Transition-metal Complexes of NNN'N"'N"'-Hexamethyl-3,6-diazaoctane-1,8-diamine. Part II.¹ Zinc(μ), Cadmium(μ), and Mercurv(μ) Halides

By A. Cristini and G. Ponticelli,* Istituto Chimico Policattedra, Università di Cagliari, Via Ospedale 72, 09100 Cagliari, Italy

A series of compounds of the types $M(trien)X_2$ and $[M_2'(trien)X_4]$ (where trien = NNN'N''N'''N'''-hexamethyl-3,6-diazaoctane-1,8-diamine; $M' = Zn^{II}$; X = CI, Br, I; $M = Zn^{II}$; X = I; $M = Cd^{II}$; X = CI, Br, I; $M = Hg^{II}$; X = Cl, Br; M' = HgII; X = I) have been prepared and studied by means of i.r. and far-i.r. spectroscopy, conductivity and molecular weight measurements. Structures for these compounds are suggested.

By reaction of MX_2 salts (M = Zn, Cd, Hg; X = Cl, Br, I) with the ligand in methanol or in aqueous methanolic solution the complexes $M(trien)X_2$ (M = Cd; X = Cl, Br, I; M = Hg; X = Cl, Br; M = Zn; X = I) and $[M_2'(trien)X_4]$ (M' = Zn; X = Cl, Br, I; M' = Hg; X = I) were obtained. The analytical data and some physical properties are reported in the Table. All the compounds are colourless, consistent with a d^{10} configuration. They are generally soluble in CH₃OH, C₂H₅NO₂, less soluble in H₂O, CH₃CN, CH₃NO₂ and in higher alcohols and insoluble in non-polar solvents. The low conductivity values in C₂H₅NO₂ or in CH₃CN show that these complexes are non-electrolytes with the exception of [Zn(trien)I]I, which is a uni-univalent electrolyte. Molecular weight data show that they are monomeric materials. A solution of the mercury(II) iodide

 $(trien)X_4$ are clearly due to the Zn-X stretching vibrations, according to literature data for v(Zn-X) vibrations in tetrahedral complexes.²⁻⁴ The ratios $\nu(Zn-Br)$: ν (Zn-Cl) 0.74 and ν (Zn-I) : ν (Zn-Cl) 0.65 agree very well with the data of Clark.⁴ For the $[Zn_2(trien)X_4]$ compounds we suggest a structure involving the ligand acting as a bridge between two ZnX2 groups, with each zinc atom co-ordinated to two nitrogen atoms at each end of the ligand.

A formulation of the type $[Zn(trien)X][ZnX_3]$ or [Zn(trien)][ZnX₄] is ruled out for steric reasons and because bands are not present due to $[ZnX_4]^{2-}$ (277 and 130 cm⁻¹ for X = Cl; 209 and 199 cm⁻¹ for X = Br; 167 and 122 cm⁻¹ for X = I).⁵ [Zn(trien)I]I could have a five-co-ordinate structure, according to v(Zn-I).⁶ conductivity, and molecular weight data (Table).

Analytical, far-i.r. spectra data and some physical properties

Compound [Zn2(trien)Cl4]	M.p. °C 306 dec.	Found %				Required %						Far i.r. spectra			
		С 28·6	Н 5-8	N 11·1	X 27·8	C 28.6	H 6·0	N 11·1	X 28·2	М п,b 394	А <u>м</u> д. е 25 d	v(M-X) 339vs, 312vs	v(M−N) 206s	Other Bands 490w, 460m, 449sh, 389w, 112vsbr	
$[Zn_2(trien)Br_4]$	297 dec.	21.7	4 ·3	8.4	45.7	21.2	4.4	8.3	4 6·9	(503) d 550 (680) d	34 d	251vsbr, 225vs	192s	487vw, 455m, 447sh, 429sh, 392m, 361w, 159sh	
$[Zn_3(trien)I_4]$	324 dec.	17.3	3.2	6.2	58·3	16.6	3.5	6.4	58·4	()	2 0 ¢	240-200sbr	180s	493vw, 456m, 450sh, 428m, 392m,	
[Zn(trien)I]I	303	26.2	5.4	$10 \cdot 2$	46 ·1	26.2	5.2	10.2	46 ·2	292 (549·6) d	135 d	228s	198m	345w, 300w, 140s 493sh, 482s, 448m, 391m, 374w, 353w, 267w, 165m, 124w	
$[Cd(trien)Cl_3]H_3O$	21 2	33.5	7.0	13.0	16.6	33·4	7.5	12.9	16·4	388	-1	207vs	192sh	497vw, 465w, 448w, 397s, 377s, 355s,	
[Cd(trien)Br ₃]	218	28.7	6.3	11.1	31.5	28.7	6 ∙0	$11 \cdot 2$	31.8	(431.4) 487 (502.7)	2	161s	182sh	2045n 490sh, 465m, 440m, 394s, 379w, 350w, 339w. 220m	
[Cd(trien)I ₂]	227	24.2	5.3	9-5	42.8	24.1	5.1	9-4	42.6	597 (597·1)	7	140m	183s	494sh, 463m, 445s, 395s, 381m, 351m, 344sh, 309w, 261w, 225m, 201w, 160m	
[Hg(trien)Cl ₁]	135	28.7	$5 \cdot 9$	11.2		28.7	6 ·0	$11 \cdot 2$		487	7	195sbr	152s	485sh, 465m, 445w, 351vs, 267sh	
[Hg(trien)Br _s]	115	23.8	5 ·0	9-3		24.4	$5 \cdot 1$	9.5		(503-4) 555 (591-7)	17	143vs	143vs	347s, 337sh, 306vw, 263w, 225m, 202m, 190sh, 180m	
$[Hg_2(trien)I_4]$	198	12.5	2.4	4.7		12.6	2.6	4.9		824 (1139·5) 888 d	42 86 d	166vs	139vs	2000, 2001	

trien

• Calculated value in parentheses. • In ni 80; MeCN, 140. • In MeCN. • In MeNO₂. $\frac{b}{1}$ In nitroethane unless given otherwise. • For solutions ca. 5×10^{-3} M; [Bun₄N]Br under the same conditions: MeNO₂, 93; EtNO₃

derivative has a conductivity approaching that of a 1:1 electrolyte, which is probably due to partial ionisation of the Hg-I bond.

RESULTS AND DISCUSSION

The strong bands present in the i.r. spectra for chloro-, bromo- and iodo-derivatives of general formula [Zn₂-

¹ Part I, A. Cristini, G. Ponticelli, and A. Diaz, J.C.S. Dalton, 1972, 1361.

² D. De Filippo, F. Devillanova, C. Preti, and G. Verani,

J. Chem. Soc. (A), 1971, 1465. ³ G. E. Coates and D. Ridley, J. Chem. Soc. (A), 1964, 166; J. R. Ferraro, W. Wozniak, and G. Roch, Ricerca sci., 1968, **38**, 433.

The cadmium complexes, by conductivity and molecular weight data are formulated as $[Cd(trien)X_2]$, since they are monomeric non-electrolytes. The chloroderivative contains a water molecule that is lost at 110 °C in vacuo without decomposition.

470w, 409vw, 260vw, 236vw, 217vw

In the far-i.r. spectra of the cadmium derivatives the v(Cd-X) are due to terminal halides.⁶ The ratio

3. 635.

⁴ R. J. H. Clark and C. S. Williams, Inorg. Chem., 1965, 4, 350.

⁶ G. B. Deacon, J. H. S. Green, and F. B. Taylor, Austral. J. Chem., 1967, 20, 2069. ⁶ J. E. Douglas and C. J. Wilkins, Inorg. Chim. Acta, 1969

v(Cd-Br): v(Cd-Cl) 0.78 agrees with the literature data for six-co-ordinate compounds.⁴ We suggest that these compounds have a six-co-ordinate structure.

As far as the mercury derivatives are concerned the chloro-, and bromo-derivatives seem to be six-coordinate according to far-i.r. spectra,⁶ conductivity, and molecular weight data. The ratio v(Hg-Br) : v(Hg-Cl)0.73 agrees well with the literature data for mercury six-co-ordinate complexes.⁴ The v(Hg-I) vibration in the [Hg₂(trien)I₄] complex appears at a similar frequency in tetrahedral complexes.² This compound [Hg₂-(trien)I₄] is therefore assigned the same structure as the zinc compound [Zn₂(trien)I₄]. Alternative formulations such as [Hg(trien)I][HgI₃] or [Hg(trien)][HgI₄] do not agree with the band frequencies of the (Hg-I) vibration (HgI₄²- 126, 41, 35 cm⁻¹; ⁷ HgI₃⁻ 150, 133, 90 cm⁻¹⁸).

EXPERIMENTAL

Preparation of $M(trien)X_2$ and $M_2(trien)X_4$ Compounds.— To a hot solution of MX_2 (15 mmol) in CH_3OH or in methanolic aqueous solution were added trien ⁹ (17 mmol) in the same solvent and the mixture was heated for 5 min. The complexes were separated out with addition of isopropyl alcohol or acetone after cooling the solution.

Preparation of [Zn(trien)I]I.—Trien (16 mmol) was added to a hot methanolic aqueous solution of $ZnCl_2$ (15 mmol). To the resulting solution was added KI (30 mmol) dissolved in aqueous methanol. After the solution was concentrated

⁷ J. A. W. Dalziel, M. J. Hitch, and S. D. Ross, Spectrochim. Acta, 1969, **25**A, 1055.

and cooled the white complex separated out and was recrystallized from methanol.

Infrared Spectra.—All compounds were studied in the region 4000—100 cm⁻¹ with Perkin-Elmer 457, 225 and FIS 3 Spectrometers. Atmospheric water was removed from the spectrophotometer housing with a stream of dry nitrogen. The i.r. spectra in the rock salt region were recorded on Nujol mulls supported between KBr plates and in the regions 2820—2760 and 1500—1300 cm⁻¹ on hexa-chlorobutadiene mulls. The far-i.r. spectra were measured on Nujol mulls between thin polyethylene sheets.

Conductivity Measurements.—Molar conductivities were measured in dehydrated solvents at 25 ± 0.1 °C using a W.T.W. model LBR/B conductance bridge. The concentration of the solutions was *ca*. 5×10^{-3} M in CH₃NO₂, C₂H₅NO₂ or in CH₃CN, but no substantial differences in the conductivity values were observed in the concentration range 5×10^{-2} — 5×10^{-3} M.

Molecular Weight Determinations.—Molecular weight data were performed by a Hitachi–Perkin-Elmer 115 Osmometer. The calibration was carried out with 5×10^{-3} — 10^{-2} M solutions of benzil in C₂H₅NO₂ or in CH₃CN. The concentration of the solutions of the complexes was *ca*. 5×10^{-3} M.

We thank Prof. M. Ciampolini and Prof. C. Preti for helpful suggestions and for the far-i.r. spectra.

[2/856 Received, 17th April, 1972]

⁸ M. A. Hooper and D. W. James, Austral. J. Chem., 1971, 24, 1331.
⁹ R. Barbucci, G. Ponticelli, and P. Paoletti, J. Chem. Soc. (A), 1971, 1637.