Crystal Structure of Di- μ-phenyl-bis(dimethylaluminium)

By J. F. Malone and W. S. McDonald, Department of Inorganic and Structural Chemistry, The University, Leeds LS2 9JT

Crystals of the title compound are triclinic. space group $P_{\overline{1}}$. with three dimeric molecules in the reduced cell of dimensions $a=12 \cdot 313, b=12 \cdot 755, c=9 \cdot 352 \AA, \alpha=102 \cdot 8, \beta=91 \cdot 6, \gamma=61 \cdot 3^{\circ}$. The structure was determined by Patterson and Fourier methods from 3126 visually estimated photographic data, and refined by leastsquares to $R 10 \cdot 6 \%$. One third of the molecules lie on centres of symmetry with the Al-Cl-Al-C ring necessarily planar, and the remainder are in general positions, with the central ring ' folded ' by 14° about the Al \cdots Al line. $\mathrm{Al} \cdots$ Al is $2 \cdot 687$, Al-C(bridge) $2 \cdot 144$, and $\mathrm{Al}-\mathrm{C}$ (terminal) $1.977 \AA$; the $\mathrm{Al}-\mathrm{C}-\mathrm{Al}$ bridge angle is $77 \cdot 6^{\circ}$.

We have shown ${ }^{\mathbf{1}}$ that triphenylaluminium is dimeric with $\mathrm{Al}-\mathrm{C}-\mathrm{Al}$ bridges which may be formed by twoelectron three-centre bonds similar to those in trimethylaluminium dimer. Examination ${ }^{2}$ of the ${ }^{1} \mathrm{H}$ n.m.r. spectra of mixtures of composition $\mathrm{Me}_{6-x} \mathrm{Ph}_{x} \mathrm{Al}_{2}$ showed that the phenyl groups preferentially occupy the bridging positions. Similar experiments ${ }^{3}$ on mixtures of trimethylaluminium and tri(cyclopropyl)aluminium show that the cyclopropyl group displaces methyl from the bridge position. The present analysis was undertaken to confirm the preference of phenyl in the bridging position; a preliminary account has appeared. ${ }^{4}$

EXPERIMENTAL

Crystal Data.- $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{Al}_{2}, \quad M=268 \cdot 3$, Triclinic, $a=$ $12.313 \pm 0.02, b=12.755 \pm 0.02, c=9.352 \pm 0.02 \AA, \alpha=$ $102.8 \pm 0.3, \quad \beta=91.6 \pm 0.03, \quad \gamma=61.3 \pm 0.2^{\circ}, \quad U=$ $1250 \cdot 9 \AA^{3}, Z=3, D_{\mathrm{c}}=1 \cdot 07, F(000)=432$. Space group $P \overline{1}$. $\mathrm{Cu}-K_{\alpha}$ radiation, $\lambda=1.5418 \AA ; \mu\left(\mathrm{Cu}-K_{\alpha}\right)=14 \mathrm{~cm}^{-1}$.

Structure Determination.-Cell dimensions were determined from zero-level precession and Weissenberg photographs (Mo- $K_{\alpha}, \lambda=0.7107 \AA$), and the dimensions given define the reduced cell according to the convention adopted in Crystal Data. ${ }^{5}$ The density of the crystals was not determined because of their very high reactivity with air, but with $Z=3$ the volume per molecule is $417 \AA^{3}$, while interpolation between the values for $\mathrm{Me}_{6} \mathrm{Al}_{2}\left(270 \AA^{3}\right.$) and $\mathrm{Ph}_{6} \mathrm{Al}_{2}\left(718 \AA^{3}\right)$ indicates a molecular volume of $419 \AA^{3}$.

The compound was prepared by reaction of aluminium with a mixture of dimethyl- and diphenyl-mercury in toluene solution. Crystals were protected by a coating of grease, transferred under nitrogen and sealed in soft glass capillaries. The crystal used for the recording of the intensity data was rotated about the [101] axis, and equiinclination Weissenberg photographs"of layers $h-l=0-13$ were taken.

The structure was solved from the Patterson synthesis and successive Fourier syntheses, yielding a structure conforming to space group Pl. Least-squares refinement of co-ordinates, isotropic temperature factors, and 14 layer scale factors gave $R \mathbf{1 5 \cdot 9} \%$, and allowance for anisotropic vibrations reduced R to 11.9%. In the block-diagonal

[^0]approximations used here satisfactory convergence was obtained although the full matrix would be singular. A difference-Fourier synthesis computed at this stage showed peaks close to expected positions for all 33 hydrogen atoms. The 15 phenyl hydrogens were included in calculated positions and the 18 methyl hydrogens were included in their observed positions; after further least-squares refinement in which only the hydrogen positions and isotropic temperature factors were allowed to vary, R was reduced to $\mathbf{1 0 . 6 \%}$. The least-squares program of Smith and Cruickshank was used; scattering factors for aluminium and carbon were taken from ref. 6 and those for bonded hydrogen from ref. 7. The weighting scheme in the final cycles was $w=1 /\left(5+F_{0}+0.04 F_{0}{ }^{2}+0.002 F_{0}{ }^{3}\right)$. The final co-ordinate and vibration parameters, with their estimated standard deviations, are given in Table 1. Observed and calculated structure factors are listed in Supplementary Publication No. SUP 20530 (19 pp., 1 microfiche \dagger).

discussion

The structure analysis shows that the dimeric molecules have the phenyl groups in the bridging positions.

Figure 1 Molecule (2) showing atom numbering
One third of the molecules lie on centres of symmetry and the remainder occupy general positions. The asymmetric unit is therefore one and one half molecules. Figure 1 shows the molecule which occupies a general position [molecule (2)], and the atom numbering is given. The centrosymmetric molecule [molecule (1)] is similar except that its central ring is necessarily planar. Figure 2 gives an indication of the molecular packing

[^1]and the bond lengths and angles with their estimated standard deviations are given in Table 2.

Corresponding bond lengths in the two molecules do not differ significantly, and are similar to those in triphenylaluminium. The $\mathrm{Al}-\mathrm{C}$ (bridging) distances range from $2 \cdot 128(6)$ to $2 \cdot 163(6) \AA$. Although these extreme values differ by $c a .3 \sigma$ from the mean of $2 \cdot 144 \AA$ it is unlikely that the differences are real. The mean terminal $\mathrm{Al}-\mathrm{C}$ bond length is $1.977 \AA$, with the $\mathrm{Al}-\mathrm{C}-\mathrm{Al}$ bridge angle $77 \cdot 6^{\circ}$. As in triphenylaluminium the

Table 1
Final atomic parameters with estimated standard deviations in parentheses
(a) Fractional co-ordinates of the heavy atoms

Atom	x	y	z
$\mathrm{Al}(1)$	0-1047(2)	-0.0230(2)	-0.0728(2)
$\mathrm{Al}(2)$	$0 \cdot 2386$ (2)	$0 \cdot 4038(2)$	$0 \cdot 3987(2)$
$\mathrm{Al}(3)$	$0 \cdot 4502(2)$	$0 \cdot 2006$ (2)	$0 \cdot 4157(2)$
$\mathrm{C}(1)$	$0 \cdot 0767$ (6)	-0.1371(5)	$0 \cdot 0400(7)$
$\mathrm{C}(2)$	$0 \cdot 0819(7)$	-0.2446(5)	$-0.0542(8)$
C(3)	$0 \cdot 1427$ (8)	-0.3585(6)	-0.0197(10)
C(4)	0.1993(8)	$-0.3703(7)$	$0 \cdot 1099(12)$
$\mathrm{C}(5)$	$0 \cdot 1967$ (8)	-0.2706(9)	$0 \cdot 2041(11)$
C (6)	$0 \cdot 1340(7)$	-0.1531(7)	$0 \cdot 1737(8)$
C(7)	$0 \cdot 1392(10)$	-0.1012(7)	-0.2846(9)
$\mathrm{C}(8)$	0.2179(8)	0.0299(7)	$0.0332(11)$
C(9)	$0 \cdot 4085$ (6)	$0.3164(5)$	$0 \cdot 2621$ (7)
$\mathrm{C}(10)$	$0 \cdot 4768(7)$	$0 \cdot 3818(6)$	$0 \cdot 2753(8)$
C(11)	$0 \cdot 5324(8)$	$0 \cdot 3885(7)$	$0 \cdot 1535(9)$
$\mathrm{C}(12)$	$0 \cdot 5238(8)$	$0 \cdot 3300$ (8)	$0.0152(8)$
$\mathrm{C}(13)$	$0 \cdot 4592(7)$	$0 \cdot 2650$ (6)	$-0.0047(7)$
C (14)	$0 \cdot 4028(6)$	$0 \cdot 2577$ (5)	$0 \cdot 1180(7)$
$\mathrm{C}(15)$	$0 \cdot 2696$ (6)	$0 \cdot 2689$ (5)	$0 \cdot 5214(7)$
C (16)	$0 \cdot 2106(7)$	$0 \cdot 1995(7)$	$0 \cdot 4682(9)$
$\mathrm{C}(17)$	$0 \cdot 1404$ (8)	$0 \cdot 1772$ (8)	$0.5633(11)$
C(18)	$0 \cdot 1295(8)$	$0 \cdot 2256$ (7)	0.7141 (10)
$\mathrm{C}(19)$	$0 \cdot 1866$ (7)	$0 \cdot 2932$ (7)	$0 \cdot 7702(9)$
$\mathrm{C}(20)$	$0 \cdot 2545$ (6)	$0 \cdot 3160$ (6)	$0 \cdot 6757(7)$
C(21)	$0.5101(8)$	$0 \cdot 0319(6)$	$0 \cdot 2978(9)$
$\mathrm{C}(22)$	$0.5517(8)$	0.2421 (9)	$0 \cdot 5633(9)$
C(23)	$0 \cdot 1039(7)$	$0 \cdot 4153(7)$	$0 \cdot 2722(10)$
C(24)	$0 \cdot 2276(9)$	0.5528(6)	$0.5357(9)$

(b) Anisotropic temperature factors $\left(\AA^{2} \times 10^{3}\right)$ of the heavy atoms, in the form exp $\left[-2 \pi^{2}\left(U_{11} h^{2} a^{* 2}+U_{22^{2}} k^{2} b^{* 2}+U_{33^{2}} c^{* 2}\right.\right.$ $\left.\left.+2 U_{23} k l b^{*} c^{*}+2 U_{31} l h c^{*} a^{*}+2 U_{12} h k a^{*} b^{*}\right)\right]$

Atom	U_{11}	U_{22}	U_{33}	$2 U_{23}$	$2 U_{31}$	$2 U_{12}$
$\mathrm{Al}(1)$	$44(1)$	$33(1)$	$41(1)$	$6(1)$	$8(2)$	$-33(1)$
$\mathrm{Al}(2)$	$41(1)$	$34(1)$	$32(1)$	$12(1)$	$1(2)$	$-29(1)$
$\mathrm{Al}(3)$	$40(1)$	$45(1)$	$25(1)$	$19(1)$	$-2(2)$	$-29(1)$
$\mathrm{C}(1)$	$43(3)$	$39(3)$	$41(4)$	$18(5)$	$-12(6)$	$-27(5)$
$\mathrm{C}(2)$	$65(4)$	$33(3)$	$50(4)$	$10(5)$	$22(7)$	$-32(6)$
$\mathrm{C}(3)$	$80(6)$	$42(3)$	$78(6)$	$28(7)$	$30(9)$	$-32(7)$
$\mathrm{C}(4)$	$53(5)$	$68(5)$	$123(8)$	$79(10)$	$-6(10)$	$-47(8)$
$\mathrm{C}(5)$	$52(5)$	$108(6)$	$97(7)$	$120(11)$	$-52(9)$	$-79(9)$
$\mathrm{C}(6)$	$57(4)$	$83(5)$	$44(4)$	$52(7)$	$-40(7)$	$-70(7)$
$\mathrm{C}(7)$	$138(8)$	$57(4)$	$47(5)$	$-10(7)$	$71(10)$	$-66(10)$
$\mathrm{C}(8)$	$63(5)$	$72(5)$	$117(8)$	$46(10)$	$-46(1 \theta)$	$-82(8)$
$\mathrm{C}(9)$	$47(4)$	$50(3)$	$28(3)$	$12(5)$	$-8(5)$	$-52(5)$
$\mathrm{C}(10)$	$57(4)$	$62(4)$	$42(4)$	$25(6)$	$-9(6)$	$-73(7)$
$\mathrm{C}(11)$	$67(5)$	$71(4)$	$61(5)$	$46(8)$	$-7(8)$	$-74(8)$
$\mathrm{C}(12)$	$64(5)$	$85(5)$	$42(5)$	$43(8)$	$17(8)$	$-53(8)$
$\mathrm{C}(13)$	$60(4)$	$62(4)$	$29(4)$	$21(6)$	$6(6)$	$-28(7)$
$\mathrm{C}(14)$	$53(4)$	$45(3)$	$26(3)$	$8(5)$	$-4(6)$	$-41(5)$
$\mathrm{C}(15)$	$46(4)$	$52(3)$	$32(3)$	$23(5)$	$4(6)$	$-53(6)$
$\mathrm{C}(16)$	$71(5)$	$64(4)$	$61(5)$	$37(7)$	$-19(8)$	$-86(8)$
$\mathrm{C}(17)$	$73(6)$	$93(6)$	$99(7)$	$97(10)$	$-40(10)$	$-110(10)$
$\mathrm{C}(18)$	$54(5)$	$78(5)$	$80(6)$	$72(9)$	$7(9)$	$-52(8)$
$\mathrm{C}(19)$	$58(5)$	$65(4)$	$50(5)$	$45(7)$	$24(8)$	$-25(7)$
$\mathrm{C}(20)$	$45(4)$	$52(3)$	$36(4)$	$21(6)$	$13(6)$	$-26(6)$
$\mathrm{C}(21)$	$86(6)$	$43(3)$	$59(5)$	$6(7)$	$14(9)$	$-8(7)$
$\mathrm{C}(22)$	$60(5)$	$121(7)$	$48(5)$	$53(9)$	$-40(8)$	$-91(10)$
$\mathrm{C}(23)$	$51(4)$	$74(5)$	$76(6)$	$57(8)$	$-40(8)$	$-48(7)$
$\mathrm{C}(24)$	$114(7)$	$47(4)$	$58(5)$	$-7(7)$	$18(9)$	$-75(8)$

Table 1 (Continued)
(c) Fractional co-ordinates and isotopic temperature factors $\left(\AA^{2}\right)$ in the form $\exp \left[-8 \pi^{2} U_{1 \text { iso }} \sin ^{2} \theta / \lambda^{2}\right]$ for the hydrogen atoms. Each hydrogen has the number of its attached carbon, with methyl hydrogens distinguished by A, B, or C

Atom	x	y	z	$U_{\text {iso }}$
$\mathrm{H}(2)$	0.037(9)	$-0 \cdot 235(8)$	$-0.159(10)$	0.16(3)
$\mathrm{H}(3)$	$0 \cdot 131$ (8)	$-0.437(7)$	$-0.100(9)$	$0 \cdot 12(3)$
H(4)	$0 \cdot 249$ (8)	$-0.458(7)$	$0 \cdot 144$ (9)	$0 \cdot 12(3)$
$\mathrm{H}(5)$	$0 \cdot 212(10)$	$-0.267(8)$	$0 \cdot 289(10)$	$0 \cdot 12(4)$
$\mathrm{H}(6)$	$0 \cdot 124(6)$	$-0.084(6)$	$0 \cdot 245$ (8)	$0 \cdot 09(2)$
H(7A)	$0 \cdot 055$ (12)	$-0.101(10)$	$-0.301(13)$	$0 \cdot 17(5)$
$\mathrm{H}(7 \mathrm{~B})$	$0 \cdot 225$ (5)	-0.213(4)	$-0.304(6)$	0.08(1)
H (7C)	$0 \cdot 179(13)$	-0.042(11)	$-0.327(13)$	$0 \cdot 19$ (5)
$\mathrm{H}(8 \mathrm{~A})$	$0 \cdot 163(10)$	$0 \cdot 092(8)$	$0 \cdot 132(11)$	$0 \cdot 21$ (4)
$\mathrm{H}(8 \mathrm{~B})$	$0 \cdot 309(10)$	$-0.055(9)$	$0 \cdot 072(12)$	$0 \cdot 21$ (4)
$\mathrm{H}(8 \mathrm{C})$	$0 \cdot 226$ (7)	$0 \cdot 103(7)$	-0.016(8)	$0 \cdot 11$ (3)
$\mathrm{H}(10)$	$0 \cdot 472(10)$	0.428(9)	$0 \cdot 355(11)$	$0 \cdot 10$ (4)
H(11)	$0 \cdot 577(9)$	$0 \cdot 442$ (8)	$0 \cdot 171(10)$	$0 \cdot 12(3)$
$\mathrm{H}(12)$	$0 \cdot 558$ (8)	$0 \cdot 349$ (7)	-0.066(9)	$0 \cdot 13(3)$
$\mathrm{H}(13)$	$0 \cdot 451(10)$	$0 \cdot 212$ (8)	-0.114(10)	$0 \cdot 12(4)$
H(14)	0.340(7)	$0 \cdot 219$ (6)	$0 \cdot 094$ (8)	$0 \cdot 07(2)$
$\mathrm{H}(16)$	0.246(9)	$0 \cdot 139(8)$	$0 \cdot 371(10)$	0.13(4)
H(17)	$0 \cdot 097$ (6)	$0 \cdot 125(6)$	$0.513(7)$	$0.09(2)$
$\mathrm{H}(18)$	$0.067(10)$	$0 \cdot 209(9)$	$0 \cdot 795(11)$	$0 \cdot 13(4)$
$\mathrm{H}(19)$	$0 \cdot 174(9)$	0.318(8)	$0 \cdot 882(10)$	$0 \cdot 16(3)$
$\mathrm{H}(20)$	$0 \cdot 294$ (5)	$0 \cdot 371$ (5)	$0 \cdot 730$ (6)	$0.05(2)$
$\mathrm{H}(21 \mathrm{~A})$	$0 \cdot 448(13)$	$0.021(11)$	$0 \cdot 270$ (15)	$0 \cdot 14$ (5)
$\mathrm{H}(21 \mathrm{~B})$	$0.583(11)$	$0 \cdot 006(9)$	$0 \cdot 227(12)$	$0 \cdot 14$ (4)
$\mathrm{H}(21 \mathrm{C})$	$0 \cdot 545(5)$	-0.027(4)	$0 \cdot 360$ (6)	$0 \cdot 07(1)$
H (22A)	$0 \cdot 478(10)$	$0 \cdot 345(9)$	$0 \cdot 604(10)$	$0 \cdot 20$ (4)
$\mathrm{H}(22 \mathrm{~B})$	$0 \cdot 633(10)$	$0 \cdot 224(9)$	$0 \cdot 530(11)$	0.08(4)
$\mathrm{H}(22 \mathrm{C})$	$0 \cdot 610(9)$	$0 \cdot 152(8)$	$0 \cdot 652(10)$	$0 \cdot 27(4)$
$\mathrm{H}(23 \mathrm{~A})$	$0 \cdot 138(7)$	0.321 (6)	$0 \cdot 205(8)$	$0 \cdot 11(2)$
$\mathrm{H}(23 \mathrm{~B})$	$0 \cdot 104(6)$	0.477(6)	$0 \cdot 218(8)$	$0 \cdot 09$ (2)
$\mathrm{H}(23 \mathrm{C})$	$0 \cdot 010(13)$	$0 \cdot 442$ (12)	$0.319(15)$	$0 \cdot 28(6)$
$\mathrm{H}(24 \mathrm{~A})$	$0 \cdot 298$ (7)	$0 \cdot 549$ (7)	$0.589(8)$	$0 \cdot 12(3)$
H(24B)	$0 \cdot 128(8)$	$0 \cdot 595(8)$	$0.612(10)$	$0 \cdot 08$ (3)
$\mathrm{H}(24 \mathrm{C})$	$0 \cdot 203(12)$	0.616(19)	$0 \cdot 467(12)$	0.22(5)

bridging phenyl groups are perpendicular to the central ring (or normal to the $\mathrm{Al} \cdots \mathrm{Al}$ vector). The equations of mean planes are given in Table 3, together with some dihedral angles.

The most remarkable feature of the structure is the presence of two kinds of molecule differing by a folding of the central ring. Molecule (l) of crystallographic symmetry $\overline{1}\left(C_{i}\right)$ closely approximates to $m m m\left(D_{2 h}\right)$ symmetry. Molecule (2) has no crystallographically imposed symmetry but closely approximates to $m m 2$ $\left(C_{2 v}\right)$. The hydrogen atoms also conform to these symmetries to within the accuracy with which we could locate them. This may be seen for molecule (1) in Figure 3 which shows the hydrogen atoms; the hydrogens were found in corresponding positions in molecule (2). The lowering of the mmm symmetry of molecule (l) to $m m 2$ in molecule (2) results from a folding by 14° about the $\mathrm{Al} \cdots \mathrm{Al}$ line, accompanied by a rotation of the AlMe_{2} groups so as to preserve approximate equality of the C (terminal) $-\mathrm{Al}-\mathrm{C}$ (bridge) angles.

We have attempted to understand the comparable stabilities of both planar and folded molecules by calculating intramolecular $\mathrm{H} \cdots \mathrm{H}$ distances as a function of the fold angle, for an idealised molecule of $m m 2$ symmetry. It was assumed that the ratio of the angle by which the AlMe_{2} groups are rotated to the angle of fold is constant and equal to that found in the folded molecule, and $\mathrm{C}-\mathrm{H}$ distances were given their standard values.

Figure 2 A projection of the unit cell down the c axis

Table 2
Bond lengths (\AA) and bond angles ($\left(^{\circ}\right.$) with estimated standard deviations in parentheses
(a) Distances

Molecule (1)	
$\mathrm{Al}^{2}(1)-\mathrm{Al}\left(1^{\prime}\right)$	$2 \cdot 690(4)$
$\mathrm{C}(1)-\mathrm{C}\left(1^{\prime}\right)$	$3 \cdot 331(12)$
$\mathrm{Al}(1)-\mathrm{C}(1)$	$2 \cdot 129(6)$
$\mathrm{Al}(1)-\mathrm{C}\left(1^{\prime}\right)$	$2 \cdot 152(6)$
$\mathrm{Al}(1)-\mathrm{C}(7)$	$1.965(9)$
$\mathrm{Al}(1)-\mathrm{C}(8)$	$1.978(9)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.429(9)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.388(10)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.382(13)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.364(13)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.411(12)$
$\mathrm{C}(6)-\mathrm{C}(1)$	$1.423(10)$
$\mathrm{C}(2)-\mathrm{H}(2)$	$1.12(9)$
$\mathrm{C}(3)-\mathrm{H}(3)$	$1 \cdot 18(8)$
$\mathrm{C}(4)-\mathrm{H}(4)$	$1.10(8)$
$\mathrm{C}(5)-\mathrm{H}(5)$	$0.81(9)$
$\mathrm{C}(6)-\mathrm{H}(6)$	$0.93(7)$
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	$1.04(12)$
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	$1.27(5)$
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{C})$	$1.21(12)$
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	$1.06(10)$
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	$1.24(11)$
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	$1.18(7)$

(b) Angles

$\mathrm{C}(1)-\mathrm{Al}(1)-\mathrm{C}\left(1^{\prime}\right)$	$102 \cdot 2(0 \cdot 2)$
$\mathrm{C}(1)-\mathrm{Al}(1)-\mathrm{C}(7)$	$108 \cdot 9(0 \cdot 3)$
$\mathrm{C}(1)-\mathrm{Al}(1)-\mathrm{C}(8)$	$109 \cdot 0(0 \cdot 3)$
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{Al}(1)-\mathrm{C}(7)$	$107 \cdot 5(0 \cdot 3)$
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{Al}(1)-\mathrm{C}(8)$	$106 \cdot 8(0 \cdot 3)$
$\mathrm{C}(7)-\mathrm{Al}(1)-\mathrm{C}(8)$	$120 \cdot 9(0 \cdot 4)$
$\mathrm{Al}(1)-\mathrm{C}(1)-\mathrm{Al}\left(1^{\prime}\right)$	$77 \cdot 8(0 \cdot 2)$
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	$116 \cdot 0(0 \cdot 6)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$121 \cdot 9(0 \cdot 7)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$120 \cdot 1(0 \cdot 7)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$120 \cdot 4(0 \cdot 8)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$121 \cdot 0(0 \cdot 8)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	$120 \cdot 5(0 \cdot 7)$

$\mathrm{C}(9)-\mathrm{Al}(2)-\mathrm{C}(15)$	$101 \cdot 8(0 \cdot 2)$
$\mathrm{C}(9)-\mathrm{Al}(2)-\mathrm{C}(23)$	$108 \cdot 4(0 \cdot 3)$
$\mathrm{C}(9)-\mathrm{Al}(2)-\mathrm{C}(24)$	$107 \cdot 7(0 \cdot 3)$
$\mathrm{C}(15)-\mathrm{Al}(2)-\mathrm{C}(23)$	$107 \cdot 3(0 \cdot 3)$
$\mathrm{C}(15)-\mathrm{Al}(2)-\mathrm{C}(24)$	$109 \cdot 0(0 \cdot 3)$
$\mathrm{C}(23)-\mathrm{Al}(2)-\mathrm{C}(24)$	$121 \cdot 0(0 \cdot 4)$
$\mathrm{Al}(2)-\mathrm{C}(9)-\mathrm{Al}(3)$	$77 \cdot 4(0 \cdot 2)$
$\mathrm{C}(14)-\mathrm{C}(9)-\mathrm{C}(10)$	$115 \cdot 9(0 \cdot 6)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$122 \cdot 0(0 \cdot 6)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$119 \cdot 9(0 \cdot 7)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$120 \cdot 9(0 \cdot 7)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$119 \cdot 6(0 \cdot 7)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(9)$	$121 \cdot 7(0 \cdot 6)$

$\mathrm{C}(9)-\mathrm{Al}(3)-\mathrm{C}(15)$	$101 \cdot 3(0 \cdot 2)$
$\mathrm{C}(9)-\mathrm{Al}(3)-\mathrm{C}(21)$	$106 \cdot 8(0 \cdot 3)$
$\mathrm{C}(9)-\mathrm{Al}(3)-\mathrm{C}(22)$	$107 \cdot 6(0 \cdot 3)$
$\mathrm{C}(15)-\mathrm{Al}(3)-\mathrm{C}(21)$	$109 \cdot 5(0 \cdot 3)$
$\mathrm{C}(15)-\mathrm{Al}(3)-\mathrm{C}(22)$	$108 \cdot 2(0 \cdot 3)$
$\mathrm{C}(21)-\mathrm{Al}(3)-\mathrm{C}(22)$	$121 \cdot 5(0 \cdot 4)$
$\mathrm{Al}(2)-\mathrm{C}(15)-\mathrm{Al}(3)$	$77 \cdot 5(0 \cdot 2)$
$\mathrm{C}(20)-\mathrm{C}(15)-\mathrm{C}(16)$	$116 \cdot 0(0 \cdot 6)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$122 \cdot 0(0 \cdot 7)$
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$119 \cdot 2(0 \cdot 8)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	$120 \cdot 4(0 \cdot 8)$
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	$120 \cdot 1(0 \cdot 7)$
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(15)$	$122 \cdot 2(0 \cdot 6)$

The shortest $H \cdots H$ distances which vary as a result of the folding are those between one of the methyl hydrogens and the ortho-hydrogen of a phenyl group [such as $\mathrm{H}\left(7^{\prime} \mathrm{A}\right) \cdots \mathrm{H}(6)$ in Figure 3]. There are eight equivalent contacts of this kind in the planar molecule
and all are increased very slightly in the folded molecule. The distances, initially $2.51 \AA$ increase to $2 \cdot 55 \AA$ on one side of the $\mathrm{Al}_{2} \mathrm{C}_{2}$ plane and $2.56 \AA$ on the other, when the fold angle is 14°. For the same fold angle the distances between pairs of methyl hydrogens [such as
$\left.\mathrm{H}\left(7^{\prime} \mathrm{A}\right) \cdots \mathrm{H}(8 \mathrm{~A})\right]$ go from $3 \cdot 20$ to $2 \cdot 43 \AA$ on one side and to $3.96 \AA$ on the other. This assumes that no rotation of the methyl groups about the $\mathrm{Al}-\mathrm{C}$ bonds occurs; it seems likely that such rotation is prevented by the

Table 3

(a) Equations of best least-squares planes referred to orthogonal axes where X is parallel to a^{*}, and Z is parallel to c. Distances (\AA) of atoms from the planes are given in square brackets

Plane (1):
$\mathrm{Al}(1), \mathrm{Al}\left(1^{\prime}\right), \mathrm{C}(1), \quad 0.2509 X+0.6097 Y+0.7519 Z=0$
C(1')
$\left[\mathrm{Al}(1) 0, \mathrm{Al}\left(1^{\prime}\right) 0, \mathrm{C}(1) 0, \mathrm{C}\left(1^{\prime}\right) 0\right]$
Plane (2):
$\mathrm{C}(1)$-(6) $\quad 0.8505 X+0.2533 Y-0.4609 Z=0.0347$
$[\mathrm{C}(1) 0.012, \mathrm{C}(2)-0.004, \mathrm{C}(3)-0.002, \mathrm{C}(4)-0.001, \mathrm{C}(5)$ $0.010, \mathrm{C}(6)-0.015]$

Plane (3):
$\mathrm{Al}(2), \mathrm{Al}(3), \mathrm{C}(9) \quad 0.3163 X+0.8200 Y+0.4770 Z=7.2970$
Plane (4):
$\mathrm{Al}(2), \mathrm{Al}(3), \mathrm{C}(15) \quad 0.2068 X+0.7198 Y+0.6627 Z=6.8347$
Plane (5) :
C(9)—(14)
$0.8380 X-0.4796 Y+0.2604 Z=0.9944$
$[\mathrm{C}(9) 0.004, \mathrm{C}(10)-0.003, \mathrm{C}(11) 0.002, \mathrm{C}(12)-0.002, \mathrm{C}(13)$ $0.003, C(14)-0.004]$

Plane (6):
$C(15)-(20)$
$0.8229 X-0.4936 Y+0.2813 Z=1.0680$
$[\mathrm{C}(15)-0.002, \mathrm{C}(16)-0.001, \mathrm{C}(17) 0.001, \mathrm{C}(18) 0.003$, $\mathrm{C}(19)-0.007, \mathrm{C}(20) 0.006]$
(b) Angles $\left({ }^{\circ}\right)$ between planes

$(1)-(2)$	$88 \cdot 8$	$(3)-(5)$	$89 \cdot 8$
$(3)-(4)$	$13 \cdot 7$	$(4)-(6)$	$89 \cdot 9$

$\mathrm{H}(\mathrm{Ph}) \cdots \mathrm{H}(\mathrm{Me})$ repulsion. The distances between pairs of phenyl hydrogens [such as $\mathrm{H}(6) \cdots \mathrm{H}\left(2^{\prime}\right)$] always remain much greater than the sum of the van der Waals radii. These values suggest that folding the molecule causes no great change in the van der Waals energy of the molecule until a fold angle of ca. 14° (the observed value) is reached, at which point the

Figure 3 Molecule (l) showing hydrogen atoms
$\mathrm{H}(\mathrm{Me}) \cdots \mathrm{H}(\mathrm{Me})$ distance is reduced to a value close to twice the van der Waals radius (Pauling ${ }^{8}$ gives $c a .1 \cdot 2 \AA$). Further folding would produce a considerable additional $\mathrm{H} \cdot \mathrm{H}$ repulsion. We conclude, therefore, that for fold angles in the range $\pm 14^{\circ}$ the $\mathrm{H} \cdots \mathrm{H}$ repulsion energy may vary little, and that it is plausible to ascribe the existence of two types of molecule to the effects of packing forces.
[2/1487 Received, 26th June, 1972]
${ }^{8}$ L. Pauling, 'The Nature of the Chemical Bond,' Cornell University Press, Ithaca, New York, 1960, p. 260.

[^0]: \dagger For details see Notice to Authors No. 7 in J. Chem. Soc. (A), 1970, Issue No. 20.

 1 J. F. Malone and W. S. McDonald, preceding paper.
 ${ }^{2}$ E. A. Jeffery, T. Mole, and J. K. Saunders, Chem. Comm., 1967, 696.
 ${ }^{3}$ 'J. W. Moore, D. A. Sanders, P. A. Scherr, M. D. Glick, and J. P. Oliver, J. Amer. Chem. Soc., 1971, 93, 1035.
 ${ }^{4}$ J. F. Malone and W. S. McDonald, Chem. Comm., 1970, 280.

[^1]: 5 'Crystal Data Determinative Tables,' 2nd edn., eds. J. D. H. Donnay, G. Donnay, E. G. Cox, O. Kennard, and M. V. King, Amer. Cryst. Assoc., Washington, 1963.
 © ' International Tables for X-Ray Crystallography,' vol. III, Kynoch Press, Birmingham, 1962.
 ${ }_{7}$ R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem. Phys., 1965, 42, 3175.

