathrm{Cu}-\mathrm{N}(6)$, which involves an intermediate lengthening of one of the $\mathrm{Cu}-\mathrm{N}$ bonds, is significantly less at $78 \cdot 2(3)^{\circ}$, and for the angle $\mathrm{N}(2)$--$\mathrm{Cu}-\mathrm{N}(5)$, involving the very long $\mathrm{Cu}-\mathrm{N}(5)$ bond, the angle is further decreased to $73 \cdot 9(2)^{\circ}$. Other angles of the type $\mathrm{N}-\mathrm{Cu}-\mathrm{N}^{\prime}$ vary (Table 3) for nitrogen atoms mutually cis from $83 \cdot 6(3)$ to $101 \cdot 6(2)^{\circ}$, mean $94 \cdot 5^{\circ}$. In the case of $\mathrm{Cu}(\mathrm{en})_{3}{ }^{2+}$, angles of this type were either $92.8^{\circ}$ for atoms related by the three-fold rotation axis, or $94.2^{\circ}$ for the other cis-angles. The angles $\mathrm{N}-\mathrm{Cu}^{-} \mathrm{N}^{\prime}$ for mutually trans nitrogen atoms range from $165 \cdot 6(2)$ to $174 \cdot 8(2)^{\circ}$.

Results from other structural studies involving the bipyridyl ligand and the copper(II) ion may also be compared. In bisnitrito-( $2,2^{\prime}$-bipyridyl)copper(II), $\mathrm{Cu}-\mathrm{N}$ is $1.98 \AA$, the angle $\mathrm{N}^{-} \mathrm{Cu}^{-} \mathrm{N}^{\prime}$ being $81 \cdot 3^{\circ} ;{ }^{16}$ $\mathrm{Cu}-\mathrm{N}$ bond lengths are $1 \cdot 96-2 \cdot 10 \AA$ with $\mathrm{N}-\mathrm{Cu}^{-} \mathrm{N}^{\prime} 82^{\circ}$ in $\left[\mathrm{Cu}(\text { bipy })_{2} \mathrm{I}\right] \mathrm{I}^{17} \mathrm{Cu}-\mathrm{N} 1.998 \AA$ in Cu (hfacac) $)_{2}$ (bipy) ${ }^{18}$ and $\mathrm{Cu}-\mathrm{N} 1 \cdot 98-2 \cdot 10 \AA$ and $\mathrm{N}-\mathrm{Cu}-\mathrm{N}^{\prime} 81 \cdot 1$ and $80 \cdot 3^{\circ}$ in $\left[\mathrm{Cu}(\text { bipy })_{2}(\mathrm{ONO})\right] \mathrm{NO}_{3}{ }^{19}$

The configurations of the ligands themselves are as expected from earlier results on uncomplexed $2,2^{\prime}$-bipyridyl, ${ }^{20}$ which show mean $\mathrm{C}-\mathrm{N}$ bond lengths to be ${ }_{1} \cdot 36 \AA$, and mean $\mathrm{C}-\mathrm{C}$ bond lengths in the rings to be $1.39 \AA$. The $\mathrm{C}-\mathrm{C}$ bond length between the rings is $1.50 \AA$. In the present study the mean $\mathrm{C}-\mathrm{N}$ bond length is $1 \cdot 35(1) \AA$, and mean $C-C$ bond length in the rings $1 \cdot 40(2) \AA$. The largest spread of values and the largest standard deviations are found in the $\mathrm{N}(3), \mathrm{N}(6)$ ligand system. Inter-ring $\mathrm{C}-\mathrm{C}$ bond lengths average $\mathrm{l} \cdot 48(2) \AA$.

Best least-squares planes through selected sets of atoms were calculated, with the copper(iI) ion given a weight of five relative to carbon and nitrogen atoms. The individual pyridine rings are satisfactorily planar, while the bipyridyl ligands are not. The dihedral angle between the pyridine rings of the $\mathrm{N}(1), \mathrm{N}(4)$ ligand is $13 \cdot 6^{\circ}$ and for the $\mathrm{N}(3), \mathrm{N}(6)$ ligand is $11 \cdot 2^{\circ}$. The $\mathrm{N}(2), \mathrm{N}(5)$ ligand, with the abnormally long $\mathrm{Cu}-\mathrm{N}(5)$ distance, exhibits a dihedral angle between the two pyridine rings of $31 \cdot 3^{\circ}$. The first two values must be considered normal in view of other results from copper-(II)-bipyridyl systems of $c a .11^{\circ} .17,19$ Planar bipyridyl ligands are also found in copper(II) systems. ${ }^{16,17}$ It appears from this that the $\mathrm{Cu}^{-} \mathrm{N}(5)$ bond has been abnormally lengthened and the $N(5)$ pyridine group twisted away from the copper(II) ion. For the $\mathrm{N}(1), \mathrm{N}(4)$ ligand system as a whole, the maximum deviation of a ring atom from the best plane through the $\mathrm{N}(1)$ pyridine ring is $0.005 \AA$, with the copper(II) ion $0.15 \AA$ out of this plane, with corresponding values of 0.02 and $-0.45 \AA$ for the $\mathrm{N}(4)$ half of this ligand. In the $\mathrm{N}(2), \mathrm{N}(5)$ ligand system, there are corresponding values of 0.004 A maximum deviation and $0.001 \AA$ copper displacement for the $\mathrm{N}(2)$ ring, and 0.009 and $1.52 \AA$ for the $\mathrm{N}(5)$ ring; in the $\mathrm{N}(3), \mathrm{N}(6)$ system there are values of $0.010 \AA$ maximum deviation and $0.09 \AA$ copper displacement for the $\mathrm{N}(3)$ ring and 0.008 and $0.61 \AA$ for the $\mathrm{N}(6)$ ring. The least-squares best planes through copper and each bipyridyl ligand were also calculated, and the dihedral angles between these planes were $119^{\circ}$ between the system involving Cu and the $\mathrm{N}(1), \mathrm{N}(4)$ ring system and the $\mathrm{Cu}-\mathrm{N}(2)-\mathrm{N}(5)$ system, $96^{\circ}$ between the $\mathrm{Cu}-\mathrm{N}(1)-\mathrm{N}(4)$ system and the $\mathrm{Cu}-\mathrm{N}(3)-\mathrm{N}(6)$ system, and $87^{\circ}$ between the $\mathrm{Cu}-\mathrm{N}(2)-\mathrm{N}(5)$ system and the $\mathrm{Cu}-\mathrm{N}(3)-\mathrm{N}(6)$ system.

The results for the perchlorate anions are also satis-

[^3]factory, despite the disorder found to be present in one of the ions. The mean for all the $\mathrm{Cl}-\mathrm{O}$ bond lengths is $1 \cdot 43 \AA$, and for all tetrahedral angles $109 \cdot 4^{\circ}$ for the disordered $\mathrm{Cl}(1)$ perchlorate ion and $109.5^{\circ}$ for the $\mathrm{Cl}(2)$ perchlorate ion. The bond length values are to be compared with those for the $\mathrm{Cl}-\mathrm{O}$ bond in the perchlorate ion in $\mathrm{HClO}_{4}, \mathrm{H}_{2} \mathrm{O}$ of $1 \cdot 43 \AA .{ }^{21}$

Table 5
Root-mean-square displacements $(\AA)$ on the principal axes of thermal ellipsoids for anisotropically refined atoms

| Atom | Axis (1) | Axis (2) | Axis (3) |
| :--- | :---: | :---: | :---: |
| CuII | 0.17 | 0.20 | 0.24 |
| $\mathrm{~N}(1)$ | 0.20 | 0.21 | 0.23 |
| $\mathrm{~N}(2)$ | 0.19 | 0.21 | 0.23 |
| $\mathrm{~N}(3)$ | 0.18 | 0.22 | 0.28 |
| $\mathrm{~N}(4)$ | 0.20 | 0.21 | 0.24 |
| $\mathrm{~N}(5)$ | 0.20 | 0.24 | 0.26 |
| $\mathrm{~N}(6)$ | 0.19 | 0.23 | 0.26 |

The root-mean-square displacements along the principal axes of the thermal ellipsoids of the copper(in) ion and the six co-ordinating nitrogen atoms are given in Table 5. The orientations of these ellipsoids can be seen in Figure 1, and there is little evidence for any abnormal vibration along the directions of the coppernitrogen bonds, such as would have been expected had there been a tendency toward a dynamic Jahn-Teller distortion, as has been suggested for this complex in earlier work. ${ }^{7,9}$ Thus, it would seem unlikely that the static distortion found in the present work would be converted to a purely dynamic Jahn-Teller distortion at slightly higher temperatures.

There is no apparent reason for the inequality of the bond lengths for the long $\mathrm{Cu}-\mathrm{N}$ bonds. A calculation designed to find significant intra- and inter-ionic contacts of the van der Waals type failed to reveal any crystal packing or steric effects which could explain the unusual distortion present in this complex. Although crystal packing must remain the most likely source for the inequality of the long bond lengths, the previously mentioned near equality of the average $\mathrm{Cu}^{-} \mathrm{N}$ bond length in this complex $[2 \cdot 133(7) \AA]$ and in the tris-(ethylenediamine)-complex $[2 \cdot 150(2) \AA]$ is very striking. Also, the two long $\mathrm{Cu}-\mathrm{N}$ bonds in $\left[\mathrm{Cu}(\text { phen })_{3}\right]^{2+}$, which are of equal length, are $2 \cdot 33(1) \AA,{ }^{10}$ and the mean of the two long bonds in $\left[\mathrm{Cu}(\text { bipy })_{3}\right]^{2+}$ (Table 3) is $2 \cdot 338(7) \AA$. This suggests that the extent of the unequal distortion of bond lengths may still be controlled by the electronic structure of the complex ion.

This work was supported by the Royal Norwegian Council for Scientific and Industrial Research (NTNF).
[2/788 Received, 6th April, 1972]

[^4]
[^0]:    ${ }^{4}$ T. S. Davis, J. P. Fackler, and M. J. Weeks, Inorg. Chem., 1968, 7, 1994.
    ${ }^{5}$ G. J. Palenik and M. Bartlett, Chem. Comm., 1970, 416.
    ${ }^{6}$ M. R. Truter and B. L. Vickery, J.C.S. (Dalton), 1972, 395.
    ${ }^{7}$ R. A. Palmer and T. S. Piper, Inorg. Chem., 1966, 5, 864.
    ${ }^{8}$ G. F. Kokoszka, C. W. Reimann, H. C. Allen, jun., and G. Gordon, Inorg. Chem., 1967, 6, 1657.

    9 M. Noack and G. Gordon, J. Chem. Phys., 1968, 48, 2689;
    M. Noack, G. F. Kokoszka, and G. Gordon, ibid., 1971, 54, 1342.
    ${ }^{10}$ Oren P. Anderson, to be published.
    ${ }^{11}$ ' International Tables for $X$-Ray Crystallography,' vol. II, Kynoch Press, Birmingham, 1962, p. 106.

[^1]:    12 W. H. Zachariasen, Acta Cryst., 1963, 16, 1139.
    ${ }^{13}$ Ref. 11, vol. III, 1962.

[^2]:    The final refinement steps were carried out in alternate full-matrix cycles, because of program limitations. In one
    ${ }^{14}$ D. T. Cromer and J. T. Waber, Acta Cryst., 1965, 18, 104.
    ${ }^{15}$ D. T. Cromer, Acta Cryst., 1965, 18, 17.

[^3]:    ${ }_{16}^{16}$ F. S. Stephens, J. Chem. Soc. (A), 1969, 2081.
    ${ }^{17}$ G. A. Barclay, B. F. Hoskins, and C. H. L. Kennard, J. Chem. Soc., 1963, 5691.
    ${ }_{18}$ M. V. Veidis, G. H. Schreiber, T. E. Grugh, and G. T. Palenik, J. Amer. Chem. Soc., 1969, 91, 1859.

[^4]:    19 I. M. Procter and F. S. Stephens, J. Chem. Soc. ( $A$ ), 1969, 1248.
    ${ }^{20}$ L. L. Merritt and E. D. Schroeder, Acta Cryst., 1956, 9, 801.
    ${ }^{21}$ Chem. Soc. Special Publ., No. 18, 1965, p. S8s.

